1-s2.0-s0300944013003123-main

Upload: hazelmya

Post on 07-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 1-s2.0-S0300944013003123-main

    1/11

  • 8/19/2019 1-s2.0-S0300944013003123-main

    2/11

    I.J. Zvonkina et al. / Progress in Organic Coatings 77 (2014) 646–656 647

    and optical properties, is supposed to be benecial for differentpackaging applications. Incorporation of inorganic llers with aplatelet particle shape wasexpectedto enhance thebarriereffectof the printed coatings to water vapour and to provide other desiredfunctions to the coatings obtained by exographic printing.

    Development of such materials for exographic printing is analternative approach to improve the quality of packaging materials.Application of lled water-borne coatings with enhanced barrierperformance allows forcreating new packaging materials based onpaper and board with benecial functional performance, sustain-ability and environmentally friendly nature.

    The goal of the study was to develop new ink compositionsfor exographic printing on paper with improved barrier effectand other functional characteristics. The developed ink compo-sitions were investigated with regard to their coating structure,rheological behaviour, water vapour permeability performance,mechanicalproperties, surface energy of the coatings,water uptakeby free lms and wetting of paper by the developed compositions.The developed compositions were applied on the selected papersubstrate by exographic printing and water vapour permeabil-ity of the paper substrates covered by the printed coatings wasevaluated.

    2. Materials and methods

    A water-based acrylic dispersion (pH 7.9 at 23 ◦ C) used inthe study was provided by BASF SE. Three types of llers (alu-minium, borosilicate glass and talc) with platelet particles wereselected.Aluminiumake pasteand borosilicate glasspowderwereprovided by Eckart Effect Pigments GmbH and talc powder wasprovided by Mondo Minerals B.V. To prevent foam formation dur-ing dispersion, an anti-foaming agent was used during preparationof the printing ink compositions. A dispersion of the anti-foamingagent wasprovidedby BASF SE.Each of thellers was introducedinacrylic polymer dispersion separately to obtain printing inks withdifferent ller volume contents (6vol.%, 8 vol.%, 9 vol.% or 10vol.%,17vol.% or 19vol.% and 26vol.%) to investigate the effect of typeand content of llers on the coating properties.

    For incorporationof borosilicate glassand talcparticles, aqueousslurries of each of them were prepared using an ammonia baseddispersion agent provided by BASF SE and a pH buffer solution formodifyingpH during the preparation of the slurries.Dispersionwasperformed using a high speed dissolver.

    The prepared slurries were incorporated in the water-basedpolymer dispersion containing an anti-foaming agent to obtain inkcompositionsfor each of thellers with different ller volumecon-tents ranged from 8–10vol.% to 26vol.%. Critical pigment volumeconcentration (CPVC) was calculated considering oil absorption[13] and density of the llers [14] . Filler content in the preparedcompositions did not approach CPVC. Aluminium paste was intro-

    duced in the polymer binder composition as received using a highspeed dissolver to obtain ink compositions with different alu-minium particle content ranged from 6 vol.% to 26vol.%.

    The prepared ink compositions were applied by a Doctor Bladeapplicator to obtain coatings andby exographic printing.The coat-ings prepared using a DoctorBlade applicator served as a model forinvestigation of the properties of exographic printed coatings.

    In order to obtain the coatings, the prepared ink composi-tions were applied on glass, Tedlar ® polyvinyl uoride lm andon selected paper substrates, and underwent drying at ambientconditions. A white top coated Kraft liner paper was used as a sub-strate for the application of the developed compositions by a bladeapplicator and by the laboratory exographic printing process. Thecoatings on glass and paper substrates with thicknesses of 10 m

    and 30 m were analysed as prepared.

    Free lms with thickness of 35–40 m were obtained by pullingoff the coatings from Tedlar ® polyvinyl uoride lm substrates dueto a lower adhesion of the lled polymer lms to the Tedlar ® sub-strates. The prepared free lms served as a model of coatings toinvestigate the effect of type and content of the llers on the struc-ture and mechanical properties of the printed coatings.

    The laboratory exographic printing was performed using aexographic printing test machine Nissha (model S.15) equippedwith a Harper XLT-technology anilox roller with the 60 ◦ cell geom-etry, cell volumeof 33.80cm 3 /m 2 anda 70L/cm line screen(HarperGraphics GmbH). A full-tone printing plate Cyrel TDR 112 withthickness of 2.84mm and hardness of 38ShA used in the printingtests was provided by DuPont GmbH.

    The coatings prepared by a blade applicator andby exographicprintingaswellasfreelmswerekeptinatemperatureandhumid-ity controlled environment at standard conditions (23 ◦ C, 50% RH)for at least 24h before investigations.

