1 fourierseries&transform

Upload: physicist91

Post on 05-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 1 FourierSeries&Transform

    1/44

    Fourier Series

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 1 / 44

  • 7/31/2019 1 FourierSeries&Transform

    2/44

    Dirichlet Conditions

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 2 / 44

    FIG. 1: An example of a function

    that may, without modification, be

    represented as a Fourier series.

    The particular conditions that a

    function f.x/ must fulfil in or-

    der that it may be expanded as

    a Fourier series are known as

    the Dirichlet conditions:

    1. f.x/ must be periodic

    2. f.x/ is single-valued and

    continuous, except possi-

    bly at a finite number of fi-

    nite discontinuities

    3. f.x/ has only a finite

    number of maxima & min-ima within one period

    4. integral over one period of

    jf.x/j must convergeFourier series converge to f.x/

    at all points where f.x/ is con-

    tinuous.

  • 7/31/2019 1 FourierSeries&Transform

    3/44

    Fourier Coefficients

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 3 / 44

    The Fourier series expansion of the function f.x/ is written as

    f.x/ D a02

    C1

    XrD1

    ar cos2rx

    L C br sin2rx

    L (1)where a0, ar and br are constants called the Fourier coefficients.

    For a periodic function f.x/ of period L, the coefficients are

    ar D2

    L

    Zx0CLx0

    f.x/ cos

    2rx

    L

    dx (2)

    br D2

    LZx0CLx0

    f.x/ sin2rx

    L

    dx (3)

    where x0 is arbitrary but is often taken as 0 or L=2. The apparentarbitrary factor 1=2 which appears in the a0 term in Eq. (1) is

    included so that Eq. (2) may apply for r D 0 as well as r > 0.

  • 7/31/2019 1 FourierSeries&Transform

    4/44

    Fourier Coefficients 2

    Paul Lim Fourier Series & Transform 4 / 44

    Eqs. (2) and (3) may be derived as follows. Suppose the Fourier seriesexpansion of f.x/ can be written as in Eq. (1),

    f.x/ Da

    2 C1XrD1

    ar cos

    2rxL

    C br sin2rxL Then multiplying by cos.2px=L/, integrating over one full period in x and

    changing the order of summation and integration, we get

    Zx0CLx0

    f.x/ cos

    2px

    L

    dx D a0

    2

    Zx0CLx0

    cos

    2px

    L

    dx

    C1XrD1

    arZx0CLx0

    cos

    2rxL

    cos

    2px

    L

    dx

    C

    1

    XrD1

    br Zx0CL

    x0

    sin2rxL

    cos2pxL

    dx (4)

  • 7/31/2019 1 FourierSeries&Transform

    5/44

    Fourier Coefficients 3

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 5 / 44

    Using the following orthogonality conditions,

    Zx0CL

    x0

    sin2rx

    L cos2px

    L dx D 0 (5)Zx0CLx0

    cos

    2rx

    L

    cos

    2px

    L

    dx D

    8

    00; r

    p

    (6)

    Zx0CL

    x0

    sin2rxL

    sin2pxL

    dx D 8 0

    0; r p(7)

    we find that when p D 0, Eq. (4) becomes

    Zx0CLx0

    f.x/ dx D a02

    L

  • 7/31/2019 1 FourierSeries&Transform

    6/44

    Fourier Coefficients 4

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 6 / 44

    When p 0 the only non-vanishing term on the RHS of Eq. (4)occurs when r D p, and so

    Zx0CLx0 f.x/ cos

    2rxL

    dx D

    ar

    2 L:

    The other coefficients br may be found by repeating the above

    process but multiplying by sin.2px=L/ instead of cos.2px=L/.

  • 7/31/2019 1 FourierSeries&Transform

    7/44

    Example 1

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 7 / 44

    ExampleExpress the square-wavefunction a Fourier series.

    FIG. 2: A square-wavefunction.

