1 integrated nutrient management in various agroecosystems in tropics

52
Integrated Nutrient Management (INM) in various Agroecosystems in the tropics 1 Speaker Mr. Vikas Kumar Admission No.: 2013-27-102 Dept. of Silvi. & Agroforestry College of Forestry, Vellanikkara, Kerala Agricultural University, Thrissur Email ID: [email protected]

Upload: kerala-agricultural-university-thrissur-kerala-680656

Post on 15-Apr-2017

771 views

Category:

Education


0 download

TRANSCRIPT

Integrated Nutrient Management (INM) in various

Agroecosystems in the tropics

1

Speaker

Mr. Vikas Kumar Admission No.: 2013-27-102

Dept. of Silvi. & Agroforestry

College of Forestry, Vellanikkara,

Kerala Agricultural University, Thrissur

Email ID: [email protected]

• Continuous use of chemical fertilization leads

– the deterioration of soil characteristics and fertility ;

– Accumulation of heavy metals in plant tissues;

– Affect the fruit nutritional value and edibility (Shimbo et al., 2001)

– Decline of crop productivity.

• Increasing population is causing pressure on land

INTRODUCTION

2

http://www.newgeography.com

Increasing population

3

National food security

Nutritional security

Maintenance of soil health

Enhancement of soil productivity

Leaving a good heritage for

future generation

CHALLANGES

CHONPKSCaMgFeZnMnCuBMoI

4

Chemical (inorganic)

Fertilizers with

Efficient used

Livestock & Human

Wastes

Crop residues &

Tree wastes

Uraban & Rural

wastes

Agro-Industries

by product

Biological fixation

Integrated

Nutrient

Management

Maintaining soil

fertility

Improved soil

physical condition

Reduced soil

and water erosion

Control the soil-

water-air pollution

Efficient use

of natural resources

Increased crop production

Resources of integrated nutrient management and their role in soil productivity

6

Source

Rate

Time

Place

Cropping system

Environmental

4R Nutrient Stewardship Framework

7 Bruulsema et. al., 2008

Plant Nutrient Application

I. Balanced application of appropriate fertilizers is a

major component of INM.

II. Fertilizers need to be applied at the level required for optimal

crop growth based on crop requirements and agroclimatic

considerations.

III. Over application of fertilizers induces neither substantially

greater crop nutrient uptake nor significantly higher yields.

(Smaling and Braun, 1996)

8

Figure 2: Low pH levels cause excessive availability of iron and manganese, which can lead to toxicities.

Conversely, high pH levels lead to deficiencies of P, Fe, B, Cu, Zn and Mo

(www.planetpermaculture.wordpress.com) 9

Sources of organic manure for INM

Compost / vermicompost

Poultry / Piggery

Manure

Urban and rural solid and liquid Wastes from agro

based industries Crop wastes

Farm Yard Manure (FYM) INM

10

Bio-fertilizers

N- Fixing Phosphate Mobilizing OM Decomposer

1.For Legumes e.g.

Rhizobium

2.For Cereals e.g.

Azotobacter

Azospirillum,BGA,

Azolla

1.Phosphate

Solubilizing e.g.

Bacillus, Pseudomonas

2. Phosphate Absorbing

e. g. VAM, Glomus

1.Cellulolytic e.g.

Trichoderma

2.Lignolytic e.g.

Agaricus,

Arthrobacter

Rhizobium Azospirillum PSB Azotobacter 11

Table 1: Commonly produced Bio-fertilizers in India

Name Benefits

Rhizobium 10-35% yield increase, 50-

200 kg N/ha.

Azotobacter 10-15% yield increase adds

20-25 kg N/ha

Azospirillum 10-20% yield increase

Mycorrhiza

30-50% yield increase

enhances uptake of P, Zn,

S and H2o

PSB 5-30% yield increase

BGA and Azolla

20 -30 kg N/ha, Azolla can

give biomass up to 40-50

tonnes and fix 30-100 kg N/ha

12 www.agricoop.nic.in

Fig 3: Production Scenario of Biofertilizer (MT) in World

13

0 5000 10000 15000 20000 25000 30000 35000 40000

2010-11

2009-09

2008-09

2007-08

2006-07

2005-06

Mycorrhiza; 2600; 7%

PSB; 18800;

50%

Azospirillum; 6100; 16%

Azotobacter;

4200; 11%

Rhizobium; 4560; 12%

Others; 1700; 4%

Share of different biofertilizers to total production (MT) in world (2010-11)

North; 2486; 7%

South; 20660; 54%

East; 887; 2%

West; 12960; 34%

North East;

