1 ekt919 electric circuit ii chapter 2 laplace transform

65
1 EKT919 EKT919 ELECTRIC CIRCUIT ELECTRIC CIRCUIT II II Chapter 2 Laplace Transform

Upload: sylvia-ferguson

Post on 28-Dec-2015

243 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

1

EKT919EKT919ELECTRIC CIRCUIT ELECTRIC CIRCUIT IIII

Chapter 2Laplace Transform

Page 2: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Definition of Laplace Transform Definition of Laplace Transform

The Laplace Transform is an integral transformation of a function f(t) from the time domain into the complex frequency domain, giving F(s)

s: complex frequencyCalled “The One-sided or unilateral

Laplace Transform”.In the two-sided or bilateral LT, the

lower limit is -. We do not use this.

Page 3: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

3

Definition of Laplace Transform Definition of Laplace Transform

Example 1

Determine the Laplace transform of each of the following functions shown below:

Page 4: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

4

Definition of Laplace Transform Definition of Laplace Transform

Solution:

a) The Laplace Transform of unit step, u(t) is given by

0

11)()(

sdtesFtuL st

Page 5: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

5

Definition of Laplace Transform Definition of Laplace Transform

Solution:

b) The Laplace Transform of exponential function, e-tu(t),>0 is given by

0

1)()(

sdteesFtuL stt

Page 6: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

6

Definition of Laplace Transform Definition of Laplace Transform

Solution:

c) The Laplace Transform of impulse function,

δ(t) is given by

01)()()( dtetsFtuL st

Page 7: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Functional Functional TransformTransform

Page 8: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

TYPE f(t) F(s)

Impulse

Step

Ramp

Exponential

Sine

Cosine

δ(t)

u(t)

t

ate

s1

1

2s1

as1

tsin

tcos

2

2s

22ss

Page 9: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

TYPE f(t) F(s)

Damped ramp

Damped sine

Damped cosine

atte

te at sin

te at cos

21

as

22

as

22

asas

Page 10: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Properties of Laplace Transform Properties of Laplace Transform

0,)(

0,0)(

tKtKu

ttKu

Step Function

The symbol for the step function is K u(t).Mathematical definition of the step

function:

Page 11: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

f(t) = K u(t)f(t) = K u(t)

)(tf

K

0t

Page 12: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Properties of Laplace Transform Properties of Laplace Transform

atKatKu

atatKu

,)(

,0)(

Step Function

A discontinuity of the step function may occur at some time other than t=0.

A step that occurs at t=a is expressed as:

Page 13: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

f(t) = K u(t-a)f(t) = K u(t-a)

)(tf

K

ta0

Page 14: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Ex:Ex:)(tf

2

10 2 3 4t

2

Page 15: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Three linear functions at t=0, Three linear functions at t=0, t=1, t=3, and t=4t=1, t=3, and t=4

)(tf

4

10 2 3 4t

4

2

2

t2

42 t

82 t

Page 16: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Expression of step functions Expression of step functions

Linear function +2t: on at t=0, off at t=1

Linear function -2t+4: on at t=1, off at t=3

Linear function +2t-8: on at t=3, off at t=4Step function can be used to turn on and

turn off these functions

Page 17: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Step FunctionsStep Functions

)]4()3()[82(

)]3()1()[42(

)]1()([2)(

tutut

tutut

tututtf

Page 18: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Properties of Laplace Transform Properties of Laplace Transform

0,0)(

1)()(

tt

tdt

Impulse Function

The symbol for the impulse function is (t).Mathematical definition of the impulse

function:

Page 19: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Properties of Laplace Transform Properties of Laplace Transform

Impulse Function

The area under the impulse function is constant and represents the strength of the impulse.

The impulse is zero everywhere except at t=0.

