1-s2.0-016761059090030g-main

Upload: subhas-hunasikatti

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 1-s2.0-016761059090030G-main

    1/14

    Journal of Wind Engineering and Industrial Aerodynamics, 33 (1990) 139-152 139Elsevier Science Publishers B.V., Amst erda m -- Printe d in The Nethe rlands

    nvited Paper

    N U M E R I C A L S I M U L AT I O N O F T U R B U L E N T F L O W F I EL D A R O U N D C U B ICM O D E L C U R R E N T S T AT U S A N D A P P L IC AT IO N S O F k M O D E L A N D L E S

    S. MURAKAMI

    Institute of lndustrial Science, University of Tokyo, Tokyo Japan)

    Summaff

    The state of the art of numerical meth od is reviewed briefly from the viewpoi nt of wind engineering.Next the diagnostic system for assessing the results of numerical simul ation is described and errorestimati on and mes h resolution are discussed. Lastly the time-d ependent flowfield is predicted b y 3DLarge Eddy Simulation and the results are illustrated using the techniques of animate d graphics.

    KeywordsNumerical simulation, cubic model k-e model, LES, computer graphics

    1. INTRODUCTION

    \ m et ho d o f n u m e r i c a l s i m u l a t i o n f o r p r e d i c t i n g t h e v e l o c i t y f i e l d a ndp r e s s u r e f i e l d a r o u n d a c u b i c - s h a p e d b l u f f b od y i s i n v e s t i g a t e d i n t h i s p a p e r.

    I n t h e f i e l d o f e n g i n e e r i n g , n ew a p p r o a c h e s b a s e d o n n u m e r i c a l m e t h od s h a veb e en d e v e l o p e d r a p i d l y i n r e c e n t y e a r s . T h e s e a p p r o a c h e s w er e made p o s s i b l e b yt h, , r e c e n t , r a p i d a d v a n ce of c o m p u t e r t e c h n o l o g y.

    lhe a i r f l o w a r o u n d a b l u f f b od y p l a c e d w i t h i n a s u r f a c e b o u n d a r y l a y e r i sf u l l 3 t u r b u l e n t a n d v e r y c o m p l i c a t e d . I t i s c o mp o se d o f s e p a r a t i o n s a t t h ew i nd w ar d c o r n e r s o f t h e b l u f f b o d y, t h e c i r c u l a t i o n s b e h i n d i t , e t c . T h e r e a r emany d i f f i c u l t i e s i n c l a r i f y i n g t h e s e c om p l ex f l o w f i e l d s u s i n g u s u a l w in d t u n n e lt e c h n i q u e s . T h e r e f o r e t h e e s t a b l i s h m e n t o f a t h r e e - d i m e n s i o n a l n u m e r i c a l m e t h o df o r s i m u l a t i n g t u r b u l e n t f l o w i s r e q u i r e d f o r u s e i n t h e f i e l d o f w i nde n g i n e e r i n g .

    2. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION

    T he r e s u l t s o f n u m e r i c a l s i m u l a t i o n c a n n o t b e f r e e f r o m v a r i o u s t y p e s o fn u m e r i c a l e r r o r s . T h e r e a r e m a ny f a c t o r s w h i c h p r o d u c e n u m e r i c a l e r r o r s f o re x a m p l e u n f i tn e s s o f t h e t u r b u l e n c e m o d e l l i n g i n a c c u r a c y o f t h e f i n i t ed i f fe r e n c e s c he m e t h e m a c r o s c o p i c t r e a tm e n t o f v i s c o u s s u b l a y e r a t s o l i d w a l lb o u n d a r y e t c . T h e r e f o r e i t i s i n d i s p e n s a b l e t h a t t h e a c c u r a c y o f n u m e r i c a ls i m u l a t i o n b e e x a m i n e d b y c o m p a r i n g t h e n u m e r i c a l r e s u l t s w i t h t h o s e f r o m w i n dt u n n e l t e s t s o r f i e ld e x p e r i m e n t s . T h e n u m e r i c a l m e t h o d c a n n o t be d e v e l o p e da n d r e f i n e d w i t h o u t t h e s u p p o r t o f a c c u r a t e e x p e r i m e n t s .

    O n t h e o t h e r h a nd t h e g r o w i n g p r e c i s i o n o f p r e d i c t i o n b y n u m e r i c a l

    s i m u l a t i o n a l s o i n c r e a s e s t h e i n c e n t i v e f o r n e w r e s e a r c h i n t o e x p e r i m e n t a lm e t h od s . T h e r e f o r e t h e t wo d i f f e r e n t m e t h od s o f r e s e a r c h s h o u l d p r o c e e d i nc o n c e , ' t a nd i n c o o p e r a t i o n w i t h e ac h o t h e r.

    0167-6105/90/$03.50 1990 Elsevier Science Publ ishe rs B.V.

  • 8/13/2019 1-s2.0-016761059090030G-main

    2/14

    140

    3. STATE OF THE ART OF NUMERICAL METHODS

    3 , 1 R e y n o l d s Av e r a g i n g , F i l t e r i n g a n d Tu r b u l e n c e M o d e l l i n g

    l h e N a v i e r - S t o k e s e q u a t i o n f o r i n c o m p r e s s i b l e f l o w i s a s f o l l o w s ._~ u , _ + a a , , ~ , 1 a + a_ _ ( a u , + a u ~a t a x , /~ 8 x , ~ a x , a x j 8 x , ) ( 1 )

    I t i s g e n e r a l l y i m p o s s i b l e t o d i r e c t l y a n a l y s e e q u a t i o n ( 1 ) i n i t s o r i g i n a lf o r m b y t h e n u m e r i c a l m e t h o d f o r a f l o w f i e l d w i t h l a r g o R e y n o l d s n u m b e r b e c a u s et h a t t y p e o f s i m u l a t i o n , c a l l e d d i r e c t s i m u l a t i o n , c a l l s f o r a n u n r e a s o n a b l yl a r g e n u m b e r o f g r i d p o i n t s w h i c h c a n h a r d l y b e a c o o m o d a t e d b y e x i s t i n gc o m p u t e r s . T h e r e f o r e , s o m e t y p e o f a v e r a g e d v e r s i o n o f e q u a t i o n ( l ) i s u s u a l l yu s e d f o r n u m e r i c a l a n a l y s i s .

    T b e v a r i a b l e t~ ~ i s d e c o m p o s e d i n t o t w o p a r t s , m e a n v a l u e a n d d e v i a t i o n .u , : u ~ u , ( 2 )

    T h e n o n l i n e a r t e r m u , u ~ i n e q u a t i o n ( 1 ) i s e x p r e s s e d a s b e l o w b y a v e r a g i n go r f i l t e r i n g .

    . , u , : u , u , + u , u ~ ' + { u , u , - u , u ~ } + { ~ h - , u , ' + . , ' ~ - , } ( 3 )I I t h e o p e r a t o r o v e r b a r i s r e g a r d e d a s t i m e a v e r a g i n g ( o r R e y n o l d s

    a v e r a g i n g ) , t h e t h i r d a n d f o r t h t e r m s o f e q u a t i o n ( 3 ) b e c o m e z e r o . B u t i n t h ec a s e o f f i I t e r i n g t h e y a r e n o t z e r o . T h e n t h e f o l l o w i n g e q u a t i o n s a r e g i v e n .

    1) in c a s e o f R e y n o l d s a v e r a g i n g :

    $ ~ ~ + 8 u , u /__1 8 P + ao4-7 ~ ~ , a x , a x , { ~ (

    2 ) i n c a s e o f f i l t e r i n g :8 ~ , + a u , u , 1 a P + a {~8 l a x p a x , a x ,

    h r R (' , , , = - u , ' u , ' ,

    L , = - ( ~ - , u ~-u , u ,) .