1003; 3%

Production of Biofertilizers (MT) in different regions of India

www.ipni.net

Table 2: Economics of Bio-fertilizer use

14

Biofertilizers Quantity required

lit/ha

Cost of application

(Rs/ha)

Amount of nutrient

mobilized kg/ha

Rhizobium in

legumes 0.2-1.0 lit 40-200 25 -35 kg N

Azotobacter/

Azospirillum in non-

legumes

0.5 -2.0 lit 80 -400 20 -25 kg N

Azoto+Azosp+PSB 0.5 -2.0 lit 80 -400 20 kg N + 12 kg P

Mixed inoculants 0.5 -2.0 lit 80 -400 25 kg N +15 kg P

Mycorrhiza 2.00 -5.00 kg 200-500

20-25 kg P +

micronutrients+

moisture

www.agricoop.nic.in

Treatments Recommended dose of NPK (%)

0 50 75 100 Mean

Soil pH (1:2)

Control 4.70 4.65 4.24 4.19 4.45c

Lime + Biofertilizers 4.73 4.63 4.73 4.70 4.70b

Lime + FYM 4.88 4.91 5.02 4.55 4.84b

FYM + Biofertilizers 4.73 4.55 4.33 4.66 4.57bc

Lime + Biofertilizers+ FYM 4.88 5.34 5.81 6.37 6.12a

Mean 4.78d 4.95c 5.33b 5.85a

Organic carbon (g 100g-1 )

Control 2.07 1.82 1.86 2.02 1.94b

Lime + Biofertilizers 1.89 2.08 1.78 2.06 1.95b

Lime + FYM 1.83 1.92 2.01 2.13 1.97b

FYM + Biofertilizers 1.89 2.09 2.28 2.17 2.11ab

Lime + Biofertilizers+ FYM 2.04 2.23 2.42 2.98 2.79a

Mean 1.94ab 1.99ab 2.03ab 2.09a

Exch. Bases (meq 100g-1)

Control 1.63 1.63 1.5 1.41 1.54c

Lime + Biofertilizers 2.29 2.13 2 2.47 2.22b

Lime + FYM 2.38 2.31 2.71 2.52 2.83a

FYM + Biofertilizers 2.3 2.03 1.78 1.75 1.97bc

Lime + Biofertilizers+ FYM 3.05 3.58 3.27 2.52 3.1a

Mean 2.43a 2.14ab 2.04ab 1.91b

Table 3: Effect of liming and integrated nutrient management practices on soil chemical

properties on acid soils of Meghalaya

15

(Ramesh et al., 2014)

Table 4: Effect of liming and INM practices on soil available N, P and K content on acid soils

of Meghalaya

16 Ramesh et al., 2014

Treatments Recommended dose of NPK (%)

0 50 75 100 Mean

Available N (kg ha-1)

Control 155.4 167.9 198.7 209.7 182.9b

Lime + Biofertilizers 195.8 209.8 225.9 240.8 218.1ab

Lime + FYM 178.6 206.3 219.7 230.1 208.7ab

FYM + Biofertilizers 204.9 219.8 233.9 264.7 230.8ab

Lime + Biofertilizers+ FYM 211.3 229.7 280.7 290.7 253.1a

Mean 189.2ab 206.7ab 231.8a 247.2a

Avail. P2O5 (kg ha-1)

Control 24.4 25.3 27.4 37.6 28.7b

Lime + Biofertilizers 39.4 34.7 41.1 56.2 35.4b

Lime + FYM 18.3 43.0 33.7 60.0 38.7b

FYM + Biofertilizers 34.3 44.2 43.7 76.3 49.6a

Lime + Biofertilizers+ FYM 28.4 41.7 54.8 47.5 43.1ab

Mean 29.0b 37.8b 40.1b 55.5a

Avail. K2O (kg ha-1)

Control 186.4 187.8 212.9 228.8 240.0c

Lime + Biofertilizers 203.2 240.9 259.7 271.5 243.8b

Lime + FYM 242.1 273.8 274.4 281.8 268.0a

FYM + Biofertilizers 206.5 245.7 293.9 264.3 252.6ab

Lime + Biofertilizers+ FYM 237.4 237.0 235.3 282.5 248.1ab

Mean 215.1c 237.0b 255.2ab 265.8a

C/N Ratio of major organic additives

Materials high in nitrogen

C:N

Vegetable scraps 10-20:1

Fruit wastes 20-50:1

Coffee grounds 20:1

Grass clippings 10-25:1

Cottonseed meal 10:1

Dried blood 3:1

Horse manure 20-50:1

Materials high in carbon C:N

Autumn leaves 40-80:1

Sawdust 200-750:1

Wood chips or shavings - hardwood 450-800:1

Wood chips or shavings - softwood 200-1300:1

Bark - hardwood 100-400:1

Bark - softwood 100-1200:1

Newspaper 400-900:1

Source: www.urbangardencenter.com 17

C/N < 20 Mineralization

C/N > 20 Immobilization

Table 5: Nutrient status of the soil as influenced by different treatments in papaya, Karnataka

18 Ravishankar et al., 2010

Treatment Organic

carbon

(%)

Organic

matter

(%)

pH Av. N

(kg ha-1)

Av.