An impulse that occurs at t = a is denoted K (t-a)

Page 20: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

f(t) = K f(t) = K (t)(t)

)(tf

K

0t

K)(tK )( atK

a

Page 21: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

21

Properties of Laplace Transform Properties of Laplace Transform

)()()()( 22112211 sFasFatfatfaL

Linearity

If F1(s) and F2(s) are, respectively, the Laplace Transforms of f1(t) and f2(t)

Example:

22

)(2

1)()cos(

s

stueeLtutL tjtj

Page 22: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

22

Properties of Laplace Transform Properties of Laplace Transform

)(1

)(a

sFa

atfL

Scaling

If F (s) is the Laplace Transforms of f (t), then

Example:

22 4

2)()2sin(

s

tutL

Page 23: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

23

Properties of Laplace Transform Properties of Laplace Transform

)()()( sFeatuatfL as

Time Shift

If F (s) is the Laplace Transforms of f (t), then

Example:

22

)())(cos(

s

seatuatL as

Page 24: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

24

Properties of Laplace Transform Properties of Laplace Transform

)()()( asFtutfeL at

Frequency Shift

If F (s) is the Laplace Transforms of f (t), then

Example:

22)(

)()cos(

as

astuteL at

Page 25: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

25

Properties of Laplace Transform Properties of Laplace Transform

)0()()(

fssFtudt

dfL

Time Differentiation

If F (s) is the Laplace Transforms of f (t), then the Laplace Transform of its derivative is

Example:

22

)sin(

s

u(t)ωtL

Page 26: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

26

Properties of Laplace Transform Properties of Laplace Transform

)(1

)(0

sFs

dttfLt

Time Integration

If F (s) is the Laplace Transforms of f (t), then the Laplace Transform of its integral is

Example:

1

!n

n

s

ntL

Page 27: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

27

Properties of Laplace Transform Properties of Laplace Transform

ds

sdFttfL

)()(

Frequency Differentiation

If F(s) is the Laplace Transforms of f (t), then the derivative with respect to s, is

Example:

2)(

1)(

astuteL at

Page 28: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

28

Properties of Laplace Transform Properties of Laplace Transform

)(lim)0( ssFfs

Initial and Final Values

The initial-value and final-value properties allow us to find the initial value f(0) and f(∞) of f(t) directly from its Laplace transform F(s).

Initial-value theorem

)(lim)(0

ssFfs

Final-value theorem

Page 29: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

29

The Inverse Laplace Transform The Inverse Laplace Transform

Suppose F(s) has the general form of

The finding the inverse Laplace transform of F(s) involves two steps:

1. Decompose F(s) into simple terms using partial fraction expansion.

2. Find the inverse of each term by matching entries in Laplace Transform Table.

polynomialr denominato)...(

polynomialrator ......nume)()(

sD

sNsF

Page 30: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

30

Example 1

Find the inverse Laplace transform of

Solution:

The Inverse Laplace TransformThe Inverse Laplace Transform

4

6

1

53)(

2

ssssF

0 t),()2sin(353(

4

6

1

53)(

2111

tute

sL

sL

sLtf

t

Page 31: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Partial Fraction ExpansionPartial Fraction Expansion

)6)(8(

)12)(5(96)(

sss

sssF

1) Distinct Real Roots of D(s)

s1= 0, s2= -8s3= -6

Page 32: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

1) Distinct Real Roots1) Distinct Real Roots

To find K1: multiply both sides by s and evaluates both sides at s=0

To find K2: multiply both sides by s+8 and evaluates both sides at s=-8

To find K3: multiply both sides by s+6 and evaluates both sides at s=-6

68)6)(8(

)12)(5(96)( 321

s

K

s

K

s

K

sss

sssF

Page 33: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Find KFind K11

120)6)(8(

)12)(5(961 K

0

3

0

21

068)6)(8(

)12)(5(96

ssss

sK

s

sKK

ss

ss

Page 34: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Find KFind K22

72)2)(8(

)4)(3(962

K

8

32

8

1

8)6(

)8(

)6(

)8(

)6(

)12)(5(96

sssss

sKK

ss

sK

ss

ss

Page 35: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Find KFind K33

48)2)(6(

)6)(1(963

K

3

6

2

6

1

6)8(

)6(

)8(

)6(

)8(

)12)(5(96K

ss

sK

ss

sK

ss

ss

sss

Page 36: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Inverse Laplace of F(s)Inverse Laplace of F(s)

)(4872120)(

6

48

8

72120

68

1

tueetf

sssL

tt

6

48

8

72120)(

ssssF

Page 37: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

2) Distinct Complex Roots 2) Distinct Complex Roots

)256)(6(

)3(100)(

2

sss

ssF

S1 = -6 S2 = -3+j4 S3 = -3-j4

Page 38: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Partial Fraction ExpansionPartial Fraction Expansion

43436

43436

)256)(6(

)3(100)(

221

321

2

js

K

js

K

s

K

js

K

js

K

s

K

sss

ssF

Complex roots appears in conjugate pairs.Complex roots appears in conjugate pairs.