    Rheology analysis of the ink compositions was performed usinga Physica MCR 501 rheometer (Anton Paar GmbH) with cone-plategeometry (1 ◦ angle) at a constant temperature of 23 ◦ C. The rhe-ological behaviour was evaluated for at least 3 samples of eachcomposition to prove reproducibility of the measured tendencies.

    Light transmittance of the coatings with the thickness of 30 mapplied on glass substrates was determined using Perkin-ElmerUV–vis spectrophotometer in the visible wavelength region of 400–750nm. The calibration of the spectrophotometer was per-formed using a glass substrate as a reference.

    The structure of the coatings with the thickness of 10 mon glass substrates was investigated by light and polarised lightmicroscopy using an upright and inverted light microscope (CarlZeiss AG) containing a digital camera to obtain images at differentmagnications. The structure of a cryogenic fracture at a cross-section offree standing lms was evaluatedusing scanning electronmicroscopy (SEM) (FEI Helios Nanolab).

    Water vapour barrier performance of the coatings was evalu-ated by analysing the water vapour transmission rate (WVTR) of free standing lms of similar thickness using a permeability tester(Lyssy AG). The permeability at the steady stage was determinedby the following equation:

    P =W · x

    t · A · p (1)

    where W is the weight of the permeate passing through a lmwith the thickness x, mm, and area A, mm 2 , during time t , s; p isthe differential partial pressure across the lm.

    Water uptake ratio (WUR) of the prepared free lms was deter-mined gravimetrically after their immersion in water at standardconditions for specied time intervals. Water uptake ratio of eachlm was calculated as an average of the measurements for 3 sam-ples. The WUR (%) was calculated as follows [15] :

    WUR = 100 · m t − m0m0

    (2)

    where m t and m0 correspond to the weight of samples before andafter their immersion in water during time intervals t .

    Surface energy analysis was made at the standard conditionsby the sessile drop method using an OCA-series contact angledevice (DataPhysics Instruments GmbH) containing a digital cam-era. Four liquids (water, diiodomethane, thiodiglycol and ethyleneglycol) were used for the surface energy analysis. The surfaceenergy of the liquids used for the analysis is shown in Table 1[16–18] . The measurements were repeated at least 5 times foreach liquid. The relative standard deviation of each measurementdid not exceed 5%. The surface free energy was calculated by the

    Owens–Wendt–Kaelble method [19,20] .

  • 8/19/2019 1-s2.0-S0300944013003123-main

    3/11

    648 I.J. Zvonkina et al./ Progress in Organic Coatings 77 (2014) 646–656

    Table 1Surface energyat 20 ◦ C of theliquids used forthe surface energyanalysis.

    Total surfaceenergy (mN/m)

    Dispersivecomponent (mN/m)

    Polar component(mN/m)

    Water 72.1 19.9 52.2Diiodomethane 50.0 47.4 2.6Thiodiglycol 54.0 39.2 14.8Ethylene glycol 48.0 29.0 19.0

    Dynamic mechanical analysis (DMA) of free lms was per-formedusinga Netzsch-DMA 242C deviceat thetemperaturerangefrom − 60 ◦ C to 145 ◦ C at the heating rate of 2K/min with prelimi-nary cooling of the lms to − 60 ◦ C at the cooling rate of 2K/min.

    Wetting of paper substrates by the inks was analysed by depo-sition of at least 5 drops of a similar sizeof each composition on thesurface of the selected paper substrates. Contact angle of the inkdrops on paperwas determinedafterwardsusing thedevice appliedforsurface energyevaluation (see above). The testswere performedat the standard conditions with equal time intervals after deposi-tion.The compositionsweredilutedas requiredforprinting processto achieve similar viscosityfor each type of the formulation prior tothe wetting tests. The drops were assumed to be symmetrical withregard to the vertical axe.

    Water vapour permeability of the substrates coated by ex-ographic printing was determined gravimetrically after speciedtime intervals of water evaporation through the coated substrates.The tests were performed at the standard conditions according tothemodied methodASTM E96as describedin thestudyof Arabuliet al. [21] . The partial watervapourpressure difference( p)atbothsides of the coated substrates was calculated as follows accordingto [22] :

    p = p ·RH 1100

    −RH 2100

    (3)

    where p is water vapour pressure equal to 23.756mm Hg, RH 1 andRH 2 correspond to the relative humidity inside (100) and outside(50) of the cup, respectively.

    3. Results and discussion

    To provide improved barrier performance to the printing inks,a layered structure of the printed coatings was designed. Differ-ent inorganic llers with platelet particles were incorporated inacrylic polymer composition to achieve an enhanced water vapourbarrier effect of the printed coatings and other benecial coat-ing properties. The selection of the llers was made considering agoal of obtaining different mechanical and optical properties of theprinted coatings in addition to the barrier effect, including design-ing printed barrier coatings with a relatively high transparency.