P2O5

(kg ha-1)

Av. K2O

(kg ha-1)

T1- NPK fertilizers (250:250:500 g NPK

plant-1 year-1 as check

1.01c 1.32ab 5.50 373.00b 92.00 426.80

T2- FYM 20 kg/plant 1.22ab 2.43a 5.79 375.00b 94.67 365.33

T3- Urban compost 13.5 kg/plant 1.14ab 2.37ab 5.65 343.67c 87.67 390.80

T4- Sun hemp (Crotalaria juncea) 25

kg/plant

1.27a 2.07c 5.65 371.00b 98.33 373.37

T5- Sun hemp 40 kg/plant + rock

phosphate 300 g/plant

1.08b 2.11c 5.58 362.33bc 103.67 393.50

T6- Neem cake 4 kg + wood ash 2.5

kg/plant

1.15ab 2.15b 5.98 394.67a 100.33 421.8

T7- Rural compost 35 kg/plant 1.21ab 1.96d 5.51 315.33d 96.33 3.74.13

S.Ed. 0.070 0.227 NS 10.842 NS NS

CD (0.05) 0.154 0.493 23.623

Table 6: Impact of dual inoculation on NPK content and enzymes in the rhizosphere

soil of Acacia mellifera at 45 DAI

19 Lalitha, 2014 ± Standard deviation

Values in parenthesis indicate per cent increase over control

Treatments Parameters Control Rhizobium Glomus

fasciculatum

R + Glomus

fasciculatum

Soil N

(mg/kg soil)

14 ± 2.51 c 56±2 b 52 ± 1.73 b 60 ± 3.05 a

Soil P

(mg/kg soil)

1.1 ± 0.25 c 11.3 ± 0.87 b 8.8 ± 0.47 b 24.3±1.17 a

Soil K

(mg/kg soil)

115 ± 1.82 c 145 ± 2.64 b 140 ± 2.52 b 155 ± 1.71 a

Heterotrophic Bacteria

(cfu/g soil)

1.1 X 107 2.6 X 107 1.8 X 107 4.7 X 107

Fungi

(cfu / g soil)

2 X 105 5 X 105 3 X 105 8 X 105

AM spores Number / g soil 18 28 228 256

Soil amylase (μg starch degraded /

h / g soil)

2187.0±123.3 7173.0±219.5 (227) 5260.0±428.3 (140) 11062.5±929.0 (405)

Soil phosphatase (μg PNP formed / h/ g soil)

3348.1±103.4 5649.5±163.3 (68) 6250.9±111.1 (86) 8507.8±212.4 (154)

Soil chitinase (μg glucose liberated/ h / g soil)

391.7±29.3 1315.6±217.5 (235) 1372.1±35.03 (250) 1555.2±236.6 (297)

Soil protease (μg amino acid released / h / g soil)

104.06±6.93 384.3±9.43 (269) 296.12±10.73 (185) 479.3±16.9 (360)

Treatments Morphological Parameters Quality Parameters

Dry

shoot mass

(gm)

Dry root

mass

(gm)

Sturdiness

Quotient

Dicksons

quality index

N0P0 + VAM+ Rhizobium 1.11bc 0.32c 78.37bc 0.01b

N1P1+ Rhizobium 0.82cd 0.34bc 82.53bc 0.01b

N2P2+ Rhizobium 1.08c 0.42bc 84.14bc 0.012c

- N3P3 + Rhizobium 0.98d 0.46b 80.86bc 0.012c

N1P1+VAM+Rhizobium 0.76cd 0.42bc 80.17c 0.01b

N2P2+VAM+Rhizobium 2.35a 0.65a 107.9a 0.03a

N3P3+VAM+Rhizobium 1.69b 0.43b 92.79b 0.02ab

Table 7: Morphological and quality parameters of Acacia catechu

affected by INM

Brahmi et al. (2010)

20

N1 =8.75mg P1 =16.5mg

N2 =17.5mg P2 =33.0mg

N3 =33.0mg P3 =49.5mg

Values followed by same superscripts do not differ significantly at the 0.05 %.

