1-s2.0-s0016236115012648-main

Upload: israel-rico

Post on 01-Mar-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 1-s2.0-S0016236115012648-main

    1/7

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/287796726

    Pyrolysis kinetics of soybean straw usingthermogravimetric analysis

    Article in Fuel April 2016

    Impact Factor: 3.52 DOI: 10.1016/j.fuel.2015.12.011

    READS

    22

    7 authors, including:

    Jingpei Cao

    China University of Mining Technology

    51PUBLICATIONS 607CITATIONS

    SEE PROFILE

    Xing Fan

    China University of Mining Technology

    70PUBLICATIONS 442CITATIONS

    SEE PROFILE

    Yun-Peng Zhao

    China University of Mining Technology

    37PUBLICATIONS 279CITATIONS

    SEE PROFILE

    Xian-Yong Wei

    China University of Mining Technology

    253PUBLICATIONS 2,195CITATIONS

    SEE PROFILE

    All in-text references underlined in blueare linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Xian-Yong Wei

    Retrieved on: 19 April 2016

    https://www.researchgate.net/profile/Yun-Peng_Zhao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_7https://www.researchgate.net/profile/Yun-Peng_Zhao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_7https://www.researchgate.net/profile/Jingpei_Cao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Jingpei_Cao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_5https://www.researchgate.net/?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_1https://www.researchgate.net/profile/Xian_Yong_Wei?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/China_University_of_Mining_Technology?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Xian_Yong_Wei?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Xian_Yong_Wei?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Yun-Peng_Zhao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/China_University_of_Mining_Technology?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Yun-Peng_Zhao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Yun-Peng_Zhao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Xing_Fan4?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/China_University_of_Mining_Technology?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Xing_Fan4?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Xing_Fan4?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Jingpei_Cao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/China_University_of_Mining_Technology?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Jingpei_Cao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Jingpei_Cao?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_1https://www.researchgate.net/publication/287796726_Pyrolysis_kinetics_of_soybean_straw_using_thermogravimetric_analysis?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_3https://www.researchgate.net/publication/287796726_Pyrolysis_kinetics_of_soybean_straw_using_thermogravimetric_analysis?enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw%3D%3D&el=1_x_2
  • 7/25/2019 1-s2.0-S0016236115012648-main

    2/7

    Pyrolysis kinetics of soybean straw using thermogravimetric analysis

    Xin Huang, Jing-Pei Cao , Xiao-Yan Zhao, Jing-Xian Wang, Xing Fan, Yun-Peng Zhao, Xian-Yong Wei

    Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

    h i g h l i g h t s

    The decomposition zone of soybean straw could be divided into three stages.

    The kinetic of soybean straw pyrolysis was studied by three models.

    Simulation of pyrolysis showed a good agreement with experimental data.An insight for future applications of soybean straw was provided.

    a r t i c l e i n f o

    Article history:

    Received 25 September 2015

    Received in revised form 30 November 2015

    Accepted 10 December 2015

    Available online 17 December 2015

    Keywords:

    Kinetics

    Pyrolysis

    Thermogravimetric analysis

    Soybean strawBiomass

    a b s t r a c t

    Thermochemical conversion of crops straw is receiving renewed attention, due to the energy and mate-

    rial recovery that can be achieved. However, it still lacks the kinetic background which is of great impor-

    tance for a successful design of thermochemical process. In this work, pyrolysis test for soybean straw

    was performed in a non-isothermal thermogravimetric analysis (TGA) in order to determine the thermal

    degradation behavior. Pyrolysis experiments were carried out under inert conditions and operated at dif-

    ferent heating rates (5, 10, 20, and 30 K/min). Three different kinetic models, iso-conversional Kissinger

    AkahiraSunose (KAS), OzawaFlynnWall (OFW) models, and CoatsRedfern method were applied on

    TGA data of soybean straw to calculate the kinetic parameters including activation energy, pre-

    exponential factor, and reaction order. The activation energy values were 154.15 and 156.22 kJ/mol based

    on KAS and OFW models, respectively. Simulation of the soybean straw thermal decomposition using theobtained kinetic parameters and comparison with experimental data are in good agreement.

    2015 Elsevier Ltd. All rights reserved.

    1. Introduction

    The utilization of biomass wastes including agricultural straw,

    municipal solid waste, and livestock manure has attracted more

    and more attention owing to their potential energy property. Agri-

    cultural application, landfill, and incineration are the most com-

    mon disposal processes for the wastes, whereas the traditional

    disposal routes are becoming increasingly unacceptable due to

    land limitations and stringent regulations [1,2]. Alternatively,using biomass wastes as energy feedstock for bio-fuel production

    through thermochemical conversion is regarded as an environ-

    mentally friendly disposal route with potential economic benefits.