    C , ' . . = - ( ~ - , u , "+u , ' ~ - , )

    E q u a t i o n ( 4 ) i s u s e d f o r O - e q u a t i o n - - = 0o r t w o - e q u a t i o n t u r b u l e n c e m o d e l s , a x ,E q u a t i o n ( 5 ) i s u s e d for" L a r g e E d d y a u , 8 u , u ,S i m u l a t i o n . a t a x ,

    i n t h e c a s e o f d i r e c t s i m u l a t i o n ( o rf u l l s i m u l a t i o n ) , e q u a t i o n ( I ) i s u s e d .D i r e c t s i m u l a t i o n i s a p p l i e d t o ak al-~,f l o w f i e l d s w i t h a r e l a t i v e l y l o w R e y n o l d s ~ - + 8 x ,n u m b e r ( b e l o w 5 x l O * o r s o ) .

    ~ 8~ ,

    3 . 2 C l o s u r e P r o b l e m s o f Tu r b u l e n c e a t a x ,

    k '= C ~ - -6

    Mode I 1 i ng

    Ira t h e c a s e o f R e y n o l d s a v e r a g i n g ,- u , ' /x ~ ' i s mode I I ed by me an s of an ed dyv i s c o s i t x m o d e l i n o r d e r t o c l o s e t h ee q u a t i o n (/+).- u , u . = v , ( 8 u - , + 8 ~ - , ) _ 3 ~ ( 6 )

    a x / a x , Jh e r e ~ : e d d y v is c o s i t y 1 - -

    b : t u r b u l e n c e k i n e t i c e n er g y= ~u , . t~ ~

    A n e w. unknown va r i ab le vt a p p e a r si n e q u a t i o n ( 6 ) . I n t h e c a s e o f a k - et y p e t w o - e q u a t i o n t u r b u l e n c e m o d e l

    ( h e r e a f t e r a b b r e v i a t e d a s k - m o d el ) ,e q u a t i o n ( 6 ) i s c l o s e d b y i n t r o d u c i n g n e wv a r i a b l e s k a n d c , whe re v i s de f in ed

    k ~a s C 0 - - ] 'h e s e t o f e q u a t i o n s i s

    6s h o w n i n Ta b l e i ( L a u n d e r e t a l [ 1 97 2 ] ) .

    a u ,+ a u ~ _u , u ,}X j X l

    m

    8 u , 8 u J + R e , , + L , j + C ; , ( 5 )8 x , 8 x ,

    Ta b l e 1 M od el e q u a t i o ns f o r k c

    a 4 ,x+ 8 ~ , I a ~ , a ~ ,

    a k

    a x , ~ , - ~ x , ) + C 7 * S - C T - ( ~

    here S = (-~---- ~ t'-~m-~)-z--:-dX ~X, . ~j

    a : =1.0. a 2=1.3.Co=0.09. C,=1.4 4. C,=1.92

    T a b l e 2 M o d e l e q u a t i o n s f o r L E S

    8 &m = o @

    a t & r s = - 8 ~ ' z , ~ z s, v , u se s s e u

    / ~ : = \L i t :h e r e ~ , ~ = ( C z 1 Y- ~ - - ~ - ) , c = o .1

    e ah~ au ju = ' ~ z j + a z,-

  • 8/13/2019 1-s2.0-016761059090030G-main

    3/14

    141

    I n t h e c a s e o f L a r g e E d d y S i m u l a t i o n ( h e r e a f t e r L E S ) , e q u a t i o n ( 5 ) i s u s e df o r t il e a n a l y s is . - u ~ i s m o d e l l e d b y m e a n s o f t h e S m a g o r i n s k y e d d yv i s c o s i t y m o d e l .

    8 ~ + 8 ~ J ) - ~ k ~ ~ ( 7 )- i t , u ~'= ~sos a x , a x , - - t / 2= ~ a TF O T F, + a uiPSQS= Cs~) {O x ~ ( O x j O x ,h e r e C s : O . 1 ( t h e S m a g o r i n s k y c o n s t a n t )

    : ( ~ x . b y . A z ) , / a

    C r o s s t e r m C j j i n e q u a t i o n ( 5) i s u s u a l l y n e g l e c t e d . L e o n a r d t e r m Li j i sr e g a r d e d a s p r o gr a m me d i m p l i c i t l y b y t h e s e c o n d o r d e r c e n t r a l d i f f e r e n c e o fcon v e c t i o n t e r m . The s e t o f equa t i ons fo r LES i s shown in Tab l e 2 (Sma gor in sky[ 1 9 6 3 1 ) .

    T he t r a n s p o r t e q u a t i o n f o r u ' ~ u ' i i s s o l v e d d i r e c t l y i n t h e c a s e o ft h e d i l l e r e n t i a l s t r e s s m od el o r t h e a l g e b r a i c s t r e s s m o d el . T h e r e f o r e a n e d d yv i s c o s i L y m o d e l i s n o t n e e d e d i n t h o s e m e t h o d s .

    3 . 3 E v a l u a t i o n o f Tu r b u l e n c e M o de l s

    The va r i ous t ype s o f t u rb u l enc e mode l s shown above a r e compa red ande v a l u a L e d f r om t h e v i e w p o i n t o f w i n d e n g i n e e r i n g .

    ( 1 ) D i r e c t s i m u l a t i o nT h i s m od el i s a p p l i e d t o p r i m i t i v e , s i m p l e t y p e s of f l o w f i e l d s w i t h

    a r e l a t i ve l y l ow Reyno ld s number, f o r examp le , chan ne l f l o ws , e t c (KimeL a l [ 1987 [ ) . I n a s t r i c t s ens e , i t i s no t e a sy t o app ly t h i s me thodLo p r o b l ems o f w ind eng i nee r i ng , whe re t he Rey no ld s number i s a lwaysx e r y l a rg e . S o m e t i m e s q u a s i - d i r e c t s i m u l a t i o n i s c o n d u c t e d u s i n g t h econv e c t i o n t e rm o f t h i rd o rde r upwind s cheme (Tamura e t a l [ 1987 ] ) .

    2) LES

    T h i s m e t h o d m a y b e a p p l i e d t o b a s i c f l o w s i n t h e f i e l d o f w i n deng ine er i ng (De ar dor ff [19701 , Schumann [ 1 9 7 5 1 H o r i u t i [ 1 9 8 2 1 Main e t~ l [1982] . Murakami e t a l [198 1 , Murakami e t a l [198 7]) . Thi s modelh a s t h e a d v a n t a g e o f g e n e r a t i n g a t i m e - d e p e n d e n t f l o w f i e l d . I t sd i s a dva n t age i s t ha t i t r equ i r e s a g r ea t d ea l o f CPU t ime .(3 ) O - equ a t i on mode l

    T h i s m o d e l, w h i c h i s r a t h e r c r u d e , ma y b e u s e d v e r y c o n v e n i e n t l yt o g i v e a r o u g h p r e d i c t i o n a t a n e a r l y s t a g e o f r e s e a r c h . I t i s h i g h l y~ ff i c i en t i n t ha t i t n eed s ve ry l i t t l e CPU t ime .( 4 ) k - m o d e l

    T h i s mo d e l i s m o s t w i d e l y a p p l i e d t o e n g i n e e r i n g p r o b l e m s . T h i sm o d el h a s a g o o d r e p u t a t i o n f o r r e l i a b i l i t y a n d s e e m s t o b e m o s tp r o m i s i n g f o r p r e s e n t a p p l i c a t i o n t o m a n y p r o b l e m s i n t h e f i e l d o f w i n deng ine er i ng (Murakami a t a l [1983] , Young e t a l 119851, Pa te rso n e t a l11986] , Mathews e t a l [1987a , 1987b] , Bae tke e t a l [19871 , Murakami e t a l[1988b, 1988e, 1988f] ) .( 5 ) D i f f e r e n t i a l s t r e s s m o d e l, a l g e b r a i c s t r e s s m od el

    These mode l s a r e more soph i s t i c a t ed t han t hos e shown above . AsL h e s e m o d e l s a r e e x p e c t e d t o b e a b l e t o a n a l y s e t h e t u r b u l e n t f l o w f i e l dv e r y p r e c i s e l y, i t i s h o p e d t o a p p l y t h e s e m o d e l s t o t h e p r o b l e m s i n w i nde n g i n e e r i n g i n t h e f u t u r e ( Mu ra k am i e t a l [ 1 9 8 8 g ] ) .