Table 8: Growth performance of the selected tree species with

different Biofertilizer treatments

21

Dubey et al. (2006)

S. No. Biofertilizer Combinations

Height ( in cm) after 6 months

A. Catechu (cm) A. Nilotica

(cm)

B. Monosperma

(cm)

P. Pinnata

(cm)

1. Control 29.22d 41.52d 17.50c 14.93e

2. Rhizobium 41.61bc 56.76c 20.25bc 15.70d

3 Azotobacter 40.27bc 58.38bc 22.23b 18.82cd

4. PSM 29.22d 50.77cd 21.25bc 16.57cd

5. Blue green algae 36.83cd 45.67d 21.61bc 17.84cd

6. VAM comb. 47.00ab 68.22ab 23.94b 26.56a

7. Rhizobium +VAM 48.94a 67.95ab 23.89b 17.84cd

8. Azotobacter +VAM 45.67b 68.75a 25.61a 25.06b

9. Rhizobium+ PSM 44.50b 60.11b 22.42b 20.79cd

10. Azotobacter+ PSM 45.10b 62.27ab 23.45b 23.17b

11. Blue green algae + PSM 37.14c 60.65b 24.25b 21.53c

12.

VAM comb. +

Azotobacter + PSM +Rhizobium

+Blue green algae

36.94cd 60.65ab 25.76ab 23.08c

Treatment

180 DAP

Height (cm) Basal Dia. (mm) Branches Leaf Area

(cm2/plant)

T1 178.33c 19.94c 23.67c 113.12b

T2 202.33b 21.82b 25.33c 126.36b

T3 201.00b 21.87 b 24.67c 121.61b

T4 202.67b 21.16 b 27.67b 120.65b

T5 211.67b 22.86 b 34.67a 134.05a

T6 229.33a 24.66a 36.33a 141.90a

CD(P=0.05) 7.40 1.63 4.85 5.69

Table 9: Effect of Nutrient Management Practices on growth parameters of

Dalbergia sissoo in agri-silviculture system, Karnataka

Jaisankar et al. (2014) T1 –Control

T2 - Recommended dose of fertilizer (RDF) alone - 110:65:65 NPK kg ha-1

T3 - Soil Test Value (STV) alone - 110:78:52 NPK kg ha-1

T4 - 75 % of STV - 83:59:39 NPK kg ha-1 + VAM (100g plant-1) + Azospirillum (50g plant-1) +

Phosphobacteria (50g plant-1) + FYM (500g plant-1)

T5 - 100 % of STV- 110:78:52 NPK kg ha-1 + VAM (100g plant-1) + Azospirillum (50g plant-1) +

Phosphobacteria (50g plant-1) + FYM (500g plant-1)

T6 - 125% of STV 138:98:65 NPK kg ha-1 + VAM (100g plant-1) + Azospirillum (50g plant-1) +

Phosphobacteria (50g plant-1) + FYM (500g plant-1). 22

Table 10: Effect of some biofertilizers and compost on vegetative

growth of Jatropha curcas seedlings in sandy soil, Egypt

Treatment Plant height

(cm)

Root length

(cm)

Stem diameter

(cm)

No. of

leaves/plant

Leaf area

(cm2)

Control 110.30 17.80 2.10 23.70 37.33

Microbien 135.80 (23.11) 25.70 (56.8) 2.83 (34.76) 38.60 (62.86) 49.67 (33.05)

Phosphorien 126.30 (17.82) 32.10 (79.5) 2.75 (32.65) 33.70 (49.93) 59.31 (42.6)

Algae 153.60 (39.25) 39.60 (129.7) 3.51 (67.14) 62.30 (162.86) 80.43 (115.4)

Nile compost 115.60 (12.81) 34.70 (94.9) 3.11 (48.0) 49.60 (76.88) 71.67 (109.2)

Peanut Compost 119.90 (15.74) 37.10 (112.9) 3.30 (57.14) 53.30 (85.71) 75.53 (126.5)

L.S.D at 5% 4.02 2.00 0.09 1.50 3.41

El-Quesni et al. (2013) 23

Values in parenthesis indicate per cent increase over control

Treatment N

(%)

P

(%)

K

(%)

Ca

(%)

Mg

(%)

T1=Recommended dose of NPK + FYM(750g :375 g: 750g +100kg) 2.77ab 0.25c 1.42 2.58ab 0.53c

T2=Three fourths of the recommended NPK +137.5kg FYM 2.68ab 0.28b 1.34 2.46bc 0.54bc