    Solution

    The square wave may be represented by

    f.t/ D 1 for 1

    2

    T

    t < 0,

    C1 for 0 t < 12

    T.

  • 7/31/2019 1 FourierSeries&Transform

    8/44

    Example 1 contd

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 8 / 44

    f.t/ is an odd function and the series will contain only sine terms.Using Eq. (3)

    br D2

    TZT=2T=2 f.t/ sin

    2rtT

    dt

    D 4T

    ZT=20

    sin

    2rt

    T

    dt

    D 2 r

    1 .1/r :

    The sine coefficients are zero if r is even and equal to 4=r if r is

    odd.

    ) f.t/ D 4

    sin !t C sin 3!t

    3C sin 5! t

    5C

    ;

    where ! D 2=T is called the angular frequency.

  • 7/31/2019 1 FourierSeries&Transform

    9/44

    Discontinuous Functions

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 9 / 44

    At a point of finite discontinuity, xd, the Fourier series converges to

    1

    2lim!0

    f.xd C / C f .xd /:

  • 7/31/2019 1 FourierSeries&Transform

    10/44

    Example 2

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 10 / 44

    ExampleFind the value to which the Fourier series of the

    square-wavefunction converges at t D 0.

    SolutionThe function is discontinuous at t D 0, and we expect the series toconverge to a value half-way between the upper and lower values;

    zero in this case. Considering the Fourier series of this function,

    we see that all the terms are zero and hence the Fourier series

    converges to zero as expected.

  • 7/31/2019 1 FourierSeries&Transform

    11/44

    Non-Periodic Functions

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 11 / 44

    FIG. 3: Possible periodic exten-

    sions of a function.

    Figure 3(b) shows the simplestextension to the function shown

    in Figure 3(a). However, this ex-

    tension has no particular sym-

    metry.

    Figures 3(c), (d) show exten-

    sions as odd and even func-

    tions respectively with the ben-

    efit that only sine or cosine

    terms appear in the resulting

    Fourier series.

  • 7/31/2019 1 FourierSeries&Transform

    12/44

    Example 3

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 12 / 44

    ExampleFind the Fourier series of f.x/ D x2 for 0 < x 2.

    Solution

    We must first make the function periodic. We do this by extendingthe range of interest to 2 < x 2 in such a way thatf.x/ D f .x/ and then letting f .x C 4k/ D f.x/ where k is anyinteger.

    FIG. 4: f.x/ D x2, 0 < x 2, with extended range and periodicity.

  • 7/31/2019 1 FourierSeries&Transform

    13/44

    Example 3 contd

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 13 / 44

    Now we have an even function of period 4. Thus, all thecoefficients br will be zero. Now we apply Eqs. (2) and (3) with

    L D 4 to determine the remaining coefficients:

    ar D 24

    Z2

    2

    x2 cos

    2rx4

    dx D 4

    4

    Z2

    0

    x2 cos

    rx2

    dx;

    Thus,

    ar D

    2

    rx2 sin

    rx2

    20

    4 r

    Z20

    x sin rx

    2

    dx

    D8

    2r2h

    x cos rx

    2i2

    0 8

    2r2Z20 cos

    rx2

    dx

    D 162r2

    cos r

    D16

    2r2 .1/r :

  • 7/31/2019 1 FourierSeries&Transform

    14/44

    Example 3 contd

    Fourier Series

    yDirichlet Conditions

    yCoefficients

    yCoefficients 2

    yCoefficients 3

    yCoefficients 4

    yExample 1

    yExample 1 contd

    yDiscontinouos

    yExample 2

    yNon-Periodic

    yExample 3

    yExample 3 contd

    yExample 3 contd

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 14 / 44

    Since the expression for ar has r2 in its denominator, to evaluate

    a0 we must return to the original definition,

    ar D2

    4Z22 f.x/ cos

    rx2

    dx:

    From this we obtain

    a0 D 24

    Z22

    x2 dx D 44

    Z20

    x2 dx D 83

    :