    Several thermochemical conversion technologies, including pyrol-

    ysis, gasification, and liquefaction conversion, are currently under

    development[3,4]. Among the techniques, pyrolysis is most widely

    used in thermal decomposition process and effective for converting

    biomass waste into useful products of gas, oil, and solid char in an

    oxygen-free atmosphere [3,5]. The combustible gas and the oil

    products can be used as fuel due to their high calorific values[6].

    Moreover, the bio-oil consists of various organic compounds which

    can be used as feedstock for value-added chemicals [7,8].

    Non-isothermal thermogravimetric analysis (TGA) is one of the

    most common methods to investigate the kinetics of pyrolysis.

    Accurate pyrolysis kinetic models are essential to the full utiliza-

    tion of particular biomass wastes. It also contributes to design rea-

    sonable, efficient, and competent process and scale to establish inreal industrial applications for energy generation. The degradation

    of biomass wastes is a tremendously complex process, mainly due

    to the large number and diverse nature of thermochemical reac-

    tions. Previous studies[9]showed that the pyrolysis of agricultural

    biomass consists four individual conversion stages, i.e., moisture

    evolution, decomposition of hemicellulose, cellulose, and then lig-

    nin. Hemicellulose, which is a branched polymer with a low degree

    of polymerization, is normally decomposed at 493588 K, where

    cellulose maintains highly ordered and stable crystalline

    structures. As a result this, the cellulose undergoes decomposition

    at 588673 K [10,11]. Lignin is a three-dimensional polymer

    http://dx.doi.org/10.1016/j.fuel.2015.12.011

    0016-2361/2015 Elsevier Ltd. All rights reserved.

    Corresponding author. Tel./fax: +86 516 83591059.

    E-mail address:[email protected](J.-P. Cao).

    Fuel 169 (2016) 9398

    Contents lists available at ScienceDirect

    Fuel

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / f u e l

    http://-/?-https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://dx.doi.org/10.1016/j.fuel.2015.12.011mailto:[email protected]://dx.doi.org/10.1016/j.fuel.2015.12.011http://www.sciencedirect.com/science/journal/00162361http://www.elsevier.com/locate/fuelhttps://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://www.elsevier.com/locate/fuelhttp://www.sciencedirect.com/science/journal/00162361http://dx.doi.org/10.1016/j.fuel.2015.12.011mailto:[email protected]://dx.doi.org/10.1016/j.fuel.2015.12.011http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuel.2015.12.011&domain=pdfhttp://-/?-
  • 7/25/2019 1-s2.0-S0016236115012648-main

    3/7

    consisting of hydroxyl phenylpropane monomers, and bound adja-

    cent to the cellulose fibers to form a lignocellulose. The lignin is

    more refractory than the other two components, while having

    functional groups with widely distributed thermal stability, and

    this results in a board temperature range of decomposition from

    433 to 1173 K[11,12].

    In the present work, we investigate the kinetics of pyrolysis

    process for soybean straw using TGA technique at different heatingrates (5, 10, 20, and 30 K/min) under argon atmosphere and deter-

    mine the kinetic parameters through iso-conversional Kissinger

    AkahiraSunose (KAS) and OzawaFlynnWall (OFW) models

    and CoatsRedfern method. The physicochemical properties are

    firstly determined by elemental analyzer and FTIR spectrometer.

    2. Materials and methods

    2.1. Material

    The soybean straw sample was obtained from fields of Xuzhou,

    China. It was pulverized to pass through a 40-mesh sieve followed

    by drying at 380 K for 24 h and then stored in an airtight container

    before use. Ultimate analysis was conducted with an Elementarvario MACRO cube CHNS elemental determinator.Table 1summa-

    rizes main characteristics of the soybean straw sample.

    2.2. TGA

    Pyrolysis tests were carried out in a simultaneous differential

    thermogravimetric analyzer, which combines a heat flux type

    DSC with a TGA (Mettler Toledo TGA/DSC Stare ESI-0910,

    Switzerland; with a precision of temperature measurement

    0.15 K, DSC sensitivity 0.1 mW and microbalance sensitivity

    0.1 lg). Temperature programmed pyrolysis for soybean straw

    was conducted under a dry argon atmosphere with a flow rate of

    50 mL/min. Sample with mass of 1520 mg was inserted directly

    into a ceramic crucible and temperature was ramped from room

    temperature to 380 K and holding for 10 min, then heated to

    1173 K with different heating rates of 5, 10, 20, and 30 K/min,

    respectively. The data of thermogravimetry (TG) and derivative

    thermogravimetry (DTG) were obtained using the software of the

    analyzer. The experiments were replicated at least twice.

    2.3. FTIR analysis

    FTIR spectrum of soybean straw was recorded using a Nicolet

    Magna 560 spectrometer, by collecting 128 scans at a resolution

    of 4 cm1 in reflectance mode with measuring regions of

    4000400 cm1.