    Aluminium akes incorporated in the polymer dispersion com-position were supposed to provide coatings with a silver shade and

    a gloss effect. Talc was expected to be used for the development of transparent coatings considering a close proximity in the values of the refractive index of talc to that of the polymer. Glass akes cov-ered bya thin silicacoatingwere applied to achieve a relatively hightransparencywitha slightsilver gloss dueto thelightrefractionandmultiple light scattering inside the platelet glass particles.

    Fig. 1 demonstrates the transmittance of polymer coatings lledwith glass and talc platelets with coating thickness of 30 mapplied on glass substrates as a model of coatings printed on paper.With increasing ller content, transmittance of the coatings lledwith glass platelets slightly decreases, whereas for talc lled coat-ingsno signicantdifference wasobserved( Fig.1 a andb).Thellersapplied in the developed inks have diverse mechanical propertiesthus providing different contribution to mechanical strength andto the barrier effect of the printed coatings.

    Fig. 1. Light transmittance of polymer coatings lled with glass and talc plateletswith theller content of17–19vol.%(a) and 26vol.% (b)applied onglasssubstrates.

    3.1. Rheology evaluation

    Evaluation of the rheological behaviour of the lled polymercompositions is of high relevance in development and charac-terisation of barrier printing inks. The developed printing inksare supposed to demonstrate thixotropic behaviour that wouldcontribute to satisfactory levelling during a printing process. Adecrease in viscositywith increasing shear rate is supposed to yieldin viscosity values sufcient for the ink composition to ow andto occupy heterogeneities on the paper surface. This is especiallyimportant for providing enhanced barrier performance of the coat-ings to avoid or to decrease coating defects such as pin holes.

    The developed ink compositions were analysed with regardto their ow behaviour using a cone-plate viscometer Phys-ica MCR 501 (Anton Paar GmbH) in the shear rate interval of

    0.01–10000 s−

    1 that corresponds to the interval, in which print-ing inks are usually exposed to shearing during a typical printingprocess [23] . Each measurement was repeated at least 3 times toprove reproducibility of the measured results. The obtained resultsdemonstrate a pseudo-plastic and, in most cases, a tendency of athixotropic behaviourof thedevelopedcompositions( Fig.2 ), whichis favourable in printing and generally in polymer coatings appli-cations.

    For talc lled compositions, the obtained curves exhibitreversible structure changes after increasing and decreasing shearrate in the analysed interval, demonstrating thixotropic behaviour,that is of relevance during levelling, draining and pumping [23] .The poorest ability to rebuild the structure after removing shear atthe applied shear conditions is observed for aluminium lled com-

    positions ( Fig. 2 ). Such rheological behaviour can be presumably

  • 8/19/2019 1-s2.0-S0300944013003123-main

    4/11

    I.J. Zvonkina et al. / Progress in Organic Coatings 77 (2014) 646–656 649

    Fig. 2. Viscositycurves withincreasing and decreasing shear ratefor the developedink compositions and unlled polymer dispersion.

    causedby a non-uniform corn-akeshape of the particles andtheirlength/thickness aspect ratio that makes it more difcult for theparticles to adjust their orientation along the ow during shearing.

    Incorporation of platelet particles enhances a pseudo-plasticbehaviour of the printing ink compositions during shearing com-pared to that of non-lled polymer dispersions at low shear rates,presumably due to the effect of the orientation in the ow duringshearing ( Fig. 2 ). A decrease in viscosity at higher shear rates isexpected to satisfy the desired ow behaviour of the inks duringtheir application. The achieved viscosity of the developed com-positions is supposed to contribute to sufcient adhesion of thecoatings aftertheir application on papersubstrates thatcontributesto enhanced barrier performance of the printed coatings.

    3.2. Structure of coatings

    To investigate the structure of the printed coatings preparedfrom the developed ink compositions, coatings were applied onglass substrates by a blade applicator. The coatings applied on glassserved as a model of the coatings obtained by exographic printingfrom thedeveloped inks.The thicknessof thedry coatings wascloseto10 m that corresponds to the thickness of exographic printedcoatings using the selected combination of an anilox and a print-ing plate. The obtained coatings were analysed by light microscopyusing conventional and polarised light.

    The light microscopy images for polymer coatings contain-ing aluminium akes with different ller content ( Fig. 3 a and b)demonstrate a relativelyuniform distribution of inorganic particlesinside a polymer matrix. With increasing ller content, particlestend to locate closer to each other and an overlapping of theparticles increases, thus providing a denser structure. The spacebetween ller particles, which is occupied by polymer matrix,decreases ( Fig. 3a and b).