    The final expression for f.x/ is then

    x2 D 43

    C 161XrD1

    .1/r2r2

    cos rx

    2

    ; for 0 < x 2. (8)

  • 7/31/2019 1 FourierSeries&Transform

    15/44

    Complex Fourier series

    Fourier Series

    Complex Fourier

    series

    yComplex Series

    yExample 4

    yParsevals theorem

    yProof

    yProof 2

    yExample 5

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 15 / 44

  • 7/31/2019 1 FourierSeries&Transform

    16/44

    Complex Fourier Series

    Fourier Series

    Complex Fourier

    series

    yComplex Series

    yExample 4

    yParsevals theorem

    yProof

    yProof 2

    yExample 5

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 16 / 44

    Using exp.irx/ D cos rx C i sin rx, the complex Fourier series:

    f.x/ D1

    XrD1

    cr exp2irx

    L ; (9)where cr D

    1

    L

    Zx0CLx0

    f.x/ exp

    2irx

    L

    dx (10)

    Eq. (10) can be derived by multiplying Eq. (9) by exp.2ipx=L/before integrating and using the orthogonality relation

    Zx0CL

    x0

    exp2ipx

    L exp2irx

    L dx D

    L; r D p0; r p

    We also have the following relations

    cr D1

    2 .ar i br/; cr D1

    2.ar C i br/: (11)

  • 7/31/2019 1 FourierSeries&Transform

    17/44

    Example 4

    Paul Lim Fourier Series & Transform 17 / 44

    ExampleFind a complex Fourier series for f.x/ D x in the range 2 < x < 2.Solution

    cr D1

    4

    Z22

    x exp

    i r x

    2

    dx (Using Eq. (10))

    D x2ir

    exp i r x

    2

    22

    C Z22

    12ir

    exp i r x

    2

    dx

    D 1 i r

    exp. i r / C exp.ir/ C 1

    r22exp

    i r x

    2 2

    2

    D 2i r

    cos r C 2ir22

    sin r D 2i r

    .1/r

    ) xD

    1

    XrD1

    2i.1/rr

    exp i r x2

    :

  • 7/31/2019 1 FourierSeries&Transform

    18/44

    Parsevals theorem

    Fourier Series

    Complex Fourier

    series

    yComplex Series

    yExample 4

    yParsevals theorem

    yProof

    yProof 2

    yExample 5

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 18 / 44

    Parsevals theorem gives a useful way of relating the Fouriercoefficients to the function that they describe. It states that

    1

    LZx0CLx0 jf.x/j

    2

    dx D1X

    rD1 jcr j2

    D

    1

    2a0

    2

    C 12

    1

    XrD1.a2r C b2r /:

    (12)

    This says that the sum of the moduli squared of the complex

    Fourier coefficients is equal to the average value of

    jf.x/

    j2 over

    one period.

  • 7/31/2019 1 FourierSeries&Transform

    19/44

    Proof of Parsevals Theorem

    Fourier Series

    Complex Fourier

    series

    yComplex Series

    yExample 4

    yParsevals theorem

    yProof

    yProof 2

    yExample 5

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 19 / 44

    Consider two functions f.x/ and g.x/, which are (or can be made)periodic with period L, and which have Fourier series:

    f.x/ D1X

    rD1cr exp

    2irxL

    ;

    g.x/ D1

    XrD1r exp

    2irx

    L where cr and r are the complex Fourier coefficients of f.x/ and

    g.x/ respectively.

    ) f.x/g.x/ D1X

    rD1

    crg.x/ exp

    2irx

    L

  • 7/31/2019 1 FourierSeries&Transform

    20/44

    Proof of Parsevals Theorem 2

    Paul Lim Fourier Series & Transform 20 / 44

    Integrating this equation with respect to x over the interval .x0; x0 C L/, anddividing by L, we find

    1

    LZx0CLx0 f.x/g

    .x/ dx D1X

    rD1cr

    1

    LZx0CLx0 g

    .x/ exp2irx

    L

    dx

    D1

    XrD1 cr"

    1

    L Zx0CL

    x0

    g.x/ exp2irx

    L dx#

    D1X

    rD1

    cr

    r :

    Finally, if we let g.x/ D f.x/, we obtain Parsevals theorem (Eq. (12)).