    2.4. Kinetic study

    Biomass pyrolysis is a complex process because more than one

    reaction is involved. A full kinetic analysis of the complex system is

    generally not feasible, but some kinds of effective or average

    kinetic description are still needed. In this work, pyrolysis reaction

    kinetics was investigated by three different kinetic models, the

    iso-conversional KAS and OFW models and CoatsRedfern method

    were applied on TGA data of soybean straw.

    2.4.1. The KAS model

    The KAS model [13,14] is one of the most widely used iso-

    conversional methods to calculate pyrolysis kinetics, which is

    based on the following expression:

    ln bT2

    ln AE

    Rga

    ERT

    whereb is the heating rate (K/min), A is the pre-exponential factor

    (min1),a is conversion rate which can be calculated with the lostweight dividing by the total weight of soybean straw, and g(a) is afunction depending on the decomposition mechanism. In the plot of

    lnb=T2 versus 1=T, slope gives E=R where R numerical valued

    8.314 J/(molK) is the gas constant. Doing so for the whole range

    of conversion (01) will produce the activation energy for the pro-

    gressing values of conversion.

    2.4.2. The OFW model

    Another most common and widely accepted methods in scien-

    tific community to compute thermo-kinetic parameter from exper-imental data is the OFW model [15,16]. The OFW model used a

    correlation of the heating rate of the samples, activation energy

    and inverse temperature, which was originally used the Doyles

    [17] approximation for the temperature integral. The final form

    of the OFW equation is expressed as:

    logb log AE

    Rga

    2:315 0:457

    E

    RT

    It is evident that a linear plot of logb versus the inverse

    temperature is sufficient in order to obtain the activation energy

    corresponding to each conversion step.

    2.4.3. The CoatsRedfern method

    The CoatsRedfern integral method[18]which is derived from

    Arrhenius equation was used to analyze the characters of pyrolysis

    kinetics. Considering the KAS and OFW models are accurate

    enough for the calculation of activation energy, the CoatsRedfern

    method can be used to determine the pre-exponential factor as

    well as the reaction order. The equations for numerical determina-

    tion of the kinetic parameters using the CoatsRedferns method

    are given below.

    ln ln1 a

    T2

    ln

    AR

    bE 1

    2RT

    E

    E

    RT; n 1

    ln 1 a1n 1

    n 1T2

    " # ln

    AR

    bE 1

    2RT

    E

    E

    RT; n1

    wheren is the reaction order which describes the pyrolysis model.

    As for first-order reaction (n= 1), the slope of curve ln ln1aT2

    h iver-

    sus 1=T produce E=R, then the activation energy is derived. For

    multistep reaction (n 1), activation energy can be calculated

    through KAS or OFW models. Assuming 2RTE, the intercept

    can be arranged as lnAR=bE where A can be calculated.

    3. Results and discussion

    3.1. FTIR analysis

    The assignment of structural feature of the soybean straw is

    based on published interpretation for FTIR spectral data and the

    standard spectra in FTIR libraries, e.g., Aldrich Condensed Phase

    FTIR Library[1922]. As shown inFig. 1, the spectrum of the soy-bean straw shows a very strong and board absorption band at

    Table 1

    Characteristics of soybean straw.

    Proximate analysis (wt.%)a Ultima te a na lysis (d af , wt .%) H /C

    Mar Ad VMd FCdb C H N S Ob

    1.8 4.7 75.5 19.8 47.8 6.9 1.0 0.1 44.3 1.73

    a

    A: ash; M: moisture; VM: volatile matter; FC: fixed carbon.b Calculated by difference.

    94 X. Huang et al./ Fuel 169 (2016) 9398

    https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229785195_A_Quick_Direct_Method_for_the_Determination_of_Activation_Energy_from_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/232751367_Series_Approximations_to_the_Equation_of_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/232802746_Kinetic_Parameters_From_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222074687_Enzymatic_hydrolysis_of_pretreated_soybean_straw?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223789206_Evaluation_of_Sewage_Sludge-Based_Compost_by_FT-IR_Spectroscopy?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/232802746_Kinetic_Parameters_From_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223789206_Evaluation_of_Sewage_Sludge-Based_Compost_by_FT-IR_Spectroscopy?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/232751367_Series_Approximations_to_the_Equation_of_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222074687_Enzymatic_hydrolysis_of_pretreated_soybean_straw?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229785195_A_Quick_Direct_Method_for_the_Determination_of_Activation_Energy_from_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/25/2019 1-s2.0-S0016236115012648-main