T3= Half of the recommended NPK + 175 kg FYM 2.69ab 0.27b 1.38 2.46bc 0.54bc

T4= Recommended dose of NPK+10kg neem cake 2.63ab 0.25c 1.35 2.58ab 0.52c

T5= Three fourths of the recommended NPK+ 13.75 kg neem cake 2.67ab 0.26b 1.39 2.49b 0.59b

T6= Half of the recommended NPK + 17.5kg neem cake 2.69 0.24c 1.40 2.50b 0.62a

T7= Recommended dose of NPK +50kg vermicompost 2.78a 0.31a 1.38 2.57ab 0.61ab

T8=3/4 of the recommended NPK+68.75kg vermicompost 2.76ab 0.28 1.44 2.37c 0.60ab

T9= Half of the recommended NPK + 87.50kg vermicompost 2.71ab 0.31a 1.41 2.60a 0.53c

T10=15 kg neem cake 2.53b 0.24c 1.29 2.36c 0.56bc

T11= 75 kg vermicompost 2.48b 0.26b 1.29 2.33c 0.60ab

T12= 150kg FYM 2.27c 0.27b 1.27 2.39bc 0.57b

T13= Recommended dose of NPK 2.67ab 0.25c 1.31 2.22d 0.53c

CD 0.05 0.24 0.04 NS 0.10 0.03

Table 11: Effect of INM on the macro-nutrient status of walnut leaves, HP

Bhattaria and Tomar (2009) 24

Nutrient Conservation and Uptake

I. Soil conservation technologies prevent the physical loss of soil

and nutrients through leaching and erosion and fall into three

general categories.

a. Terracing, alley cropping, and low-till farming

b. Mulch application, cover crops, intercropping, and biological

nitrogen fixation.

c. Organic manures such as animal and green

manures also aid soil conservation by improving

soil structure and replenishing secondary nutrients

and micronutrients.

(Kumwenda et al., 1996)

25

Table 12: Contribution of fertilizers and other components of improved

technology to increase in yield over traditional systems in dryland

agriculture

Practice Increase in yield over

traditional system (%)

Management 14

Seed 40

Fertilizer 50

Seed +fertilizer 95

Seed +fertilizer+management 130

Tiwari, 2007 26

SOIL BIOTA

Fragmentation and intermixing of organic residues

Soil turnover

Increase in water

holding capacity

Soil aeration (poracity)

Water infiltration

Mineralization and

humification

Organic matter decomposition

Soil Texture

Modification

Decreasing in nutrient erosion loss

Nutrient Cycling (N&P)

Increase in CO2

production

Integrated Activity of Soil Biota

Rajagopal, 1996 27

Improved-fallow systems

Figure 4: A woody mixed fallow of Sesbania and Crotalaria

28

Suitable species for Improved-fallow systems

Woody species

• Gliricidia sepium

• Sesbania sesban

• Tephrosia candida

• Tephrosia vogelii

Herbaceous species

Cajanus cajan (pigeon pea)

Calliandra calothyrsus

(calliandra)

Crotalaria grahamiana

(crotalaria)

Canavalia ensiformis

Colopogonium mucunoides

Dolichos lablab

Macroptilium atropurpureum

29

Table 13: Soil fertility and crop yields under improved-fallow systems in

southern Mali

Kaya and Nair, 2001

Para-

meter

Depth

(cm)

Treatment

1 2 3 4 5 6

C (g/kg) 0-20 2.90** 0.23ns 0.67ns 0.03ns 1.30ns 0.80ns

20-40 -0.37 ns -0.33ns 0.77ns 0.53ns 1.77ns 0.57ns

40-60 -0.67ns -0.53ns 0.03ns -1.50ns -1.30ns -0.13ns

N (g/kg) 0-20 0.13** -0.00ns -0.00ns 0.07ns -0.03ns 0.03ns

20-40 0.10** 0.03ns 0.03ns 0.07ns 0.10* -0.00ns

40-60 0.03ns -0.00ns -0.00ns 0.07ns 0.07ns 0.07ns

P (mg/kg) 0-20 -13.97ns -0.15ns -0.64ns 7.22* 3.37ns -0.43ns

20-40 5.87ns 0.61ns 0.62ns 1.65ns 1.01ns 0.11ns

40-60 0.59ns 0.37ns 1.27ns 3.45ns 0.63ns -0.02ns

Difference: ns=not significant, *significant at p<0.005, ** significant at p<0.001

Treatment: 1= Gliricidia sepium, 2= Gliricidia sepium + Stylosanthes hamata, 3= Pterocarpus erinaceus,

4= Pterocarpus erinaceus + Stylosanthes hamata, 5 = Stylosanthes hamata, 6= Natural grass fallow 30

Source of tree-crop interactions:

Negative effect (or competition):

a = shading;

b= root competition for water and

nutrient;

Positive effect (or complementary):

c = litter fall and pruning biomass

of trees increase C, N, P and

other nutrients;

d = deep rooted trees play a role as ‘safety-

net for leached nutrients in the deeper

layer or as nutrient-pump for fertile soil.