  • 7/31/2019 1 FourierSeries&Transform

    21/44

    Example 5

    Fourier Series

    Complex Fourier

    series

    yComplex Series

    yExample 4

    yParsevals theorem

    yProof

    yProof 2

    yExample 5

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 21 / 44

    ExampleUsing Parsevals theorem and the Fourier series for f.x/ D x2,calculate the sum

    P1

    rD1 r4.

    SolutionFind the average value of jf.x/j2 over the interval 2 < x 2,

    1

    4Z

    2

    2

    x4 dx

    D

    16

    5

    :

    Now we evaluate the RHS of Eq. (12):

    12 a0

    2 C 121X1

    a2r C

    1

    2

    1X1

    b2n D 43

    2

    C1

    2

    1XrD1

    162

    4r4 :

    Equating the two expression, we find

    1

    XrD1

    1

    r4 D4

    90

    :

  • 7/31/2019 1 FourierSeries&Transform

    22/44

    Fourier Transforms

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    yTransform

    yTransform 2

    yTransform 3

    yExample 6

    Dirac -Function

    Odd & Even f.x/

    Convolution andDeconvolution

    Paul Lim Fourier Series & Transform 22 / 44

  • 7/31/2019 1 FourierSeries&Transform

    23/44

    Fourier Transforms

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    yTransform

    yTransform 2

    yTransform 3

    yExample 6

    Dirac -Function

    Odd & Even f.x/

    Convolution andDeconvolution

    Paul Lim Fourier Series & Transform 23 / 44

    The Fourier transform provides a representation of functionsdefined over an infinite interval, and having no particular

    periodicity, in terms of superposition of sinusoidal functions.

    A function of period T may be represented as a complex Fourierseries,

    f.t/ D1

    XrD1

    cre2irt=T D

    1

    XrD1

    crei!r t (13)

    where !r D 2r=T. As the period T tends to infinity, thefrequency quantum ! D 2=T becomes vanishingly small andthe spectrum of allowed frequencies !r becomes a continuum.

  • 7/31/2019 1 FourierSeries&Transform

    24/44

    Fourier Transforms 2

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    yTransform

    yTransform 2

    yTransform 3

    yExample 6

    Dirac -Function

    Odd & Even f.x/

    Convolution andDeconvolution

    Paul Lim Fourier Series & Transform 24 / 44

    The coefficients cr in Eq. (13) are given by

    cr D1

    T ZT=2

    T=2

    f . t / e2irt=T dt D !2 Z

    T=2

    T=2

    f . t / ei!r t dt:

    (14)Substituting Eq. (14) into (13) gives

    f.t/ D

    1XrD1

    !

    2ZT=2T=2 f.u/e

    i!ru

    d u e

    i!r t

    : (15)

    f.t/ D 12 Z

    1

    1

    d! ei!t Z1

    1

    du f . u / ei!u: (16)

    This result is known as Fouriers inversion theorem.

  • 7/31/2019 1 FourierSeries&Transform

    25/44

    Fourier Transforms 3

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    yTransform

    yTransform 2

    yTransform 3

    yExample 6

    Dirac -Function

    Odd & Even f.x/

    Convolution andDeconvolution

    Paul Lim Fourier Series & Transform 25 / 44

    From it, we may define Fourier transform of f.t/ by

    Qf .!/ D 1p2

    Z1

    1

    f . t / ei!t dt; (17)

    and its inverse by

    f.t/ D 1p2

    Z1

    1

    Qf .!/ ei!t d!: (18)

  • 7/31/2019 1 FourierSeries&Transform

    26/44

    Example 6

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    yTransform

    yTransform 2

    yTransform 3

    yExample 6

    Dirac -Function

    Odd & Even f.x/

    Convolution andDeconvolution

    Paul Lim Fourier Series & Transform 26 / 44

    ExampleFind the Fourier transform of the exponential decay function

    f.t/ D 0 for t < 0 and f.t/ D Aet for t 0 ( > 0).