    4/7

    3400 cm1, which is ascribable to H-bonded OAH groups of cellu-

    lose[19]. Besides, the band at 2920 cm1 is corresponded to CAH

    stretching within the methylene of cellulose. The absorption peaks

    at 1733 and 1246 cm1 can be associated with the alkyl ester of

    acetyl group in hemicellulose structure and/or the linkage between

    hemicellulose and lignin[19]. The C@O groups in alkyl groups oflignin side chains are suggested to conjugate with the aromatic

    structure and result in an adsorption peak at 1636 cm1. The bands

    at 2850, 1636, and 1422 cm1 have been attributed to absorption

    due to CAH deformation within the methoxyl groups of lignin

    [19,20]. The characteristic peaks of lignin were observed at

    1320 cm1 (CAO of syringyl ring) and 1510 cm1 (aromatic skele-

    tal vibration) [21]. The vibrations of these bands overlapped the

    CAOAC glycosidic bond stretching at 1160 cm1, CAOAC ring

    skeletal vibration at 1105 cm1 and CAOAH stretching of primary

    and secondary alcohols at 1055 cm1 [19]. The absorption bands in

    9301200 cm1 region correspond to the valent CAO, CAC, and

    deformation vibrations of ring structures of CH2OH origin[22].

    3.2. Characteristics of thermal decomposition

    The TG and DTG curves obtained from the pyrolysis of soybean

    straw at heating rates of 5, 10, 20, and 30 K/min are shown inFig. 2.

    The decomposition zone of soybean straw could be divided into

    three stages. The first one ranging from 383 to 453 K corresponded

    to the moisture that the samples contained owing to the hygro-

    scopic nature of soybean straw and very light volatiles [23]. The

    main decomposition step took place between 453 and 673 K with

    one strong peak around 613 K, which may be caused by the pyrol-

    ysis of hemicellulose and cellulose[11], whose existence is proved

    by FTIR analysis inFig. 1.Following the stage, a shoulder between

    673 and 1173 K was observed, which should be associated with the

    decomposition of lignin[24,25].

    As shown inFig. 2, the increase of heating rate contributes to

    the deceleration of thermal degradation processes towards high

    temperatures, which could be explained that a high heating rate

    led the sample to the given temperature in a short time as a result

    of increased thermal lag [26,27]. In addition, the yield of volatile

    matter decreased slightly with increasing heating rate. At the tem-perature range from 453 to 773 K, the volatilizing yield is 76.3% at

    5 K/min. This yield significantly decreases to 72.1%, 68.7% and

    67.5% at 10, 20 and 30 K/min, respectively. On the other hand,

    the decrease in heating rates only transferred the peak tempera-

    ture to lower value without altering thermal profile of decomposi-

    tion, which could be due to the increase in heat changing efficiency

    at lower heating rates compared to higher heating rates. This con-

    clusion is in good agreement with the study by Kim et al.[28], who

    proposed that the maximum rate of decomposition increases with

    increasing heating rates owing to increasing thermal energy.

    3.3. Determination of activation energy

    In order to determine the active energy of the pyrolysis of soy-bean straw, two different model-free, iso-conversion methods (KAS

    and OFW models) were carried out. According to KAS and OFW

    models, the activation energy can be determined from lnb=T2

    and logb, respectively.Fig. 3a illustrates the liner plot of lnb=T2

    versus 1=T where slopes give E=R at progressing conversion

    degrees, while Fig. 3b depicts the linear plot of logb versus 1=T

    where slopes give 0:457E=R at progressing conversion degrees.

    It should be noticed that using the available experimental data, lit-

    tle or no correlation was observed for values of conversion below

    0.1 and above 0.7 [29]. Due to a good correlation was observed

    for most sets of experimental data and following the assumption

    of the iso-conversional models concerning the constancy of activa-

    tion energy, we could reliably exclude of some experimental data

    4000 3600 3200 2800 2400 2000 1600 1200 800 400

    Wavemunber (cm-1)

    A

    bsorbance

    1160

    1055

    1246

    1422

    1636

    1733

    2850

    2920

    3400

    Fig. 1. FTIR spectrum of soybean straw.

    DTG(%.s-1)

    0.00

    -0.15

    -0.30

    -0.45

    -0.60

    373 473 573 673 773 873 973 1073 11730

    20

    40

    60

    80

    100 5 K/min10 K/min20 K/min30 K/min

    Weightloss(%)

    Temperature (K)

    Fig. 2. TG and DTG curves of soybean straw.

    = 0.7 0.6 0.5 0.4 0.3 0.2 0.1

    -11.6

    -11.0

    -10.4

    -9.8

    (a)

    1/T (mK-1)

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.1 1.3 1.5 1.7 1.9

    (b)

    -9.2

    log

    ln(

    T2

    Fig. 3. Kinetic plot for soybean straw using KAS (a) and OFW models (b).