    Similar tendency was observed for coatings lled with glass

    akes and talc. A gradual change in the structure is observed withincreasing ller content for both llers ( Figs. 4 and 5 ). The glassparticles seem to be located closer to the surface demonstrating atendency of the coatings to be self-stratied due to a presumablyhigherhydrophobicityof theglassakes surface ( Fig.4 a andc). Talcparticles are likelyto be distributed more uniformlyin the coatings(Fig. 5a and c). The application of polarised light microscopy foranalysis of talc containing polymer coatings provides a possibilityto detect more detailed information regarding the structure of thecoatings due to the anisotropic character of the optical propertiesof talc.

    To investigate the layered structure of the printed coatingsat the cross-section, a cryogenic fracture surface of free lms atthe cross-section was evaluated with the application of scanning

    electron microscopy (SEM). Filled polymer free lms with a similar

    Table 2Water vapour permeability and relative standard error for free lms based on thedeveloped ink compositions.

    Composition WVPC(g/m24hPa)

    WVPC, barrer Relativestandarderror (%)

    Polymer binder 20.2 × 10 − 6 23.3 1.85Aluminium, 9 vol.% 5.75 × 10 − 6 6.62 2.35Aluminium, 19vol.% 2.34 × 10 − 6 2.70 1.00Aluminium, 26vol.% 1.57 × 10 − 6 1.81 0.9

    Talc, 8 vol.% 15 × 10− 6

    17.3 4.26Talc, 17 vol.% 12.4 × 10 − 6 14.3 0.57Talc, 26 vol.% 6.25 × 10 − 6 7.2 0.27Glass, 10 vol.% 8.62 × 10 − 6 9.93 2.96Glass, 19 vol.% 4.73 × 10 − 6 5.45 4.16Glass, 26 vol.% 4.51 × 10 − 6 5.20 2.66

    thickness of 35 m containing differentamount of llerswere usedas a model of printed coatings. The structure at the cross-sectionof aluminium lled polymer lms is demonstrated in Fig. 6 .

    Filler particle distribution and the interface between the llerand the polymer as well as nature of the llers and the polymerare some of the main factors to consider when designing barrierfunctionalcoatings.The SEM images demonstrate that the platelets

    are mostly aligned along the free surface of the lms ( Fig. 6). Withincreasing ller content, the number of the layers built up by theller particles increases. The structure of the layers changes andbecomes more continuous at a higher ller content compared tolms with a lower ller content (6vol.%). Layers in the lms withlower aluminium akes content consist of platelets separated bypolymer ( Fig. 6a and b). The distances between the layers are likelyto be similar to each other ( Fig. 6c).

    The interface between the ller and the polymer ( Fig. 6d)demonstrates a relatively good compatibility of the ller with thepolymer matrix. A strong interface between the ller and the poly-mer is one of the essential features for barrier performance of printed coatings. A weak interface would lead to the presence of microscopic voids in a coating that would cause diffusion of water

    molecules through the coatings [24] due to capillary forces.

    3.3. Water vapour permeability

    Designof a layered structureinside thecoatingswas expected tolead to a decrease in water vapourpermeability dueto formationof a tortuous path for diffusing molecules inside the polymer matrixthat agrees with [6] . For evaluation of the barrier performance of thedevelopedprinting inks,free lmspreparedfrom thedevelopedcompositions were used as a model of printed coatings, assumingthe same thickness of all the analysed lms. The relative standarddeviation of the experimentally determined values did not exceed5% (Table 2 ).

    As it was expected, water vapour permeability of the free lms

    based on the developed compositions decreased with incorpora-tion of llers in the polymer matrix ( Fig. 7). The strongest barriereffect was observed for the compositions containing aluminiumparticles, followed by glass and talc containing printing inks cor-respondingly. A signicant decrease in water vapour permeabilitycompared to non-lledpolymer lmswas observed even at a lowerller content below 10vol.% for all the llers. The highest decreasewas observed foraluminium akes containing lms andglass lledlms (more than 50%), whereas for talc containing compositionspermeability of the lms was reduced for about 20% ( Fig. 7 ).

    The effect of the incorporation of llers and of increasing theircontent in the ink compositions on barrier performance of the freelms is demonstrated by relative permeability calculated as a ratioof permeability for lled polymer lms to that for unlled polymer

    lms according to [6,24,25] (Fig. 8 ).

  • 8/19/2019 1-s2.0-S0300944013003123-main

    5/11

    650 I.J. Zvonkina et al./ Progress in Organic Coatings 77 (2014) 646–656

    Fig. 3. Light microscopy imagesof polymer coatings lled with aluminium akesat 9vol.%(a) and 26vol.% (b)serving as a model forprinted coatings.