    SolutionUsing Eq. (17) and separating the integrals into two parts,

    Qf .!/

    D1

    p2 Z0

    1

    .0/ei!t dtC

    A

    p2 Z1

    0

    etei!t dt

    D 0 C Ap2

    "e

    .Ci!/t

    C i !

    #10

    D Ap2. C i !/

    :

  • 7/31/2019 1 FourierSeries&Transform

    27/44

    Dirac -Function

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 27 / 44

  • 7/31/2019 1 FourierSeries&Transform

    28/44

    Dirac-Function

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 28 / 44

    The Dirac -function has the property that

    .t/ D 0 for t 0; (19)

    Its fundamental defining property isZf.t/.t a/ dt D f.a/ (20)

    provided range of integration includes t D a; otherwise 0. Also,

    Zb

    a

    .t/ dt D 1 for all a; b > 0 (21)

    and Z.t a/ dt D 1 (22)

    provided the range of integration includes t D a.

  • 7/31/2019 1 FourierSeries&Transform

    29/44

    Dirac-Function 2

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 29 / 44

    Eq. (20) can be used to derive further useful properties of the Dirac-function:

    .t/

    D.

    t / (23)

    .at/ D 1jaj.t/ (24)t.t/ D 0: (25)

  • 7/31/2019 1 FourierSeries&Transform

    30/44

    Example 7

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 30 / 44

    ExampleProve that .bt/ D .t/=jbj.

    Solution

    Let us consider the case where b > 0. It follows thatZ1

    1

    f.t/.bt/ dt DZ1

    1

    f

    t 0

    b

    .t 0/

    dt 0

    b

    D 1b

    f.0/ D 1b

    Z11

    f.t/.t/ dt;

    where we have made the substitution t 0 D bt . But f.t/ is arbitraryand therefore .bt/ D .t/=b D .t/=jbj for b > 0.

  • 7/31/2019 1 FourierSeries&Transform

    31/44

    Example 7 contd

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 31 / 44

    Now consider the case where b D c < 0. It follows thatZ1

    1

    f.t/.bt/ dt DZ1

    1

    f

    t 0

    c

    .t 0/

    dt 0

    c

    DZ11

    1c

    f

    t0

    c

    .t 0/ dt 0

    D 1c

    f.0/ D 1

    jbj

    f.0/

    D 1jbjZ1

    1

    f.t/.t/ dt

    where we have made the substitution t 0

    Dbt

    D ct . But f.t/ is

    arbitrary and so

    .bt/ D 1jbj.t/;

    for all b.

  • 7/31/2019 1 FourierSeries&Transform

    32/44

    Relation Of-Function to Fourier Transforms

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 32 / 44

    Referring to Eq. (16), we have

    f.t/ D 12

    Z1

    1

    d! ei!tZ1

    1

    du f . u / ei!u

    DZ11

    duf.u/

    12

    Z11

    ei!.tu/ d!

    Comparison of this with Eq. (20) shows that we may write the

    -function as

    .t u/ D 12

    Z1

    1

    ei!.tu/ d!: (26)

    The Fourier transform of a -function is

    Q.!/ D 1p2

    Z1

    1

    .t/ei!t dt D 1p2

    : (27)

  • 7/31/2019 1 FourierSeries&Transform

    33/44

    Properties of Fourier Transform

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 33 / 44

    Fourier transform of f.t/ is de-noted by Qf .!/ or F.