    X. Huang et al. / Fuel 169 (2016) 9398 95

    https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/222074687_Enzymatic_hydrolysis_of_pretreated_soybean_straw?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223789206_Evaluation_of_Sewage_Sludge-Based_Compost_by_FT-IR_Spectroscopy?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/255733446_Effect_of_water_washing_on_the_thermal_behavior_of_rice_straw?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-https://www.researchgate.net/publication/204978228_The_influence_of_the_percentage_of_oxygen_in_the_atmosphere_on_the_thermal_decomposition_of_lignocellulosic_materials?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/41012526_Simulation_of_the_thermogravimetry_analysis_of_three_non-wood_pulps?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/24274216_Pyrolysis_characteristics_and_kinetics_of_Arundo_donax_using_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223955525_Pyrolysis_Characteristics_and_Kinetics_of_Biomass_Residuals_Mixtures_With_Lignite?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/236691523_Thermogravimetric_characteristics_and_pyrolysis_kinetics_of_Alga_Sagarssum_sp_biomass?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/41012526_Simulation_of_the_thermogravimetry_analysis_of_three_non-wood_pulps?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/24274216_Pyrolysis_characteristics_and_kinetics_of_Arundo_donax_using_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223789206_Evaluation_of_Sewage_Sludge-Based_Compost_by_FT-IR_Spectroscopy?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/204978228_The_influence_of_the_percentage_of_oxygen_in_the_atmosphere_on_the_thermal_decomposition_of_lignocellulosic_materials?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/255733446_Effect_of_water_washing_on_the_thermal_behavior_of_rice_straw?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222074687_Enzymatic_hydrolysis_of_pretreated_soybean_straw?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/236691523_Thermogravimetric_characteristics_and_pyrolysis_kinetics_of_Alga_Sagarssum_sp_biomass?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223955525_Pyrolysis_Characteristics_and_Kinetics_of_Biomass_Residuals_Mixtures_With_Lignite?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/38114020_Effect_of_acid_pretreatment_of_rice_straw_on_structural_properties_and_enzymatic_hydrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/25/2019 1-s2.0-S0016236115012648-main

    5/7

    because the lack of correlation would not greatly affect the quality

    of the computed activation energy[29]. The calculated activation

    energies and the respective correlation factor using KAS and

    OFW models are listed inTable 2. The mean active energies calcu-lated from KAS and OFW models are 154.15 and 156.22 kJ/mol,

    respectively. Satisfactory agreement with a deviation of 1.32% indi-

    cated that the activation energy calculated using KAS and OFW

    models were believable. Islam et al. [10]investigated the activation

    energy with a deviation below 4% using KAS and OFW models in

    pyrolysis of fruit hulls. The high agreement validated the reliability

    of calculations and confirmed the predictive power of KAS and

    OFW models[30].

    The results of kinetic analysis show that activation energy is

    highly depended on conversion which means that pyrolysis of soy-

    bean straw is a complex process involving different reactions. As

    shown inFig. 4, the activation energy values increased smoothly

    as the conversion value increased from 0.1 to 0.3, and then kept

    at a level within conversion range of 0.30.6, which should be

    due to the pyrolysis of hemicellulose and cellulose. As the pyrolysis

    proceeded, the activation energy values significantly decreased

    from 179.31 to 46.32 kJ/mol when the conversion value further

    increased from 0.6 to 0.7 for KAS model. Same trend was founded

    in activation energy values calculated from OFW model. The con-

    version from 0.6 to 0.7 corresponded to the temperature range

    from 673 to 873 K, during the interactive pyrolysis of main lignin

    and low residual cellulose occurred. Vamvuka et al. [27] reported

    that cellulose decomposition had the highest activation energies

    (145285 kJ/mol), whereas lignin decomposition had the lowest(3039 kJ/mol) ones, which could be responsible for the obvious

    decrease in activation energy with a conversion range of 0.60.7.

    In addition, for conversion around 0.7 and temperatures higher

    than 723 K, analysis of the activation energy values showed that

    the soybean straw may be assigned to direct gasification, where

    the kinetic parameters and rate limiting step could be controlled

    by oxygen accessibility towards the residual solid [31]. On the

    other hand, as the pyrolysis proceeded, a high heating rate led

    the sample to the given conversion in high temperature by the rea-

    son of thermal lag. As a consequence of this, the absolute value of

    slopes in the plot of lnb=T2 or logb versus 1=T may decrease

    slightly, resulting in the decrease of activation energy. Damartzis

    et al. [29] reported that the values of activation energy brought

    the highest value difference close to 100120 kJ/mol for the pyrol-

    ysis of stems. Thus, the lower the activation energy is, the faster

    the reaction rate is, because the activation energy is the minimum

    energy requirement to start a reaction.