31

Nutrient cycling in agroforestry

Agroforestry systems promote more

closed nutrient cycling than

agricultural systems by:

Uptake and recycling: taking up soil

nutrients by tree root systems and

recycling them as litter, including

root residues

Synchronization: helping to

synchronize nutrient release with

crop requirements by controlling the

quality, timing and manner of

addition of plant residues.

32

Figure 5:

33

Effects Evidence Sources

Direct Indirect i. Increase productivity + + Ong, 1991

ii. Improved soil fertility + + Kang, et al., 1990

iii. Nutrient cycling + + Szott, et al., 1991

iv. Soil conservation + + Lal, 1989 Wiersum,

1991

v. Microclimate

improvements

+ + Monteith et al., 1991

vi. Competition + + Ong et al., 1991

vii. Allelopathy 0, ? - Rizvi, 1991; Tian and

Kang, 1994

Table 14: Type of tree-crop interactions

Note: (+) means positive effects and (-) means negative effects ; where evidences is

not available it is indicated by (0)

34

Table 15: Weighted means of chemical soil quality parameters used for

computing chemical soil quality index (CSQI)

Sharma, 2010

Physico chemical

properties

Exchangeable

nutrients

Total nutrients Total

micronutrients

CS

QI

pH EC OC CE

C

Ca Mg Na K N P K Ca Mg Cu Mn Zn Fe

Agri-

horticultur

al system

5.4

a

0.0

4b

8.0b 12.7

b

5.3

6b

3.8

4ab

0.1

8b

0.18

b

531.

3c

673.

6c

4.5

7ab

13.

4c

4.6

4ab

16.

0b

136

b

37.

2ab

13.

6ab

0.86

ab

Agroforest

ry system

7.5

a

0.1

1a

9.6a 13.7

a

5.8

6ab

4.7

1a

0.1

8b

0.23

a

565.

0b

787.

3b

4.6

0ab

14.

0b

5.2

2a

17.

4a

160

a

40.

2a

13.

8a

0.92

a

Pastoral

system

6.8

b

0.0

7b

8.1b 9.2c 4.5

0b

2.8

3b

0.1

6b

0.16

b

607.

5a

880.

0a

4.3

8b

11.

5d

5.1

4ab

10.

5b

99c 36.

7ab

12.

3b

0.80

b

Arable

land

6.4

b

0.0

4b

3.7c 10.8

b

7.4

4a

2.4

6b

0.2

1a

0.15

b

483.

5c

473.

5d

4.6

4a

14.

4a

4.5

1b

9.7

c

104

c

35.

0b

11.

7c

0.76

c

35

Note: EC: dsm-1, OC: gkg-1, CEC: cmol kg-1, Exchang eable nutrients (Ca, Mg, Na, K): cmol

kg-1, Total nutrients (N,P,K,Ca,Mg): mg kg-1, Total micronutrients (Cu, Mn, Zn, Fe): mg kg-1

System pH Ec dsm-1

O.C (%)

Total N (%)

Total P (%)

Acacia nilotica +

Stylo grass

6.40 0.23 1.45 0.080 0.030

A. nilotica +

Cenchrus grass

6.92 0.11 0.754 0.067 0.020

Agri-silviculture + Horticulture

7.15 0.32 1.566 0.089 0.069

Agriculture +

Horticulture

6.88 0.16 0.870 0.077 0.029

C.D at 0.05

0.15

0.02

0.310

0.015

0.011

Table 16: Physico-chemical properties of soil under different

Agroforestry systems

36

Table 17: Effect of Prosopis juliflora – Leptochola fusca Silvipastoral

system on some properties of an alkaline soil, Rajasthan

Soil property Initial After 6 years

pH 10.3 8.9

EC ( dsm-1) 2.2 0.36

Organic carbon (%) 0.18 0.58

Available N (Kg/ha) 79.0 165.0

Available P (Kg/ha) 35.0 30.0

Available K (Kg/ha) 543.0 486.0

Singh (1995)

37

Status of soil degradation in India.