    Fig. 4. Light microscopy imagesof polymer coatings lled with glass particles at 10vol.% (a), 19vol.% (b)and 26vol.% (c) serving as a model forprinted coatings.

    As it follows from Fig. 8 , water vapour permeability decreasesabruptly with incorporation of aluminium and glass particles inpolymer matrix. This is demonstrated by a sharp decrease inrelative permeability for compositions with changing their llercontent from 0vol.% to 9–10vol.%. Further increase of the llercontent leads to a smoother decrease in permeability. An increaseof the ller content higher than 19vol.% (up to 26vol.%) does notenhance signicantly thebarriereffectof aluminiumand glasslledlms. Incorporation of talc results in a gradual decrease of relativepermeability up to a higher ller content of 26vol.% ( Fig. 8).

    3.4. Mechanical properties

    Improvement in the barrier performance of free lms madefrom the developedcompositions was correlated with an enhance-ment of the mechanical properties of the lms. The DMA curvesof free lms demonstrate an increase in storage modulus at therubbery plateau with incorporation of llers and with increasingtheir content for all types of the applied llers ( Fig. 9a–c). The glass

    transition temperature of the polymer binder is − 38 ◦ C which isbelow the operating temperatures. It slightly changes with incor-poration of llers remaining, however, in the negative temperatureregion.

    Incorporation of the platelet particles in a polymer matrix pre-sumably decreases the degree of freedom of polymer chains thatresults in increased modulus at the rubbery plateau ( Fig. 9 ). Anincrease in storage modulus at the rubbery plateau is likely to beassociated with a lower mobility of polymer chains and decreasedfree volume of the polymer [26] . A decrease in the mobility of poly-mer chains and a decreased elasticity of the coatings are supposedto enhance the barrier effect of the coatings. Thus, enhancementin the mechanical strength of printed coatings is supposed to con-tribute to the improved barrier properties of the coatings.

    Layers of platelet particles tend presumably to suspend a crackdevelopment during formation of a fracture surface, thus con-tributing to enhanced mechanical strength of the coatings. Thisis demonstrated by the structure of lines ending at the loca-tions corresponding to the ller layers at the SEM images of the

    Fig. 5. Polarised light microscopy imagesof polymer coatings lled with talc at 8vol.% (a), 17vol.% (b) and26 vol.% (c) serving as a model for printed coatings.

  • 8/19/2019 1-s2.0-S0300944013003123-main

    6/11

    I.J. Zvonkina et al. / Progress in Organic Coatings 77 (2014) 646–656 651

    Fig. 6. SEMimages of polymer coatings lled with aluminiumakesat 6 vol.%, differentmagnication (a and b),12 vol.% (c) and interfacebetweenaluminium andpolymer(d).

    cryogenic fracture cross-section ( Fig. 6 b). An increased resistanceto mechanicalimpactimprovesexpectedly thebarrier performanceof the printed coatings.

    3.5. Surface energy analysis

    Surface energy characteristics are expected to affect the barrierperformance of printed coatings. A decrease in hydrophilicityof the

    coating surface is supposed to diminish afnity to humidity, thusit is expected to lead to an enhanced barrier effect.

    Surface energyanalysis of coatingswas performedby measuringthe contact angle of water on the coating surface using the sessiledrop method and its evaluation based on the Owens, Wendt andKaeble approach [19,20] . Surface energy analysis was performedfor coatings applied from the ink compositions with different llervolume content of the llers prepared as described in Section 2.

    Fig. 7. Water vapour permeability of unlled and lled polymer free lms serving as a model for printed coatings.

  • 8/19/2019 1-s2.0-S0300944013003123-main

    7/11

    652 I.J. Zvonkina et al./ Progress in Organic Coatings 77 (2014) 646–656

    Fig. 8. Relativepermeability of free lms preparedfrom thedeveloped lled polymer inks.

    With incorporation of llers and with increasing their content,the contact angle of water on the coating surface in most casesslightly increases, exceeding in all the cases 90 ◦ , which is typicalfor hydrophobic coatings ( Table 3 ).

    Fig. 10 demonstrates polarityof the coating surface calculatedasa ratio between the polar component and the total surface energyaccording to [27] . With incorporation of a smaller amount of thellers (below 10vol.%), surface polarity slightly increases in case of talc lled coatings presumably dueto a decrease in thecoating totalsurface energy. For other llers polarity does not change signi-cantly at lower ller content. With increasing further ller contenthigherthan 9–10 vol.%,polarityof thesurface mostlydecreases in amorepronounced way( Fig.10 ). An exceptionis givenby aluminiumlled coatings with the ller content changing from 19vol.% to26vol.% showing a relatively similar polarity.