    3.4. Determination of pre-exponential factors

    The pyrolysis kinetic parameters as a function of conversion

    could be determined using CoatsRedfern method. Since KAS and

    OFW models are reliable enough, the activation energies calculated

    by these models were fitted in order to estimate the

    pre-exponential factor and the reaction order. In plot of

    ln ln1aT2

    h i versus 1=T (for n= 1) or ln 1a

    1n1

    n1T2

    h i versus 1=T (for

    n 1), slop gives E=R and the intercept is lnAR=bE where A

    can be calculated [29]. Calculated pre-exponential factor values

    and the reaction order are listed inTable 3. With raising the pyrol-

    ysis heating rate, the pre-exponential factor increased significantly

    for both KAS and OFW models because of more complex reactions

    involved in a shorter time. Reaction order was calculated through

    mean value of activation energy and pre-exponential factor

    obtained from KAS model [32].

    3.5. Validation

    After calculating the kinetic parameters of activation energy,

    pre-exponential factor and reaction order estimated using KAS

    model and CoatsRedfern method, the accuracy of these parame-

    ters should be proven in a satisfactory way. The simulation wascarried out for all of the experimental heating rates from 383 to

    1173 K and the results are presented in Fig. 5. The simulation

    Table 2

    Activation energies (E) for different conversion values obtained by KAS and OFW

    models.

    Conversion (a) KAS model OFW model Difference (%)

    E(kJ/mol) R2 E(kJ/mol) R2

    0.1 154.42 0.9188 155.20 0.9270 0.50

    0.2 169.56 0.9655 170.07 0.9690 0.30

    0.3 175.06 0.9827 175.64 0.9844 0.33

    0.4 176.86 0.9862 177.63 0.9876 0.43

    0.5 177.54 0.9836 178.58 0.9853 0.58

    0.6 179.31 0.9839 179.71 0.9828 0.22

    0.7 46.32 0.9779 56.69 0.9871 18.29

    Average 154.15 156.22 1.32

    0.1 0.2 0.3 0.4 0.5 0.6 0.7

    30

    60

    90

    120

    150

    180

    E(kJ.

    mol-1

    )

    Conversion ( )

    KAS modelOFW model

    Fig. 4. Change in activation energy with progressing conversion for KAS and OFW

    models.

    Table 3

    Calculated pre-exponential factors (A, min1).

    KAS model OFW model

    E(kJ/mol) b (K/min) n A(min1) E(kJ/mol) b (K/min) n A(min1)

    154.15 5 1 8.61E+14 156.22 5 1 9.93E+14

    8.19 5.16E+14 8.30 8.92E+14

    10 1 3.85E+14 10 1 4.42E+14

    11.26 6.73E+14 11.43 1.22E+15

    20 1 4.76E+13 20 1 5.47E+13

    15.46 4.08E+15 15.72 8.05E+15

    30 1 4.26E+13 30 1 4.89E+13

    17.04 5.78E+15 17.31 1.09E+16

    96 X. Huang et al./ Fuel 169 (2016) 9398

    https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/256996254_Pyrolysis_of_orange_waste_A_thermo-kinetic_study?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/223955525_Pyrolysis_Characteristics_and_Kinetics_of_Biomass_Residuals_Mixtures_With_Lignite?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/272368653_Thermo-oxidative-kinetic_study_of_cinnamyl_diesters?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-https://www.researchgate.net/publication/227413302_Thermochemical_treatment_of_E-waste_from_small_household_appliances_using_highly_pre-heated_nitrogen-thermogravimetric_investigation_and_pyrolysis_kinetics?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-https://www.researchgate.net/publication/227413302_Thermochemical_treatment_of_E-waste_from_small_household_appliances_using_highly_pre-heated_nitrogen-thermogravimetric_investigation_and_pyrolysis_kinetics?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/256996254_Pyrolysis_of_orange_waste_A_thermo-kinetic_study?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/272368653_Thermo-oxidative-kinetic_study_of_cinnamyl_diesters?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/50376300_Thermal_degradation_studies_and_kinetic_modeling_of_cardoon_Cynara_cardunculus_pyrolysis_using_thermogravimetric_analysis_TGA?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/223955525_Pyrolysis_Characteristics_and_Kinetics_of_Biomass_Residuals_Mixtures_With_Lignite?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/25/2019 1-s2.0-S0016236115012648-main

    6/7

    results were in a good agreement with the experimental data for

    conversion values. As described inFig. 5, no obvious effect on the

    predictive behavior of the model can be found with the increase

    of pyrolysis heating rate in the plots of first-order reaction

    (n= 1). In this case, CoatsRedfern method lacks of accuracy for

    representing experimental results because the activation energyand the pre-exponential factor were based solely on both heating

    rate and pyrolysis temperature. On the other hand, for multistep

    reactions (n 1), the pseudo-order n has no physical meaning

    but plays an important role to fit parameter as can be thought as

    correlation parameter of pyrolysis model.