    Differentiation:

    F

    f0.t / D i ! Qf .!/

    (28)

    Ff00.t / D i !Ff0.t/

    D !2 Qf .!/;

    Scaling:

    Ff.at/ D 1a

    Qf!

    a

    :

    (29)

    Translation:

    Ff.tCa/ D eia! Qf .!/:(30)

    Exponential multiplica-

    tion:

    F

    et

    f.t/ D Qf .!Ci/;

    (31)

    where may be real,

    imaginary or complex.

  • 7/31/2019 1 FourierSeries&Transform

    34/44

    Example 8

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    yDirac -FunctionyDirac -Function 2

    yExample 7

    yExample 7 contd

    yRelation of to FT

    yProperties of FT

    yExample 8

    Odd & Even f.x/

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 34 / 44

    ExampleProve relation F f0.t/ D i ! Qf .!/.

    Solution

    Calculating the Fourier transform of f0.t / directly, we obtain

    F

    f0.t /

    D 1p

    2

    Z1

    1

    f0.t/ei!t dt

    D 1p2

    hei!tf.t/

    i1

    1

    C 1p2

    Z1

    1

    i !ei!tf.t/ dt

    D i ! Qf .!/;

    if f.t/ ! 0 at t D 1 (as it must since R11

    jf.t/j dt is finite).

  • 7/31/2019 1 FourierSeries&Transform

    35/44

    Odd & Even f.x/

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    yOdd & Even f

    yOdd & Even f 2

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 35 / 44

    Odd d E F i

  • 7/31/2019 1 FourierSeries&Transform

    36/44

    Odd and Even Functions

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    yOdd & Even f

    yOdd & Even f 2

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 36 / 44

    Consider an odd function f.t/ D f .t /, whose Fouriertransform is given by

    Qf .!/

    D1

    p2 Z1

    1

    f.t/ei!t dt

    D 1p2

    Z1

    1

    f.t/.cos !t i sin !t / dt

    D 2i

    p2Z10

    f.t/ sin !t dt;

    since f.t/ and sin !t are odd, whereas cos !t is even.

    Note that Qf .!/ D Qf .!/, i.e. Qf .!/ is an odd function of !.

    Odd d E F ti 2

  • 7/31/2019 1 FourierSeries&Transform

    37/44

    Odd and Even Functions 2

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    yOdd & Even f

    yOdd & Even f 2

    Convolution and

    Deconvolution

    Paul Lim Fourier Series & Transform 37 / 44

    Hence

    f.t/ D 1p2

    Z1

    1

    Qf .!/ei!t d!

    D 2ip2

    Z10

    Qf .!/ sin !t d!

    D 2 Z

    1

    0

    d! sin !t Z1

    0

    f.u/ sin !u du :Thus we may define the Fourier sine transform pair for odd

    functions:

    Qfs

    .!/D r

    2

    Z10

    f.t/ sin !t dt; (32)

    f.t/ Dr

    2

    Z1

    0

    Qfs.!/ sin !t d!: (33)

  • 7/31/2019 1 FourierSeries&Transform

    38/44

    Convolution and Deconvolution

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    yConvolution and

    Deconvolution

    yExample 9

    yConvolution Thm

    yConvolution Thm 2

    yFT in 3D

    yFT in 3D contd

    Paul Lim Fourier Series & Transform 38 / 44

    C l ti d D l ti

  • 7/31/2019 1 FourierSeries&Transform

    39/44

    Convolution and Deconvolution

    Fourier Series

    Complex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    yConvolution and

    Deconvolution

    yExample 9

    yConvolution Thm

    yConvolution Thm 2

    yFT in 3D

    yFT in 3D contd

    Paul Lim Fourier Series & Transform 39 / 44

    The convolution of the functions f and g is defined as

    h.z/ DZ1

    1

    f.x/g.z x/ dx (34)

    and is often written as f g.

    The convolution is commutative (f g D g f), associative and

    distributive.

    E l 9

  • 7/31/2019 1 FourierSeries&Transform

    40/44

    Example 9

    Paul Lim Fourier Series & Transform 40 / 44

    ExampleFind the convolution of the function f.x/ D .x C a/ C .x a/ with thefunction g.y/ plotted in the Figure below.