    3.6. Water uptake

    Water vapour permeability of coatings is expected to be relatedto the processes of water uptake and swelling of coatings in water.To evaluate this effect, water uptake tests of free lms were per-formed. Due to similar thickness of the free lm samples, they canserve as a model of the respective printed coatings. The amount of water taken up by free lms made from the developed ink com-positions was monitored after specied time intervals as described

    Table 3Freesurfaceenergy andwater contact angle of coatingsappliedform the developedink compositions.

    Composition Surface energy(mN/m)

    Water contactangle ( ◦ )

    Polymer binder 20.85 90.6Aluminium, 9 vol.% 20.58 91.2Aluminium, 19 vol.% 21.87 91.4Aluminium, 26 vol.% 20.59 92.5Talc, 8 vol.% 20.46 91.5Talc, 17 vol.% 20.81 90.6Talc, 26 vol.% 20.71 93Glass, 10 vol.% 20.99 91.3Glass, 19 vol.% 21.15 91.4Glass, 26 vol.% 21.01 93

    above (see Section 2). The water uptake results for non-lled poly-mer lms and for samples with an intermediate ller content of each type of the lled polymer compositions as a function of thetotal immersion time in distilled water are shown in Fig. 11 .

    The water absorption capability of free lms changes with timeof their immersion in water. An average tendency for water uptakeis shown in Fig. 11 . The results demonstrate two stages of wateruptake. At the beginning, the amount of absorbed water increasesabruptly with increasing ller content. At this stage occupation of pores in the lm by water molecules is supposed to take place thatis driven mainly by micro-capillary forces and by the afnity of hydrophilic components of thelmsto water ( Fig. 11 ). After a sharpincrease, water uptake values come to a plateau corresponding tothe second stage with a slower increase of the amount of absorbedwater. Unlled polymer lms have the highest water uptake; thecompositions lled with aluminium akes have the lowest wateruptake values. The lms based on talc and glass lled composi-tions are located in between in a decreasing of water uptake order(Fig. 11 ).

    The process of water uptake by lled and non-lled polymerlms is supposed to be related to polymer swelling [28] . This candecrease thelmporosityat theinterfacesof thepolymerandllersorin thepolymer. Theincreased dueto this pressure atthe interfacecan lead to expelling of water molecules from the lled polymerlms. Therefore, water uptake increases sharply at the beginningofimmersion inwaterand after a certain time intervalit canslightly

    decrease ( Fig. 11 ). Thespeed of water uptake is not uniform duringthe time of immersion of the lms in water as well, as it followsfrom Fig. 11 .

    3.7. Application of coatings by printing and evaluation of the printed samples

    Based on the evaluation of the properties of the coatings pre-pared prior to printing, the formulations with the ller content of 19vol.% for aluminium containing compositions and 26vol.% forglass andfor talc containing coatings were recommendedfor print-ing inks. The selection of the compositions was made considering acombination of the barrier performance and the mechanical prop-

    erties. A higher ller content of aluminium (26 vol.%) results in

  • 8/19/2019 1-s2.0-S0300944013003123-main

    8/11

    I.J. Zvonkina et al. / Progress in Organic Coatings 77 (2014) 646–656 653

    Fig. 9. DMA plots of free lms based on lled and unlled polymer printing ink compositions containing aluminium (a), glass (b) and talc (c) platelets with different llercontent.

    a more brittle behaviour as demonstrated by DMA as the valueof the ller content presumably gets closer to CPVC, while itdoes not affect signicantly the barrier performance of the lled

    coatings. For glass and talc lled coatings the best performance

    was achieved using ink compositions with 26vol.% ller con-tent.

    The selected developedprinting inkswereappliedon paper sub-

    strates by exographic printing. The procedure, devices and type

  • 8/19/2019 1-s2.0-S0300944013003123-main

    9/11

    654 I.J. Zvonkina et al./ Progress in Organic Coatings 77 (2014) 646–656

    Fig. 10. Polarity of the surface of coatings based on different ink compositions.

    of paper substrates in printing application were the same for allthe selected compositions. Viscosity and pH evaluation as well asthe foaming test, described elsewhere [29] , were made prior toprinting. Flexographic printing was performedusing a printing testmachine Nissha (model S.15) equipped with the selected combina-tion of an anilox roller and a printing plate (see Section 2)

    The selection of the anilox roller and printing plate was madeconsidering the goal to achieve a relatively high thickness and auniform surface, which are necessary to achieve improved barrierperformance of the printed coatings.