    3 . 4 B a s i c E q u a t i o n s a n d B a s i c Va r i a b l e s f o r N u m e r i c a l S i m u l a t i o n

    Two t y p e s o f v a r i a b l e - s e t s a r e u s e d i n n u m e r i c a l s i m u l a t i o n . T he f i r s t o n eu s e s t h e p r i m i t i v e v a r i a b l e s o f u ( v e l o o i t y ) - P ( p r e s s u r e ) . T he s e c o n d o n e i s t h e

    ( s t r e a m f u n c t i o n ) - ~ ( v o r t i c i t y ) s y s t e m . T he p r i m i t i v e e q u a t i o n s ( 1 ) - ( 5 ) u s et h e p r i m i t i v e v a r i a b l e s o f u - P. I n c a s e o f t h e ff - ~ s y s t e m , t h e e q u a t i o n o fw , w h i c h i s g i ven by t ak in g t he ro t a t i on o f equa t i on (1 ) and t he Po i s so ne q u a t i o n o f , w h e r e g e n e r a t i o n t e r m i s ~ , a r e u s e d .

    q he u - P s y s t e m h a s b e c o m e v e r y p o p u l a r a n d n o w r e p r e s e n t s t h e m a i n s t r e a mo f n u m er i c a l m e t h o d o l o g y s i n c e t he M A C m e t h o d h a s be e n d e v e l o p e d. T h e r e l a t i v ea d v a n t a g e o f t he t t - P s y s t e m o v e r t h e - w s y s t e m l i e s in t h e e a s e w i t h w h i c h

  • 8/13/2019 1-s2.0-016761059090030G-main

    4/14

    142

    i t t r e a t s b o u n d a r y c o n d i t i o n s a nd i s a p p l i e d t 3D flow p r o b l e m s . The -~,,s y s t e m i s m or e a d v a n t a g e o u s i n t h e s e n s e t h a t t h e c o n t i n u i t y e q u a t i o n i ss a t i s t i e d e x a c t l y i n i t s c a s e .

    3 . 5 M e t h o d o f D i s c r e t i z a t i o n f o r S p a c e D e r i v a t i v e

    \ ~ r i o u s m e th o ds o f s p a c e d i s c r e t i z a t i o n a r e u s ed i n c o m p u t a t i o n a l f l u i dd y n a m i c s .

    (1)FDM (fini te d i f f e r e n c e m e t h o d )( 2) FE M ( f i n i t e e l e m e n t m e t h o d )(3)CVM (con t ro l vo lume meth od)( 4 ) s p e c t r a l m e t h o d

    l,~ t h e c a s e o f F DM, i t i s e a s y t o a s s e s s t h e a c c u r a c y o f d i s c r e t i z a t i o n ;t h e n a f o r e i t i s a l s o e a s y t o d e v e l o p a s ch em e w i t h a h i g h e r o r d e r a c c u r a c y i nth i s method . Th i s method i s mos t pop ula r.

    FEM i s g o od i n m a t c h i n g t h e d i s c r e t i m a t i o n t o a c o m p l e x - s h a p e d b o u n d a r y. I nt h e c a s e o f FEM, l ar ge CPU memory st or ag e is u s u a l l y req u i r ed when compared wi t hFDM.

    CVM may be reg ard ed as an in t egra ted ver s io n o f FDM. In CVM, the b as i cc o n c e p t o f t h e c o n s e r v a t i o n o f p h y s i c a l q u a n t i t y i s v e r y c l e a r. B e c au s e o f t h i sadv an t age th i s method has become the l ead ing method in the f i e ld o f CFD.

    The spe c t r a l method i s good in sav ing CPU t im e and a l s o in acc ura cy. But i ti s d i f t i c u l t t o a p p l y t h i s m e t h o d t o p r o b l e m s i n w i n d e n g i n e e r i n g b e c a u s e i t i ss u i t a h l e o n l y f o r f l o w f i e l d s w i t h v e r y s i m p l e b o u n d a r y c o n d i t i o n s .

    3 . 6 Method fo r D i s c r e t l z a t l o n fo r Ti m e D e r i v a t i v e

    l im e d i s c r e t i z a t i o n m ay b e e x p r e s s e d i n g e n e r a l f o r m a s f o l l o w s .

    . . . . ~ + ~ t ( 0 , . f ( ~ ) + ( i - 0 , ) f ( . . . . ) ) ( 8 )

    here a, =l : e x p l i c i t methoO~a)

  • 8/13/2019 1-s2.0-016761059090030G-main

    5/14

    143

    3 . 7 F i n i t e D i f f e r e n c e S ch em e f o r C o n v e c t i o n Ter m a n d N u m e r i c a l Vi s c o s i t y

    I n t h e s p a c e d i s c r e t i z a t i o n o f e a c h t e r m o f t h e b a s i c e q u a t i o n , t h ed i s c r e t i z a t i o n o f t h e n o n l i n e a r c o n v e c t i o n t e r m i s m os t i m p o r t a n t b e c a u s e t h et r u n c a t i o n t e r m s o f t h e d i s c r e t i z e d e x p r e s s i o n f o r t h e c o n v e c t i o n t e r m w o r k o f t e na s t h e n u m e r i c a l v i s c o s i t y . T h e y h a v e g r e a t i n f l u e n c e o n t h e r e s u l t s o fn u m e r i c a l s i m u l a t i o n .

    T he w e l l - k n o w n f o r m s o f t h e f i n i t e d i f f e r e n c e s ch e m e f o r c o n v e c t i o n t e r m a r ea s f o l l o w s ( h e r e v e l o c i t y U i s a s s um e d t o b e p o s i t i v e ) .

    ( l ) c e n t r a l d i f f e r e n c e s c he m e( 8 U ) , = - U [- ' " - ' - ~

    8 x h ]8 ~ I ~ I

    = U [ ( ~ - ) + ~ ' h + 1 -E 5 h ~ + . . . . . ) ( 9 )

    ( 2 ) u p w i n d d i f f e r e n c e s ch em e ( f i r s t o r d e r )a L _ ~ . ~ , - - 6

    - ( - - g ~ - - ) , - - c t h8 ~

    : - u l ( ~ ) - ~ " h+ . . . . . ) (1o)( 3 )Q U I C K sc h e m e ( s e c o n d o r d e r u p w i n d s c h e m e )

    U 1 39 ) = - U [ ~ ( ~ , . ,+ 3 -7 _ , ~ , -= ) ]T f x

    8 1 ,,, 1: - U 1 ( -~ - - -7 - -) + ~ - ~ h ~ + - i - -6 h~ . . . . . ) ( i l )

    The de r i v a t i ve o f even tb o rde r , f o r examp le ' , ~ . . . . , wo rks we l l a s t hen u m e r i c a l v i s c o s i t y b e c a u s e t h e o v o n t h o r d e r d e r i v a t i v e s p o s s e s s t h e s a mef u n c t i o n a s t h e d i f f u s i o n t e r m w h i c h i s c o m po s e d o f s e c o n d d e r i v a t i v e . T hec e n t r a l d i f f e r e n c e s c h e me h a s n o n u m e r i c a l v i s c o s i t y o f o v e n t h o r d e r. T he f i r s to r d e r u p w i n d s cheme has t he l a r ge numer i ca l v i s c os i t y o f ~ ' h / 2 . QUICK schemeh a s t h e t - e l a t i v o l y s m a l l n u m e r i c a l v i s c o s i t y o f - . . . . h 3 / 1 6 .