    FIG. 5: The convolution of two functions f.x/ andg.y/.

    Solution

    Using the convolution integral Eq. (34),

    h.z/ DZ1

    1

    f.x/g.z x/ dx

    D Z1

    1.x C a/ C .x a/g.z x/ dx D g.z C a/ C g.z a/:

    C l ti Th

  • 7/31/2019 1 FourierSeries&Transform

    41/44

    Convolution Theorem

    Fourier SeriesComplex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    yConvolution and

    Deconvolution

    yExample 9

    yConvolution Thm

    yConvolution Thm 2

    yFT in 3D

    yFT in 3D contd

    Paul Lim Fourier Series & Transform 41 / 44

    Consider the Fourier transform of the convolution [Eq. (34)],

    Qh.k/ D 1p2

    Z1

    1

    dz eikzZ

    1

    1

    f.x/g.z x/ dx

    D 1p2

    Z11

    dx f .x/Z11

    g.z x/ eikz dz

    If we let u D z x in the second integral we have

    Qh.k/ D 1p2

    Z1

    1

    dx f .x/

    Z1

    1

    g.u/eik.uCx/ du

    D1

    p2 Z1

    1

    f.x/eikx dx Z11

    g.u/ eiku du

    D 1p2

    p

    2 Qf .k/ p

    2 Qg.k/

    Dp

    2 Qf .k/ Qg.k/: (35)

    Convolution Theorem 2

  • 7/31/2019 1 FourierSeries&Transform

    42/44

    Convolution Theorem 2

    Fourier SeriesComplex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    yConvolution and

    Deconvolution

    yExample 9

    yConvolution Thm

    yConvolution Thm 2

    yFT in 3D

    yFT in 3D contd

    Paul Lim Fourier Series & Transform 42 / 44

    Hence the Fourier transform of a convolution is equal to theproduct of the separate Fourier transforms multiplied by

    p2 ; this

    is called the convolution theorem.

    The converse is also true, namely, that the Fourier transform of theproduct f .x/g.x/ is given by

    Ff .x/g.x/

    D1

    p2 Qf .k/

    Qg.k/: (36)

    Fourier Transform in Higher Dimensions

  • 7/31/2019 1 FourierSeries&Transform

    43/44

    Fourier Transform in Higher Dimensions

    Fourier SeriesComplex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    yConvolution and

    Deconvolution

    yExample 9

    yConvolution Thm

    yConvolution Thm 2

    yFT in 3D

    yFT in 3D contd

    Paul Lim Fourier Series & Transform 43 / 44

    Fourier transform of f.x;y;z/ is

    Qf .kx; ky; kz/ D1

    .2/3=2

    f.x;y;z/eikxxeikyyeikzzdxdydz

    (37)

    and its inverse by

    f.x;y;z/ D1

    .2/3=2 Qf .kx; ky; kz/eikxxeikyyeikzzdkxdkydkz

    (38)

    Fourier Transform in Higher Dimensions 2

  • 7/31/2019 1 FourierSeries&Transform

    44/44

    Fourier Transform in Higher Dimensions 2

    Fourier SeriesComplex Fourier

    series

    Fourier Transforms

    Dirac -Function

    Odd & Even f.x/

    Convolution and

    Deconvolution

    yConvolution and

    Deconvolution

    yExample 9

    yConvolution Thm

    yConvolution Thm 2

    yFT in 3D

    yFT in 3D contd

    i

    Denoting the vector with components kx , ky , kz by k and that withcomponents x, y, z by r , we can write the Fourier transform pair

    Eqs. (37), (38) as

    Qf .k/ D 1.2/3=2

    Zf .r/ eikr d3r (39)

    f .r/D

    1

    .2/3=2Z Qf .k/ e

    ikr d3k (40)

    We may deduce that the three-dimensional Dirac -function can be

    written as

    .r/ D 1.2/3

    Zeikr d3k: (41)