    The developed ink compositions recommended for printing

    applications are characterised by improved wetting behaviour onthe selected paper substrates compared to the unlled polymercomposition.Wetting behaviourof theselected paper by thedevel-oped inks was evaluated by a contact angle of ink droplets on the

    Table 4Wettingcontactangle of thepolymerbinderand of thedeveloped ink compositions.

    Composition Wetting contactangle ( ◦ )

    Relative standarderror (%)

    Polymer binder 86 1.3Aluminium, 19 vol.% 79.1 3.3Talc, 26 vol.% 64.9 5.4Glass, 26 vol.% 59.4 4.2

    selected papersubstrates (see Table 4 ). Improvingwetting is essen-

    tial to enhance adhesion of the printed coatings to paper and toavoid or to decrease pinhole formation during exographic print-ing. This is especially relevant for improving barrier performanceof the printed coatings.

    Fig. 11. Wateruptake ratio forunlled and lled polymer lms.

  • 8/19/2019 1-s2.0-S0300944013003123-main

    10/11

    I.J. Zvonkina et al. / Progress in Organic Coatings 77 (2014) 646–656 655

    Fig. 12. Water vapour permeability of uncoated paper substrates and developed ink compositions containing aluminium, talc and glass llers.

    The substrates covered by exographic printed coatings wereanalysed with regard to their permeability by water vapour atthe standard conditions. With incorporation of llers the barrierperformance of coatings improved for at least 70% for aluminiumcontaining printed coatings (19 vol.% of aluminium) and for 60%for talc and glass containing printed coatings (26 vol.% of llers)compared to uncoated paper ( Fig. 12 ).

    The results obtained in the tests agree with the tendencyobserved for decreasing watervapour permeability for unlled andlled polymer free lms prepared from the developed ink com-positions ( Figs. 7 and 8 ). Both tests demonstrate an improvementin the barrier performance of polymer lms with incorporation of the selected llers. The best barrier performance was achieved foraluminium lled inks.

    Evaluation of thickness of the paper substrates coated by theprinted inks demonstrated that a relatively high volume of theapplied compositions was transferred using the selected aniloxroller and the printing plate. The proposed combination of theanilox roller and the printing plate provided a possibility toobtain relatively even coatings with thickness exceeding 20 m for22–36% by exographic printing.

    4. Conclusions

    New exographic inks were developed based on acrylic poly-mer dispersion with incorporation of inorganic llers consisting of platelet particles. The different types of llers introduced in thepolymer matrix provide an enhanced barrier effect to the printedcoatings and contribute to different mechanical, optical and otherproperties of the coatings. The design of the developed materialsprovides a layered structure of the coatings with a relatively gooddistribution of particles in the polymer matrix.

    Water vapour permeability of free lms serving as a model of coatings decreased signicantly with incorporation of llers andwith increasing their content in the polymer matrix. An increasedbarrier effect of the coatings is associated with an enhancedmechanical strength, a slightly decreased polarity of the coatingsurface at certain llercontentand withotherphysical–mechanical

    properties of the coatings applied from the developed inks.

    The developed inks were applied on the selected paper sub-strates by laboratory exographic printing. Incorporation of llersin the polymer binder at certain content led to a slightly improvedwetting of the paper substrates that is of relevance in a printingprocess. The substrates covered by printed coatings demonstrateda decreased permeability of water vapour at standard conditions.

    The proposed new environmentally friendly inks contribute tothe development of packaging materials with improved barrierperformance, achieved by application of the developed printedcoatings with decreased water vapour permeability.

    References[1] R. Coles, D. McDowell, M.J.Kirwan,Food PackagingTechnology,Blackwell Pub-

    lishing Ltd., London, 2000.[2] K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S.Abdul Khalil, A.A. Salema,

    I. Inuwa, Potential materials for food packaging from nanoclay/natural breslled hybrid composites,Mater. Des. 46 (2013) 391 –410.

    [3] A. Sorrentino, Nanoclays and ultrathin lms for packaging applica-tions, in: A.S.H. Makhlouf, A. Tiginyanu (Eds.), Nanocoatings and Ultra-thin Films. Technologies and Applications, Woodhead Publishing Ltd.,Oxford/Cambridge/Philadelphia/New Delhi, 2011, pp. 203 –234.

    [4] J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for Food packagingappli-cations, Prog. Polym.Sci. 38 (10 –11) (2013) 1629 –1652.

    [5] N. Peelman, P. Ragaert, B. De Meulenaer, D. Adons,R. Peeters, L. Cardon, F. VanImpe, F. Devlieghere,Applicationof bioplastics forfood packaging, Trends FoodSci. Technol. 32 (2013) 128 –141.

    [6] C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nano-materials, Prog. Polym. Sci. 36 (2011) 1766 –1782.