    F i g . l c o m p a r e s n u m e r i c a l a n a l y s i s o f a n i n d o o r t u r b u l e n t f l o w f i o l d u s i n gd i f f e r e n t t y p e s of conv ec t i o n s chemes ba se d on a k - mode l .

    F i g . l ( 2 ) (Murakami o t a l [ 1986} ) i s exac t l y s im i l a r t o t he exp e r ime n t a lr e s u l t s . T he c o m p l e t l y d i f f e r e n t f l o w f i o l d r e p r o d u c e d i n F i g . l ( 1 ) ( I s h i z u[1985 i ) shows t he e f f ec t o f numer i ca l v i s c os i t y c aus ed by t he f i r s t o rde r upwind

    scheme w i t h c o a r s e m e sh .F i g . 2 s h o w s a n o t h e r e x a m p l e o f i n d o o r l a m i n a r f l o w f i e l d b a s e d o n d i r e c t

    s i m u l a t i o n K a t e e t a l [ 19 80 ]) . I n t h i s c a s e , F i g . 2 l ) i s t h e c o r r e c t r e s u l t .

    T h e a p p a r e n t t u r b u l e n t p h e n o m e n a i n F i g . 2 2 ) a n d ( 3 ) r e p r e s e n t n u m e r i c a li n s t a b i l i t y c a u s e d b y t r u n c a t i o n e r r o r s d u e t o o d d t h o r d e r d e r i v a t i v e s . When t h eR e y n o l d s n um be r i s s m a l l , t h e l a m i n a r f l o w f i o l d i s r e p r o d u c e d w e l l b e c a u s e t h ep h y s i c a l v i s c o s i t y i s domin an t . Bu t when t he Reyno ld s number becomes l a rg e , t hef l o w f i e l d b e co m es u n s t a b l e a s t h e p h y s i c a l v i s c o s i t y b e c o me s r e l a t i v e l y s m a l l a n dt h e t r u n c a t i o n e r r o r s a r e d o m i n a n t .

    s u p p l y o u t l e t1 . I :~

    ---~-~ J ' , ,k . . . . ~

    . , . . . . ~ .~ _ , , , , , .~ .P.

    ~ %iL'~ T, ' ' g ~ & ~ , , . , ~ . . .; _ - ~ - . m l ~ - . ~ .

    I t -~ - ~ - - - . i ,~ , ; 2~~--.~.~.--.~-~

    I ) R e = I O ( 2 ) R e = I O 0

    F i g . 2

    I L ~ I

    ( 3 ) R e = 2 0 0

    I n d o o r l a m i n a r f l o w f i o l dw i t h d i f f e r e n t R e y n o l d s n u m b e r

    a s e d o n 2 D d i r e c t s i m u l a t i o n .e s u l t s o f R o = IO i s c o r r e c t . Th o s e)f R e = lO 0 e n d 2 0 0 a r e i n c o r r e c t . .

  • 8/13/2019 1-s2.0-016761059090030G-main

    6/14

    1 4 4

    4 . D I A G N O S T I C SY S T EM FO R N U M E R IC A L S I M U L AT I O N

    i ' h e n u m e r J o a J s i m u l a t i o n o f t u r b u l e n t f l o w c o n s t i t u te s a l a r g e s y s t e m

    c o m p o s e d e l a g r e a t m a n y s u b s y s t e m s w h i c h r a n g er o m c o m p u t a t i o n a l m a t h e m a t i c s t ot h e f l u i d d y n a m i c s o f t u r b u l e n c e s t a t i s t i c s . I t i s v e r y d i f f i c u l t t o j u d g e t h e

    d e g c e ~ o f a c c u r a c y o f t h e s i m u l a t i o n r e s u l t b e c a u s e t h e m a ny s u b s y s t e m s o f t h es i m u l a t i o n a r e u s u a l l y l e f t a s b l a c k b o x e s . H e r e , i t i s t h u s m o s t i m p o r t a n t t od e w ~ l~ , p a m ~ t h o d l o t e x a m i n i n g t h e a c c u r a c y o f t h e s i m u l a t i o n r e s u l t . T h i se x a m i n a t i o n m e t h o d i s h e r e c a l l e d t h e " d i a g n o s t i c s y s t e m " . i n t h i s p a p e r , w eg i x e tw o e x a m p l e s o f s u c h d i a g n o s e s . F i r s t i s a n e s t i m a t i o n o f e r r o r s c a u s e d b y'f i n i te d i f fe r e n c e . T h e s e c o n d i s t h e e f f e c t o f t h e f i n e n e s s o f m e s h r e s o l u t i o n

    o r ] t h e s i m u l a t i o n , - e s u l t s . N u m e r i c a l s i m u l a t i o n s a r e h e r e c o n d u c t e d b y 3 D / e - ~

    m o d e l ( M m - a k a m i e t a l [1988b] . S t a g g e r e d g r i d i s u s e d (M ACmethod, I i a r l o w e t a l[ 1 96 5 ] 1. A s i m u l t a n e o u s i t e r a t i o n m e t h o d f o r v e l o c i t y a n d p r e s s u r e i s a d o p t e d(,\B M .\(" m e t h o d , V i e c e l I i [ 1 9 7 11 ) .

    4 . 1 E s t i m a t i o n o f T r u n c a t i o n E r r o r ~ ' ~ a n d S o l u t i o n E r r o r - ~

    ' [h e d i s t r ib u t i o n o f t w o t y p e s o f e r r o r s , n a m e l y , s o l u t io n e r r o r s a n dt r u n c a t i o n e r r o r s , a r e e s t i m a t e d b y R i c h a r d s o n e x t r a p o l a t i o n .

    ' [h ~ s o l u t i o n o H - o r i s t h e r e s i d u a l b e t w e e n t h e e x a c t s o l u t i o n a n d t h e

    s o l t ~ t io n 8 i x e n b \ t h e f i n i t e d i f fe r e n c e m e t h o d . I n t h e m e t h o d u s e d h e r e , w e

    I o H b

    Iqqq~; J I I J ] J I l l i i ', ', ; k, d . . . . . . . . . : . . . . . ., . . . . iJJi~ll LlliUups=~ eam ~ U ~ l I I I I I b i g i i ~ i 4 ~ 2 . - ? , , P ? r ,~ o s n ~ a ~ [ ' downst ream , P i + I - i- H + H - H + } + ~H +I+ t'I-t+ H+ ~H -~ b bb bH +l +l +l +l -b H : ', ', ', I : ', ' , : ,~ ~~H~un~a ry`~T~ ~ ~; ~`~ ~ ~:~~g~7 ~`: ~::~ ~ ::~` ~ ~b~undar~

    [ { l i i . . . . . . I . . . . . . . . , N 4 4 ~ . . . . ~ , , . . . . . . . . . ~ + . . . . . . . . . . . .. . . . . . . . . . . I I ' , ' , I ' , : ' ,~ ' ' , , , I ' , ' , ' , I ' , ' , ,q . . . . ' , ' , I ' , I ' , : ' , ' , ' , ' ,

    c ub i c / g r o u n dm o d e l

    F i g . 3 M e s h i ( v e r t i c a l p l a n e )

    1 ) t r n n c a ~ i o n e r r o r T

    : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~...~:. el ~ . . . . . . .