Problem area classified

Mha

1. Area subjected to water and wind erosion

162.40

2. Area degradated through special problems

a. Water logged

11.60

b. Alkali soils

4.50

c. Saline soils

5.50

d. Acid soils (pH 5.5) 25.00

e. Riverine and gullies

3.97

f. Shifting cultivation

4.91

g. Riverine and torrents

2.37

3. Flood affected

40.00

4. Total drought prone

260.00

5. Annual loss of nutrients (in mt.)

5.37 to 8.40

38

Consequences of soil erosion Soil loss per annum

6000 Mt

Nutrient loss per annum

5.6-8.4 Mt.

Food production loss

30 to 40 Mt.

Soil Loss per unit area

16.3 t ha-1 year-1

Permissible soil loss

12.5 t ha-1 year-1

Global level soil loss

26 billion t year-1

Ramanathan, 2000 39

Land use Run off Soil loss (tonnes/ha)

Maize 18.3 17.7

Maize + Subabul 8.9 5.00

Maize + Eucalyptus 3.6 0.91

Crysopogon fulvus 1.6 0.33

Grass + Subabul 0.6 0.13

Subabul 0.4 0.04

Grass + Eucalyptus 0.1 0.02

Table 18: Run off and soil loss under different agroforestry systems

Narain et al. (1994)

40

Table 19: Soil losses after six years under hedgerow intercropping

using Leucaena varieties

Treatments

Soil loss (tons/ha)

1986 1987 1988 1989 1990 1991 Total

Peru + Maize 3.0 1.6 0.8 0.8 1.7 1.7 9.6

Hawaiian giant +

Maize

3.1 2.1 1.2 3.0 1.6 1.3 12.3

Cunningham +

Maize

5.3 2.4 1.3 2.0 2.3 1.6 14.9

Control 78.0 81.3 30.4 23.2 32.0 21.6 266.5

Banda et al. (1994)

41

Figure 6: Evolution of the Agroforestry systems in Southern Philippines (hedgerow intercropping)

1970-90: Pruned hedgerow

1990-2000 2000- present:

commercial trees

Positive

Control soil erosion Provide organic fertilizer Fodder for animal

Negative

Labor intensive Competes with crops: spaces, growth resources, labour, etc

Positive

Very cheap to establish

Control soil erosion effectively

Negative

No economic benefits

? Potentials:

Productivity/Profitability

Sustainability

Diversity

Environmental services 42

Table 20: Effect of integrated management of Azolla, Vermicompost and Urea

on yield of Rice

Treatment Grain yield (t ha-1) Straw yield (t ha-1)

T1 Control 4.11e 4.51d

T2 60 kg N + Azolla 5.51a 6.02ab

T3 60 kg N 5.29b 5.93b

T4 Azolla 4.59bc 5.01c

T5 40 kg N + 20 kg N ha-1 VC 5.13b 5.52b

T6 20 kg N + 40 kg N ha-1 VC 4.90c 5.44bc

T7 60 kg N ha-1 VC + Azolla 4.75d 5.18c

T8 40 kg N + 20 kg N ha-1 VC + Azolla 5.07b 5.55b

T9 20 kg N + 40 kg N ha-1 VC + Azolla 5.52a 6.08a

T10 60 VC 4.53e 4.98c

C.D. (P = 0.05) 0.47 0.38

Singh et al. (2005) 43

Table 21: Effect of vermicompost enriched with Rock phosphate on

growth and yield of cowpea (Vigna unguiculata L.) in

Thiruvannanthapuram, Kerala

Sailaja and Usha, (2002)

Treatment No. of pods

plant-1

No of seeds

pod-1

100 seed

weight (g)

Grain yield

(kg ha-1)

T1 Control 7.5c 6.9e 10.66b 585e

T2 30 kg P2O5 ha-1 8.0b 7.1e 11.53b 690e

T3 FYM alone 8.6bc 8.3d 11.91b 817d

T4 Vermicompost alone 9.5b 9.8c 12.03ab 877c

T5 Enriched vermicompost alone 12.4a 12.1a 12.56a 1072a

T6 FYM + 30 kg P2O5 ha-1 9.0b 8.5d 12.06ab 837d

T7 FYM + 15 kg P2O5 ha-1 9.2b 8.8 12.00ab 831d

T8Vermicompost + 30 kg P2O5 ha-1 9.5b 10.2c 12.13ab 882bc

T9 Vermicompost + 15 kg P2O5 ha-1 9.1b 9.9c 12.10ab 879bc

T10 Vermicompost + 30 kg P2O5 ha-1 9.6b 11.1b 12.24ab 909b

T11 Vermicompost + 15 kg P2O5 ha-1 9.7b 11.1b 12.16ab 898bc

T12 FYM + 30 kg P2O5 ha-1 8.7b 9.2cd 11.44b 859c

FYM + 15 kg P2O5 ha-1 8.6bc 9.2cd 11.41b 833d

CD (p = 0.05) 0.7 0.4 0.25 54

Vermicompost and FYM 20 t ha-1 44

Below ground method

Tree roots can

compete with

annual crop

roots for

available water

and nutrients in

the top soil.