    [7] H. Azeredo,Nanocomposites for food packaging applications, Food Res. Int. 42(2009) 1240 –1253.

    [8] M. Xanthos,Functional Fillers for Plastics,Wiley-VCH Verlag GmbH& Co KGaA,Weinheim, 2005.

    [9] H. Holik, Handbook on Paper and Board, Wiley-VCH Verlag GmbH & Co KGaA,Weinheim, 2006.

    [10] M. Vähä-Nissi, Ph.D. Thesis, Tampere University of Technology, Paper Convert-ing Institute, Tampere, Finland, 1998.

    [11] T. Schuman, M. Wikstroem, M. Rigdahl, Dispersion coating with carboxylatedand cross-linked styrene-butadiene lattice. 2. Effects of substrate and poly-mer characteristicson the properties of coated paperboard, Prog. Org.Coat. 51(2004) 228 –237.

    [12] T. Schuman, B. Adolffson, M. Wikstroem, M. Rigdahl, Surface treatment andprintingpropertiesof dispersion-coated paperboard,Prog. Org. Coat. 54 (2005)188 –197.

    [13] DIN EN ISO 787-5, Allgemaine Pruefverfahren fuer Pigmente und Fuellstoffe.Teil 5: Bestimmung der Oeilsatz, 1980.

    [14] J. Bieleman,Additives for Coatings,Wiley-VCH Verlag GmbH, Weinheim, 2000.[15] S. Pavildou, C.D.Papaspyrides, A review on polymer-layered silicate nanocom-

    posites, Prog. Polym. Sci. 33 (2008)1119 –1198.

    http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0075http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0070http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0065http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0060http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0055http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0050http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0045http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0040http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0035http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0030http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0025http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0020http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0015http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0010http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0005

  • 8/19/2019 1-s2.0-S0300944013003123-main

    11/11

    656 I.J. Zvonkina et al./ Progress in Organic Coatings 77 (2014) 646–656

    [16] H.J. Busscher, et al., Theeffect of surface roughening of polymerson measuredcontact anglesof liquids, Colloids Surf. 9 (1984) 319 –331.

    [17] J.-R. Chen, T. Wakida, Studies on surface free energy and surface structure of PTFE rmtreated with low temperature plasma, J. Appl. Polym. Sci. 63 (1997)1733 –1739.

    [18] H. Yildirim Erbil,Surface tension of polymer,in: K.S. Birdi (Ed.),CRC Handbookof Surface andColloid Chemistry, CRC Press,Boca Raton, 1997,p. 292 (Chapter9).

    [19] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J.Appl. Polym.Sci. 13 (1969) 1741 –1747.

    [20] G.Meichsner,G.T. Mezger,J. Schroeder,Lackeigenscahftenmessen undsteuern,

    Vincent Network, Hannover, 2003.[21] S. Arabuli, V. Vlasenko, A. Havelka, Z. Kus, Analysis of modern methods for

    measuring vapour permeability of textiles, in: 7th International conference –TEXSCI 2010, 2010.

    [22] http://www.conservationphysics.org/atmcalc/atmoclc2.pdf (accessed20.03.13).

    [23] Sun Chemical Corporation, An Introductory Guide to Rheology, vol. VII, SunChemical Corporation, 1995.

    [24] V. Mittal, Barrier properties of composite materials, in: V. Mittal (Ed.), BarrierProperties of Polymer ClayNanocomposites, NovaSciencePublishersInc., NewYork, 2009, pp. 1 –17.

    [25] IMERYS,Pigmentsfor Paper.IMERYSTechnicalGuide:NewConcepts forBarrierCoatings, 2008 (accessed 04.2012).

    [26] K.P. Menard, Dynamic Mechanical Analysis. A Practical Introduction, Taylor &Francis Group LLC, Boca Raton/London/New York, 2008.

    [27] M. Vähä-Nissi, A. Savolainen, Filled Barrier Dispersion Coatings, in: TappiCoatng Confrence Proceedings, Toronto, Canada, 1999.

    [28] X.J. Fan, S.W.R. Lee, Q. Han, Experimental investigations and model study of moisture behaviours in polymeric materials, Microelectron. Reliab. 49 (2009)861 –871.

    [29] E.R. Todd, Printing Inks. Formulation Principles, Manufacture and Qual-ity Control Testing Procedures , Pira Internat ional , United Kingdom,1994.

    http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://www.conservationphysics.org/atmcalc/atmoclc2.pdfhttp://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0145http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0140http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0135http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0130http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0125http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0120http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0115http://www.conservationphysics.org/atmcalc/atmoclc2.pdfhttp://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0105http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0100http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0095http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0090http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0085http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080http://refhub.elsevier.com/S0300-9440(13)00312-3/sbref0080