    ~ ' ~ \ \ \ \ ~ ~ . . : : : : i : i i :. . . . . . . . . . . . . : : ii " 'i i i i iiiiiii i iii i...

    :: ~ : '..' t }~ ~ , ~ ~ ~ ' '- '

  • 8/13/2019 1-s2.0-016761059090030G-main

    7/14

    145

    assume that the solution error can be expressed as a Taylor series. If thefinite difference scheme has a second order accuracy, the solution error e A ofmesh size h can be easily estimated with a small amount of algebra as follows(Caruso et al 119861 , Murakami et al [1988a] ).

    T7,= U,-L 21 /3. (12)where 1 h is the solution of mesh size h . and Uzl is the solution of mesh size

    2h.

    Tl-uncation errors arise in finite difference approximation. In operator

    form. the differential equation to be solved is expressed as below.

    L [CT ,X] =.f (13)whet-e C; c\ is the exact solution and L is the spatial differential operator.The truncation error T I is defined as the residual obtained by substituting theexact solution of the differential equation CJEX into the finite differenceequation. i.e..

    T r=L 1 lUF.x]-L ICI,,]= I. L [G ,,I -f I (14)

    where L h is tho spatial difference operator. Here the exact solution II,, isestimated h>,

    G PXLI;..,=c: ,+e,. 15).

    is used in place of exact solution UEx in eq.(14) to estimate thetruncation error:

    r = L h [E ..X] -f 13)If a \ery accurate solution is obtained with mesh size h , the solution error7 L is estimated by eq. (12) to be very small at al 1 mesh points. Truncationerrors are regarded as the source of solution errors and are supposed to beconcentrated in the region where large gradients of variables exist. If we candecrease truncation error in this region, solution error will become smaller inthe whole computational domain.

    Fig. 4 illustrates distributions of errors with Mesh 1 (h ,=Hb/6) presentedin Fig.3 (Murakami et al [1988c] ). Figure 4(l) shows the distribution of

    truncation error T *. r, centers in the region in front of the model. Thedistribution of solution error 7, is given in Fig.4(2). High values oftruncation error arising around the windward corner are convected and diffused:

    mode

    (1) Mesh 2

    ii, ,=H b /6, Ir45(x)x37(y)x2l(z)=34.965

    , is the mesh\adjaoant- to the model. /

    2) Mesh 3

    5O s)~49 y)~28 z)=68,600,The

    h ,=24/Hbmesh distribution is concentrated

    near the windward corner.

    Fig.5 Mesh dividings (vertical plane)

  • 8/13/2019 1-s2.0-016761059090030G-main

    8/14

    1 4 6

    ; ~ o ~ e s u l t : . ~ - at h er h i g h v a l u e s f o r s o l u t i o n e r r o r s a r e d i s t r i b u t e d i n t h e w h o l el i e u , l i ~ l d a ~ -o u nd t h e m o d e l . I t o w o v e r , t h e m a x i m u m v a l u e o f " ~ d o e s n o t e x c e e dI ()Z of t. he v+ loc i ty va l ue . I t i s c la r i f i ed f rom the se res u l t s tha t th e mesh~m oI ut i ,m al*otmd the ~i [~dward COl'eel- o f t h model i s one of th e most: i mp or ta ntf a c t . o r s i n p r e d i c : t i e g t h e f l o w f i e l d w i t h s m a l l e r r o r s .

    4 . 2 E f f e c t :o f S2n ~ t i _ v i ty o f Mesh Reso lu t_ in__ n S im ul_ a t ion Res_u lt_ s_

    Xumeric:al s i m u l a t i o n i s c o n d u c t e d u s i n g t w o d i f f e r e n t t y p e s o f mes hd iv id i ngs and compared wi t h wind tun ne l exp er i men ts (Murakami e t a t [1988b] } .The mesh d iv id i ngs used here a re shown in F ig .5 . The mesh in t e rv a l h ~ ad j ace n tto th~~ model i s Hb/6 wi th Mesh 2. With Mesh 3, th e mesh in te rv al h ~ aro und th ewindwa~ 'd cor ner i s Hb/2 /+ and the va l ue a roun d the l ee war d cor ner i s I | b /6 . Thex e l o c l t V v e c t o t - s a r o u n d t h e m od el a r e c o m pa r e d i n F i g . 6 ( l ) , ( 2 ) . T he e n t i r e f l o wp a t t e l - n i n t i l e v e r t i c a l s e c t i o n i s w e l l r e p r o d u c e d i n t h e r e s u l t u s i n g Mesh 2 .I l o w e x e r, t h e r e v e r s e f l o w o n t h e r o o f a n d n ea t- t h e s i d e w a l l s w h i c h e x i s t s i n t h ee x p e r i m e n t a l d a t a d o es n o t a p p e a r i n t h e r e s u l t s o f Me sh 2 ,

    T h e p ~ e s s m - e c o e f f i c ie n t s C p a r e c o m p a r e d i n P i g . 7 . I n t h e c a s e o f M e s h 2 ,

    t h e p o s i t i v e p r e s s u r e o n t h e w i n d w a r d w e l l i s o v e r e s t i m a t e d a n d t h e n e g a t i v ep r e s s u r e o n t h e to p a n d o n t h e s i d e w a l l s i s u n d e r e s t i m a t e d i n c o m p a r i s o n w i t ht h e e x p e r i m e n t a l d a t a .

    ' [' he I -e suI t s us i ng Mesh 3 a re a l so p re sen ted in F igs .6 and 7 . Wi th Mesh 3 ,t h e mesh d i s t r i b u t i o n i s c o n c e n t r a t e d n e a r t h e w i n d w a r d c o r n e r. T he r e v e r s ef l o ~ , s cn~ t h e r o o f a nd n e a r t h e s i d e w a l l s a r e c l e a r l y r e p r o d u c e d . S u r f a c ep r e s s u r e d i s t r i b u t i o n a l s o c o r r e s p o n d s v e r y w e l l t o t h e e x p e r i m e n t s . B ut t h e r es t i l l e x i s t : s ome d i f f e r e n c e s i n t h e f l o w f i e l d o f t h e w ak e w h i c h s h o u l d b ei m l ) r o v e d .

    5. P R E D I C T I O N O F T I M E D E P E N D E N T F L O W F I E L D B Y L E S A N D V I S U A L A N I M A T I O N

    I n t h i s s ec t. i o n , t h e t i m e - d e p e n d e n t f l o w f i e l d p r e d i c t e d b y 3D LES i s

    presen t . ed f i r s t . Some res u l t s o f v i s u a l a n i m a t i o n a r e i l l u s t r a t e d i n t h e l a t t e r "p a r t .

    , ~, e x p e r i m e n t(Murakami et a l . , Re=7xlO'*)

    ~ h e x p e t " i m e r i t

    f~) Mesh 2

    2 : : ~ ~ - > > ) ' - > .> > > .~,-->---e

    . . . . . . .