45

Figure 7: Putting poly bags to reduce the root competitions 46

Tree- Crop

interaction

August September October Mean

G+A+S(T1) 17.07 12.92 11.19 13.73

G+A+M+S (T2) 16.09 11.85 9.37 12.44

M+A+S (T3) 17.27 13.06 11.19 13.84

M+S (T4) 18.75 14.04 11.46 14.73

G+S (T5) 18.41 13.68 11.01 14.37

Sole crop (T6) 18.06 13.34 10.46 14.18

Table 22: Effect of tree- crop interaction on available soil moisture (%) content

U.H.F., Solan Verma et al., (2002)

Treatment Details:

G = Grewia optiva A = Almond

S = Soyabean M = Morus alba

47

Manufacture of organic fertilizer because they are concentrated

organic manure.

Improves the soil properties i.e. Physical, chemical and

biological

Deoiled seed cakes are rich in NPK content than bulky

organic manures (Table: Yawalkar and Agrawal (1962)

Quick acting organic manures as C:N ratio is usually narrow

(5-15)

Improve the soil reaction

These are improved in soil structure, water holding capacity,

exchange capacity, seed germination and reduction of soil

erosion.

48

Deoiled cakes Nutrient content (%)

N P K

Non edible deoiled-cakes

Castor cake 4.3 1.8 1.3

Karanj cake 3.9 0.9 1.2

Mahua cake 2.5 0.8 1.2

Safflower cake 4.9 1.4 1.2

Neem cake 5.2 1.9 1.6

Edible deoiled-cakes

Cotton seed cake 6.4 1.5 1.3

Groundnut cake 7.3 2.9 2.2

Linseed cake 4.9 1.4 1.3

Niger cake 4.7 1.8 1.3

Rape seed cake 5.2 1.8 1.2

Sesamum cake 6.2 2.0 1.2

(Yawalkar and Agrawal, 1962) 49

b b

c

b

a

b

c

b

c c d

d d d e

c b c b

a b c c

c d d d

e e f

c

b

d

b

a

c c c

d d d d

e e f

0

50

100

150

200

250

300

350

400

450

T1M1 T1M2 T1M3 T2M1 T2M2 T2M3 T3M1 T3M2 T3M3 T4M1 T4M2 T4M3 T5M1 T5M2 T5M3

Nu

trie

nt

av

ail

ab

ilit

y (

kg

ha

-1)

Potting media

Nitrogen (N) Phosphorus (P) Potassium (K)

Note: T1- Castor seed cake - 4.25 g/polybag , T2- Neem cake-3.34 g/polybag, T3- Cotton seed

cake-3.90 g/polybag, T4- FYM -36.0 g/ polybag, T5- Without seed cake,

M1- Soil: Sand (1: 2), M2- Soil: Sand (2: 1) & M3-Soil: Sand (1: 1).

Vikas Kumar et al., 2014 50

Figure 8. The soil nutrient availability of D. latifoila as influenced by de-oiled cake and

soil media mixture

Conclusion

INM is a practice which optimizes the performance of plants

through augmentations of chemical and biological properties of

soil.

Adopting INM practices in trees can help in boosting the

biomass productivity per unit area.

Effective utilization of a combination of biofertilizers, organic

and inorganic fertilizers not only improves and maintains the soil

fertility but also increased germination parameters, growth and

quality parameters of seedlings in nursery and plantation.

51

Looking onto the future:

Assessment of INM technologies (with secondary/micro nutrients) should be

made only after a thorough inventory of the resources available in a region

including the components of production viz, water management, tillage practices,

moisture conservation practices, managing crop with site specific technology,

biotic & abioic stresses and cropping/farming system.

Agrotechnologies maximizing input use efficiency must form an integral

part of the INM package.

Adaptive research trials conducted on large scale to assess the INM technology

with respect to agronomic productivity, ecological compatibility, economic

profitability and social acceptability is necessary.

Developing awareness among the farmers by extension agencies about the

deteriorating soil health, unsustainable production and environmental pollution due

to non use of organics. 52

D.S.

Hirpara