    4. Conclusions

    In this study, the pyrolysis of soybean straw has been investi-

    gated under argon atmosphere by means of TGA at different heat-

    ing rate (5, 10, 20, and 30 K/min). The maximum weight loss of

    soybean straw was restricted in the temperature range of 453

    673 K owing to the pyrolysis of hemicellulose and cellulose. Simu-

    lation of the materials thermal decomposition using obtained

    kinetic parameters showed a good agreement with the experimen-

    tal data. Taking into account of the low moisture and ash content,

    the thermochemical system may provide an insight for future

    application of soybean straw as a potential candidate for a resource

    of energy and chemicals.

    Acknowledgements

    This work was subsidized by the Fundamental Research Funds

    for the Central Universities (China University of Mining & Technol-

    ogy, Grants 2015XKQY05 and 2015QNA18), National Natural

    Science Foundation of China (Grant 21206189), Natural Science

    Foundation of Jiangsu Province (BK20151141), the PriorityAcademic Program Development of Jiangsu Higher Education

    Institutions, and the Strategic Chinese-Japanese Joint Research Pro-

    gram (Grant 2013DFG60060).

    References

    [1] Kristensen E. Characterization of biogenic organic matter by stepwisethermogravimetry (STG). Biogeochemistry 1990;9:13559.

    [2] Pandey K, Pitman A. FTIR studies of the changes in wood chemistry followingdecay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad2003;52:15160.

    [3] Rulkens W. Sewage sludge as a biomass resource for the production of energy:overview and assessment of the various options. Energy Fuels 2007;22:915.

    [4] Wang BS, Cao JP, Zhao XY, Bian Y, Song C, Zhao YP, et al. Preparation of nickel-loaded on lignite char for catalytic gasification of biomass. Fuel ProcessTechnol 2014;136:1724.

    [5] Fan X, Zhu JL, Zheng AL, Wei XY, Zhao YP, Cao JP, et al. Rapid characterization ofheteroatomic molecules in a bio-oil from pyrolysis of rice husk usingatmospheric solid analysis probe mass spectrometry. J Anal Appl Pyrolysis2015;115:1623.

    [6] Di Blasi C. Modeling chemical and physical processes of wood and biomasspyrolysis. Prog Energy Combust Sci 2008;34:4790.

    [7] Huang X, Cao JP, Shi P, Zhao XY, Feng XB, Zhao YP, et al. Influences of pyrolysisconditions in the production and chemical composition of the bio-oils from

    fast pyrolysis of sewage sludge. J Anal Appl Pyrolysis 2014;110:35362 .[8] Wang SZ, Fan X, Zheng AL, Lu Y, Wei XY, Zhao YP, et al. Evaluation of theoxidation of rice husks with sodium hypochlorite using gas chromatographymass spectrometry and direct analysis in real time-mass spectrometry. AnalLett 2014;47:7790.

    [9] Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass andbiomass components. Fuel 1996;75:98798.

    [10] Islam MA, Asif M, Hameed B. Pyrolysis kinetics of raw and hydrothermallycarbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetricanalysis. Bioresour Technol 2015;179:22733.

    [11] Yang H, Yan R, Chen H, Lee DH, Zheng CG. Characteristics of hemicellulose,cellulose and lignin pyrolysis. Fuel 2007;86:17818.

    [12] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks.Energy Convers Manage 2004;45:65171.

    [13] Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem1957;29:17026.

    [14] Akahira T, Sunose T. Method of determining activation deterioration constantof electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol)1971;16:2231.

    [15] Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem SocJpn 1965;38:18816.

    0.0

    0.2

    0.4

    0.6

    0.8

    1.05 K/min

    Con

    version()

    373 473 573 673 773 873 973 1073 1173

    0.0

    0.2

    0.4

    0.6

    0.8

    1.020 K/min

    Temperature (K)

    n = 1

    n = 8.2experiment

    10 K/min

    30 K/min

    Conversion()

    373 473 573 673 773 873 973 1073 1173

    Temperature (K)

    n = 1

    n = 11.3experiment

    n = 1

    n = 15.5experiment

    n = 1

    n = 17.0experiment

    Fig. 5. Simulation of soybean straw pyrolysis using the kinetic data calculated from KAS model.