    _~) Mesh 3

    ( l ) v e ~ ' t J c a l p l a n ea t c e n t e r o f t h e m o d e l

    F i g 6

    Mesh 2

    ~ ) M e s h 3

    ( 2 ) h o ~ i z o n t a p l a n ea t Z = H ~ / 2

    C o m p a r i s o n o f v e l o c i t y v e c t o r s

  • 8/13/2019 1-s2.0-016761059090030G-main

    9/14

    47

    ~/~ - . - . . p . , - i m..~//A~ 7

    , .L 0 . : 0 .0 ~ / / / / / y / j / / / S / / / / / ~ 0 . 0 - ; . ~ - L 0

    ( 1 ) v e r t i c a l p l a n e

    +LO 0.5 o.o ~ --0.5 -LO

    --LO

    ( 2 ) h o r i z o n t a l p l a n ea t l = H b 2

    C L

    F i g . 7 C o m p ar is o n o f s u r f a c e p r e s s u r ec o e f f i c i e n t s b a s e d o n k - ~

    5 . 1 B u i l d i n g M o d e l a n d O u t l i n e o f C o m p u t a t i o n a l M e t h o d

    T h e a r c a n g e m e n t o f t h e b u i l d i n g m o d e l i s i l l u s t r a t e d i n F i g . 8. T h e c u b i cs h a p e d b l o c k s a r e s e t r e g u l a r l y. Some t y p e s o f s t r e e t c a n y o n s o c c u r b e t w e e nthe b lo cks (Murakami e t a l 11987bl ) .

    T he s t a g g e r e d g r i d s y s t e m i s u s e d h e r e . A l l s p a t i a l d e r i v a t i v e s a r ea p p r o x i m a t e d b y c e n t r a l d i f f e r e n c e ( s e c o n d o r d e r ) . T he A d a m s - B a s h f o r t h s c h em e( s e c o n d o r d e r ) i s u s e d f o r t i m e - m a r c h i n g . N u m e r i c a l i n t e g r a t i o n s a r e c o n d u c t e dfo l l o wing t he ABMAC me thod , a s imu l t aneo us i t e r a t i on me thod fo r p r e s su re andv e l o c i t i e s

    The mesh d iv id ing i s shown in F ig .9 . The number o f g r i d po in t s amoun t s t o3 9 1 x ) X 3 6 ( y ) X 2 1 ( z ) = 4 3 , 5 2 # . T he m es h i n t e r v a l h ~ a d j a c e n t t o t h e w a l l s u r f a c e i sHb /20. One u n i t o f b lock a r ea (one bu i l d ing p lu s ha l f o f t he w id th o f t hes u r r o u n d i n g s t r e e t s ) i s s e l e c t e d f o r t h e s i m u l a t i o n s , a n d c y c l i c b o u n d a r y

    c o n d i t i o n s a r e a d o p t e d h e r e .T he b o u n d a r y c o n d i t i o n s a r e a s f o l l o w s :1) D o w ns t r e am a n d s p a n w i s e d i r e c t i o n s : c y c l i c b o u n d a r y c o n d i t i o n s .

    G r o s s d o w n s t r e a m p r e s s u r e g r a d i e n t i s i m p o s ed . H e r e ~ P = = O . O I I .LiP m e a n s t h e n o n - d i m e n s i o n a l i z e d p r e s s u r e d i f f e r e n c e b a s e d o n p u b 2 .Ub means t ime a ve ra ged ve loc i t y a t i n f l o w b o u n d a r y o f c o m p u t a t i o n a ldomain a t h e ig ht of Hb.

    2 ) U pp er s u r f a c e o f c o m p u t a t i o n a l d o m a i n : f r e e - s l i p b o u n d a r y c o n d i t i o n .3 ) Wel l b o u n d a r y : t h e p r o f i l e s o f t h e t a n g e n t i a l v e l o c i t y c o m p o n e n t s

    a r e a s sumed t o obey a power l aw exp r e s se d a s u~ z ~ nea r t he wa l l .I n t h i s s t ud y m=0 .5 . Normal ve loc i t y componen t a t t he boun da ry i sa s sumed t o b e z e r o

    5 . 2 T i m e - D e p e n d e n t Ve l o c i t y F l u c t u a t i o n a n d Ve l o c i t y S p e c t r u m

    F i g . lO i l l u s t r a t e s t h e t i m e - h i s t o r y o f t h e v e l o c i t y f l u c t u a t i o n s a t p o i n t 1p r e s e n t e d i n F i g . 9 . I n t h i s f i g u r e , t * d e n o t e s t h e n o n - d i m e n s i o n a l t i m e s c a l etUb /Hb . F i f i. l l s hows t he ve l oc i t y spec t rum o f u componen t a t t h e s ame po in t . Thep r e d i c t e d s p e c t r u m c o r r e s p o n d s v e r y w e l l w i t h t h a t o f t h e e x p e r i m e n t

  • 8/13/2019 1-s2.0-016761059090030G-main

    10/14

    148

    5 .3 M ean Ve l o c i t y F i e ld

    Time-ave raged ve loc i ty vec to r s a r e i l l u s t r a t e d i n F ig . 12. i n gene ra l , t hee n t i r e f l o w p a t t e r n f r o m t h e n u m e r i c a l s i m u l a t i o n a g r e e s w e l l w i t h t h a t f r o m t h ee x p e r i m e n t a l r e s u l t s . B ut s l i g h t d i f f e r e n c e s d o e x i s t i n t h e w ak e b e h i n d t h emod el and a l so i n t he s t and ing vo r t ex i n f r on t o f i t . The wake r eg i on and t hes t a n d i n g v o r t e x i n t h e n u m e r i c a l s i m u l a t i o n a r e a l i t t l e l a rg e r t h a n t h o s e i n t h eo x p e r i m e n t a l r e s u l t s .

    A t t he w indward co rn e r on t he ro o f , a r eve r s e f l ow shou ld appea r bu t i s no tr e p r oduce d i n F ig . 12 (2 ) . F ig . 13 shows mean ve loc i t y vec t o r s w i th f i ne r meshes(60 ( x ) x S l (y ) X46 (z )=140 ,760 ) , i n wh ich t he mesh i n t e r va l ad j ac en t t o t he mod01s u r f a c e i s H b/ 4 0. T he r e v e r s e f l o w o n t h e r o o f s u r f a c e i s h e r e w e l l r e p r o d u c e d .

    5 . 4 D i s t r i b u t i o n o f Tu r b u l e n t K i n e t i c E n e rg y

    l+he d is t r ibu t i ons of tur bul ent k in et i c energy k are compared in Fig . 14.Fig , 14(2} shows the r esu l t wi t h about 4xlO ~ gr i d poi nts and Fig . 14(3) shows theres ul t wi th 14xlO ~ gr i d poi nts , The res ul t wi t h 4xlO ~ gr i d poi nts shows somed i ff e ren ce when compared to t he expe r ime n ta l r e su l t , e spe c i a l l y fo r t he kdis t r i but ion in the v ic in i ty of the windward cor ner . The correspo ndence betweenthe resu l t obta ined wi th f i ner meshes (14xlO ~ gr i d poi nts ) and tha t f rom theexper iment i s conf i rmed to be very good,

    milding model

    wind; t reet

    Y

    t l ' 3Hb i: Hb ' 3Hb IF i g . 8 A r r a n g e m e n t o f b u i l d i n g m o d e l s

    (Shape o f bu i l d ing i s cub i c )

    ~ ind

    4 H b

    7Hb

    I l l I U l l J il l I U i l l I l l ll l l U l I l l U R i l iI l I B I I I I I ~ V I I I l U l l a : t l t f l l l l l l l l l l l l l N i l l il i m l l l U I I I t l l u m n m m i ml i b i n l i l l l ] l i ~ l l m m l m l mi m l i l l l l l ~ ~ t pi ll i I l :l q U l l l i l l l m l m m n H II i n i i I I i ; : , t i 1 | i l t t q ~ i l l l l l l l l m l H II B ID H

    ==

    I I I I I I I 1 ~ I I I II I I I1 ~~ l l l l l l l l l l l l U II l l l l l l l t ; I I I I I I I I L : I I I I I I I I l i l I I I II I I I I I I I I H I I I I I I I I ; I ~ l l l l l l l l l l l l l l lI I I I I l U ~ ;11111111 ~ l l l l l l l l l U l l l lI l l l l l l l l l l I l l U l I I ~ , ~ I l I ~ Im m m i i n l~ , lT i I i i i i I rH m n l l l l U l l n n N l

    i. 5Hb

    Hb

    10 5HhY

    L_~ S Hb ~ Hb ~': 2Hb

    ( 1 ) v e r t i c a l p l a n e ( 2 ) h o l - i z o n t a l

    F i g . 9 F i n i t e d i f f e r e n c e m e s h s y s t e m( g r i d p o i n t s = 4 3 . 5 2 4 )

    4Hb

    p l a n e

  • 8/13/2019 1-s2.0-016761059090030G-main

    11/14

  • 8/13/2019 1-s2.0-016761059090030G-main

    12/14

    1 5 0

    ~ iiii~Ji;iiiJiiiiigiii ii2 i ;iiiiiiil........=a'~;~;+~

  • 8/13/2019 1-s2.0-016761059090030G-main

    13/14

    151

    (1) ve r t i c a l p l ane (1 ) ve r t i a l p l ane

    ( 2) h o r i z o n t a l p l a n eF i g. 16 I n s t a n t a n e o u s f l o w f i e l d

    o f s c a l a r v e l o c i t yl l * x lO ~ g r i d p o i n t s )

    ( 2 ) h o r i z o n t a l p l a n e

    F i g . 17 I n s t a n t a n e o u s p r e s s u r ef i e l d

    (1) ve r t i c a l p l ane( I ) ver t ic l p l ne

    ( 2 ) h o r i z o n t a l p l a n eF ig 1 8 i n s t a n t a n e o u s v o r t i c i t y

    f i e l d

    ( 2 ) h o r i z o n t a l p l a n eFig. 19 Time l i ne s

  • 8/13/2019 1-s2.0-016761059090030G-main

    14/14

    152

    REFERENCE

    ~ a e t h ~ , F. , We r n e r, [ |. a n d We u g l e , H . 1 9 8 7 , C o m p u t a t i o n o f l u r b a l e n t F l o w a r o u n d A C u b e oi ~ A Ve c t o rC o m p u t e r , P r e c . 6 t h S y m p . o n Tu r b u l e n t S h e a r F l o w s .

    C a r u s o, S . C . , F e ~ - ~ e { ~ - . ~ - J ~ [ ~ - - . i n ~ r - ~ - , ' ] ~ [ ~ , ~ - a a - p t - i v e G r i d Te c h n iq u e s f o r E l l i p t i c F l ui d - f l owP r o b l em s , A I A A 2 4 t h A e r o s p a ce S c i e n c e M e e t in g .

    I ) ea r do r ff , J . W- - I N 7 Q , A N u m e r i c a l S t u d y o f T h r e e - d i m e n s i o n a l T u r b u l e n t C h a n n e l F l o w a t l a r g eR e y n o l d s n u m b e r s ' , J . F l u i d M e c h . , Vo l . 4 1 , p p . 4 5 3 - 4 8 0 .

    H a r l o w, F. H . , a n d W e l e h ~ - - ~ , N u m e r ic a l C a l c u la t i o n o f T i m e - de p e n d en t Vi s c o us I n c o m pr e s i b leF l o w o f F l u i d w i t h F r e e S u r f a c e , P h y s . F l u i d s . , Vo l . 8 , p p . 2 1 8 2 - 2 1 8 9 .

    } |o ri ut i, K . 1 98 2, S t u d y o f l n c o m p r e s s ~ u r ~ u l e n t C h a n n e l F l o w b y L a r g e E d d y S i m u l a t i o n ,[ h e o r e t i c a l a n d A p p l i e d M e c h a n i c s , Vo l . 3 1 , p p . A 0 2 - 4 0 7 .

    s h i z u , ~ 7 - 1 9 8 6 , ' E v a l u a t i o n ~ a t i o n S y s t e m s t h ro u gh T h re e -d i me n si o na l N u me r ic a l S i mu l at i on ' ,Frans. SHASE. Vo].30, pp.l-7

    K i m , T. - , ~ O T { , ~ - a n d M o se r , R. 1 9 8 7 , T n rh l le n ce S t a t is t ic s i n F u l l y D e v e l o p e d C h a n n e l F l o w at L o wR e y n o l d s N u m b e r , J . F l u i d . e c h . , Vo I . 1 7 7 .

    L a u n d e r , B . E . a n d S p a l I I ~ , - - D ~ . ~ - T 9 7 2 , M a t h e m a t i c a l M o d e l s o f T u r b u l e n c e ,A c a d e m i c P r e s s .

    L e o n a r d , B . P. I Q 79 , A S t a b l e a n d A c c u r a t e C o n v e c t i v e M o d e l l i n g P r o c e d u r e B a s e d o n Q u a d r a t i cU p s t r e a m I nt e v p o la t i o s , C o ~ u t e r M e t h o ds i n A p p l i e d M e c h a n i c s a n d E n g i n ee r i n g ,Vo l . I 9 , p p . 5 Q - Q 9

    ~la thews, E . H . 1 9 8 7 a ~ P r e d i c t i o n o f T he W i n d - g e n e r a t e d P r e s s ~ t ~ ~ o u n d B u i l d i n g s ,

    J . Wi n d E n g . l n d. A e r o d ff ~ i k , o h 2 5 , p p . 2 1 9 - 2 2 8 .H a t h e ws , E . H . a n d M ey er -~ , r . 1 9 8 7 b , C o m p u ta t i o n o f Wi n d L o a d s o n A S e m i c i r c u l a r G r e e n h o u s e a r o u n d

    B u i l d in g s , P r e c . 7 t h I n t . C o nf . o n Wi n d E n g. , Vo l . 4 , p p . 8 1 - 8 9 .H oi n, P. a n d K im , J. 19 82 , ' N u m e r l ' c - a ~ g a t i o n o f T u r b u l e n t C h a n n e l F l o w , J . Fl ui d. M ec h. ,

    Vol . l18 , pp .341-377. . . . . . . . . . . . .Hurakami , S . , Hochida, A. and Hibi , K. 1983, Numerica l Sim ula t io n of Air Flow around Bui ld ing

    ( P a r t l ~ P a r t 2 ) , S u m m a ri e s o f Te c h n ic a l P a p e r s o f A n n u a l M e e t i n g A r c h i te c t u r al I n s t i tu t e o fJ a p a n , p p . 4 8 7 - & ~ 0 .

    H u r a k a ~ S . , H o ch i da , A . a nd H i bi , K. [ 9 8 4 , N u me r ic a l S i m ul a t i o n o f A ir F l e w a r o u n d B u i l d i n g b ym e an s o f L a r g e Ed d y S i, m la t io n ( P a r t l ~ P a r t 2 ) , S u m m a r i e s o f Te ch n ic a l P a ~ r s o f A n n u a l H e a t in gA r c h i t e c t u r a l I n s t i t u t e o f J a p a n , p p . 2 5 7 - 2 6 0 .