    X. Huang et al. / Fuel 169 (2016) 9398 97

    http://-/?-https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://refhub.elsevier.com/S0016-2361(15)01264-8/h0020http://refhub.elsevier.com/S0016-2361(15)01264-8/h0020http://refhub.elsevier.com/S0016-2361(15)01264-8/h0020https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/40100586_Sewage_Sludge_as_a_Biomass_Resource_for_the_Production_of_Energy_Overview_and_Assessment_of_the_Various_Options?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284691852_Pyrolysis_charateristics_of_biomass_and_biomass_components?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/267099762_Influences_of_pyrolysis_conditions_on_the_production_and_chemical_composition_of_the_bio-oils_from_fast_pyrolysis_of_sewage_sludge?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/229343954_Characteristics_of_Hemicellulose_Cellulose_and_Lignin_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/282625206_Rapid_characterization_of_heteroatomic_molecules_in_a_bio-oil_from_pyrolysis_of_rice_husk_using_atmospheric_solids_analysis_probe_mass_spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222188856_FTIR_studies_of_the_changes_in_wood_chemistry_following_decay_by_brown-rot_and_white-rot_fungi_Int_Biodeterior_Biodegrad?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/284662595_Joint_convention_of_four_electrical_institutes?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222424231_Modelling_Chemical_and_Physical_Processes_of_Wood_and_Biomass_Pyrolysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/231197082_Reaction_Kinetics_in_Differential_Thermal_Analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/238141732_A_New_Method_of_Analyzing_Thermogravimetric_Data?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/227022905_Characterization_of_biogenic_organic_matter_by_stepwise_thermogravimetry_STG?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/262861144_Evaluation_of_the_Oxidation_of_Rice_Husks_with_Sodium_Hypochlorite_Using_Gas_Chromatography-Mass_Spectrometry_and_Direct_Analysis_in_Real_Time-Mass_Spectrometry?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/270053530_Pyrolysis_kinetics_of_raw_and_hydrothermally_carbonized_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==https://www.researchgate.net/publication/222411568_Pyrolysis_of_Biomass_to_Produce_Fuels_and_Chemical_Feedstocks?el=1_x_8&enrichId=rgreq-4f951c52-e449-49fd-a399-f99ce5059154&enrichSource=Y292ZXJQYWdlOzI4Nzc5NjcyNjtBUzozNTAwMzY2NjA2Mzc2OThAMTQ2MDQ2NjY1MTkwMw==http://-/?-http://refhub.elsevier.com/S0016-2361(15)01264-8/h0075http://refhub.elsevier.com/S0016-2361(15)01264-8/h0075http://refhub.elsevier.com/S0016-2361(15)01264-8/h0070http://refhub.elsevier.com/S0016-2361(15)01264-8/h0070http://refhub.elsevier.com/S0016-2361(15)01264-8/h0070http://refhub.elsevier.com/S0016-2361(15)01264-8/h0065http://refhub.elsevier.com/S0016-2361(15)01264-8/h0065http://refhub.elsevier.com/S0016-2361(15)01264-8/h0060http://refhub.elsevier.com/S0016-2361(15)01264-8/h0060http://refhub.elsevier.com/S0016-2361(15)01264-8/h0055http://refhub.elsevier.com/S0016-2361(15)01264-8/h0055http://refhub.elsevier.com/S0016-2361(15)01264-8/h0050http://refhub.elsevier.com/S0016-2361(15)01264-8/h0050http://refhub.elsevier.com/S0016-2361(15)01264-8/h0050http://refhub.elsevier.com/S0016-2361(15)01264-8/h0045http://refhub.elsevier.com/S0016-2361(15)01264-8/h0045http://refhub.elsevier.com/S0016-2361(15)01264-8/h0040http://refhub.elsevier.com/S0016-2361(15)01264-8/h0040http://refhub.elsevier.com/S0016-2361(15)01264-8/h0040http://refhub.elsevier.com/S0016-2361(15)01264-8/h0040http://refhub.elsevier.com/S0016-2361(15)01264-8/h0035http://refhub.elsevier.com/S0016-2361(15)01264-8/h0035http://refhub.elsevier.com/S0016-2361(15)01264-8/h0035http://refhub.elsevier.com/S0016-2361(15)01264-8/h0030http://refhub.elsevier.com/S0016-2361(15)01264-8/h0030http://refhub.elsevier.com/S0016-2361(15)01264-8/h0025http://refhub.elsevier.com/S0016-2361(15)01264-8/h0025http://refhub.elsevier.com/S0016-2361(15)01264-8/h0025http://refhub.elsevier.com/S0016-2361(15)01264-8/h0025http://refhub.elsevier.com/S0016-2361(15)01264-8/h0020http://refhub.elsevier.com/S0016-2361(15)01264-8/h0020http://refhub.elsevier.com/S0016-2361(15)01264-8/h0020http://refhub.elsevier.com/S0016-2361(15)01264-8/h0015http://refhub.elsevier.com/S0016-2361(15)01264-8/h0015http://refhub.elsevier.com/S0016-2361(15)01264-8/h0010http://refhub.elsevier.com/S0016-2361(15)01264-8/h0010http://refhub.elsevier.com/S0016-2361(15)01264-8/h0010http://refhub.elsevier.com/S0016-2361(15)01264-8/h0005http://refhub.elsevier.com/S0016-2361(15)012