    H u r a ~ , - ~ l ~ , K . a n d d o c hi d a , A . [ Q 8 5 , V i s u a l i z a t i o n o f C o m p u t e r - g e n e r a t e d T u r b u l e n tF l o w f ie l d a r o u n d C u b i c H o d e l , P r e c . I n t . S y m p . o n F l u i d C m n t r ol a n d M e a s u r e nm n t .

    H ur ak am i, S . a n d K at e, S. I Q 8 6 , D is cu ss io n , T ra ns . S H A ~ E [ - ~ - ~ ] ~ , - p p . - [ ~Z u ra k am i , S . , ~ o ch i da , A . a n d H i bi , K . I 9 8 7 a , ~ n ~ n s i o n a l N u me r ic a l S i ,m l at i on o f A i r F l o w

    a r o u n d A C u b i c H o d e l b y m e a n s o f L a r g e E d d y S i m u l a t i o n , J . Wi n d. E n g . l n d . A e r o d y n . , Vo i . 2 5 ,p p . 2 9 1 - 3 0 5 .

    H u r a k am i , S . , ~ o c h i d a , A . a n d H i b i , K . 1 9 8 7 b , N u m e r ic a l P r e d i c t i o n o f Vel o c i t y a n d P r e s u u r e F i e l da r o u n d B u i l d i n g H o d e l s , P r e c . 7 t h I n t . C o n f . o n W i n d E n g . , Vo l . 2 , p p . 3 1 - 4 0.

    ~ u r a Y m m i , S . , K a t e , S . a n d N a g a n o , S . I Q8 8a ,- -- ~ '~ 6- 6i ma ti on f E r r o r C a u s e d b y C ~ a r s e n e s s o f F i n i t ed i f f e re n c i n g , J o u r n al o f A r ch i t e c tu r e , P l a n n i n g a n d E n v io r u a m nt a l E n g i n e e r i n g ( Tr a n s . A I J . ) ,N o . 3 8 5 , p p . 9 - 1 7 .

    Z u r a h ~ m i , S . , ~ o c h i d a , A . , O o w a d a , J . a n d H a y a s b i , Y. 1 9 8 8 b , T h r e e D i m e n s i o n a l N u m e r i c a l S i m u l a t i o no f Tu r b u l e n t F lo w f i e ld a r o u n d B u i l d i n g b y m e a n s o f k - E 2 - e q u at i o n M o d e l ( P a r t I ) ', Jo u r n a lo f A r c h i t e c t u r e , P l a n n i n g a n d E n v i o r n m e n t a l E n g i n e e r i n g ( Tr a n s . A I J . ) , N o . 3 9 2 , i n p r e s s .

    ~ u r a ~ S . , M o ch i da ~ d M u r a ~ m i , L . 1 9 8 8 c, Nu me ri ca l S i a l ' i o n ~ r b l t l e n t F l ow f ie l d a r ou n d AB u i l d i n g w i t h A d a p t i v e G r i d Te c h n i q u e - - S t u d y o n p a s s i v e m e t h o d a p p l i e d t o 3 D k - g t w oe q u a t io n m o d e l , J o u r n al o f A r c h i t e c t u re , P l a n n i n g a n d E n v i o r t u ne n t a l E n g i n e e r i n g ( Tr a n s . A I J . )N o . 3 9 2 , i n p r e s s .

    M u r a P am i , S . 1 9 8 8 d , ' Vi s u al i z a t io n o f Tu r b u l e n t F l o w f i e l d G e n e r a t e d b y N u m e r i c a l S i m u l at i o n P r n c .3 r d I n t . S y m p . o n R e fi n e d F L o w M o d e l l i n g a n d Tu r b ul e n c e M e a s u re m e n t , i n p r es s .

    ~ l u r a k a - m ~ , ~ c ~ l ~ a ? - ~ e ~ m e - { [ c a ~ I a ( ~ o ~ I r - - / [ i - r T ] ~ w a ro un d a C ub ic M o d e l b ym e a n s o f k - E M o d e l , s u b m i tt e d t o J . Wi n d . E n g. l n d . Ae r o d y n.

    ~ u r a k a m i , S . a n d ~ o c h i d a , A . 1 9 8 8 f , 3 D - ] { u - - n ~ a - r ] f c a - - a I - P? e ~ - o f u r b u l e n t F l o w a r o u n d B u i l d i n g s b )m e a n s o f k - g M o d e l , B u i l d i n g a n d E n v i o rn m e n t , Vo l . 2 4~ N o . I , i n pr e s s .

    Z u r a k a m ~ , S . a n d K a t e , S a ~ '- l ~o - nd o , Y. 1 9 8 8 g , S i m u l a t i o n o f A i r f l o w b y m e a n s o f R e y n o l d s S t r e s sM o d e l (P a r t l ~P a r t 2 ) , S u m m ar i e s o f Te c h n ic a l P a p e r ~ o f A n n u a l N e e t i n g A rc h i t e ct u a l I n s t i t u t e o fJapan

    N o m u r a , ~ . , M a t s u o, Y. a n d K a t e , S . 1 9 8 0 , S t u d y o n C o n R a ut a t i o na l M e s h o f T h e M A C M e t h o d' , Tr a n s .A I J . N o . 2 9 2 . , p p . 6 1 - 7 2 .

    P a t e r ~n ~ , D . A . a n d A p el t , C . J . 1 9 8 6 , C o m p u ta t i o n o f Wi n d F l o w s o v e r T h r e e -d i , m n si o n a l B u i l d in g s ' ~J . Wi n d E n g . n d . A e r o d y n . , Vo l . 4 , p p . 1 9 2 - 2 1 3 .

    S m a g o ri n s k y, J . S . 1 9 6 3 , G s ~ r a l C i r c u l a t i o n Ex p e r i me n t s w i t h T h e P r i m i t i v e E q u a t io n s ~ a r t I , B a s ~ cE x p e r i m e n t s , M o n t h l y We a t h e r R e v i e w, Vo l . 9 1 , p p . g Q - 1 6 4 .

    - S c hu m an n , U . 1 9 7 5 , ~ - - ~ d S c a l e M o d e l f o r F i n i t e D i f f e re n c e S i m u l a t i on o f Tu r b u le n t F l o w s i n P l a n eC h a n n e l s a u d A n n u l i , J . C o m p . P h y s . , Vo l . 1 8 , p p . 3 7 6 - A 0 4 .

    f a rm * re , T. , K u w a h ar a , K . a n ~ r a ~ , S . 1 9 8 7 , N u m e r i c a l S t u d y o f U n s t e a d y F l o w P a t t e rn s a n dP r e s s ur e D i s t r ih ~ t t i on s o n A R e c t a n g u l a r C y l i n de r ~ P r e c . 7 t h . li l t. C o n f . o n Wi n d E n t ~ Vo l . ,p p . & [ - 5 0 .

    Vi e c e l l i , J . A 1 9 71 , A C o m p u t i n g M e t h o d f o r I n c o m p r e s s i b l e F l o w s B o u n d e d b y M o v i n g Wa l ls ,J .Comp at . Phys . , % 'o i .8 , pp . l IQ- iA 3.

    Ye un g -- i -- ] ~] ( i- i -6 ~ -~ < ot . S . C . I Q 8 5 , C o m p u t a t i o n o f T u r b u l e n t F l o w s p a s t A r b i t a r y Tw o d i m e n s i o n a lS u r f a c e - m o u n t e d O b z t r u e t i o n s , J . Wi n d E n g . I n d . A e r o d y n . , Vo l . 1 8 , p p . 11 7 - 1 9@ .