Page 39: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Find KFind K11

1225

)3(100

256

)3(100

621

sss

sK

Page 40: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Find KFind K2 2 and Kand K22**

13.53

43

2

1086

)8)(43(

)4(100

)43)(6(

)3(100

j

js

ej

jj

j

jss

sK

13.5310862

jejK

Coefficients Coefficients associated associated

with with conjugate conjugate pairs are pairs are

themselves themselves conjugates.conjugates.

Page 41: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Inverse Laplace of F(s)Inverse Laplace of F(s)

43

13.5310

43

13.5310

6

12

)256)(6(

)3(100)(

2

jsjss

sss

ssF

Page 42: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Inverse Laplace of F(s)Inverse Laplace of F(s)

)(10

1012

43

10

43

10

6

12

)43(13.53

)43(13.536

13.5313.531

tuee

eee

js

e

js

e

sL

tjj

tjjt

jj

Page 43: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Useful Transform PairsUseful Transform Pairs

)()1 tuKeas

K at

)()(

)22

tuKteas

K at

)()cos(2)3 tuteKjs

K

js

K t

)()cos(2)()(

)422

tuteKtjs

K

js

K t

Page 44: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

44

• Given two functions, f1(t) and f2(t) with Laplace Transforms F1(s) and F2(s), respectively

• It is defined as

The Convolution Integral The Convolution Integral

tt ethety 25)( and 4)(

0 t),(201

4

2

5)()()(*)( 211

tt eess

LsXsHLtxth

)(*)()()( 2121 tftfLsFsF

• Example:

)(*)()(or )()()( thtxtydthxty

Page 45: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Operational Operational

TransformTransform

Page 46: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Operational TransformsOperational Transforms

Indicate how mathematical operations performed on either f(t) or F(s) are converted into the opposite domain.

The operations of primary interest are:1. Multiplying by a constant2. Addition/subtraction3. Differentiation4. Integration5. Translation in the time domain6. Translation in the frequency domain7. Scale changing

Page 47: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

OPERATION f(t) F(s)

Multiplication by a constantAddition/SubtractionFirst derivative (time)Second derivative (time)

)(tKf )(sKF

)()()( 321 tftftf )()()( 321 sFsFsF

dttdf )(

2

2 )(dt

tddt

dfsfsFs )0()0()(2

)0()( fssF

Page 48: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

OPERATION f(t) F(s)

n th derivative (time)

Time integral

Translation in timeTranslation in frequency

n

n

dttd )(

1

123

21

)0()0(

)0()0()(

n

nn

nnn

dtdf

dtdfs

dtdfsfssFs

t

dxxf0

)(s

sF )(

0

),()(

a

atuatf

)(tfe at

)(sFe as

)( asF

Page 49: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

OPERATION f(t) F(s)

Scale changing

First derivative (s)

n th derivative

s integral

0),( aatf asFa1

dssdF )()(ttf

s

duuF )(ttf )(

)(tft n n

nn

dssFd )()1(

Page 50: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Translation in time domainTranslation in time domain

)()( tutfIf we start with any function:

we can represent the same function translated in time by the constant a, as:

In frequency domain:

)()( atuatf

)()()( sFeatuatf as

Page 51: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Ex:Ex:

21)(s

ttuL

2)()(s

eatuatLas

Page 52: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Translation in frequency Translation in frequency domaindomain

Translation in the frequency domain is defined as:

)()( asFtfeL at

Page 53: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Ex:Ex:

22

cos

s

stL

22)(

cos

as

asteL at

Page 54: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Ex:Ex:

1

cos2

s

stL

222 1)(

1cos

s

s

s

stL

Page 55: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

APPLICATIONAPPLICATION

dcI

0t

R CL

)(tv

Page 56: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

ProblemProblemAssumed no initial energy is

stored in the circuit at the instant when the switch is opened.

Find the time domain expression for v(t) when t≥0.

Page 57: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Integrodifferential EquationIntegrodifferential Equation

A single node voltage equation:

)()(

)(1)(

lglg

0

tuIdt

tdvCdxxv

LR

tv

KCLIaIa

dc

t

outin

Page 58: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

s-domain transformations-domain transformation

sIvssVCs

sV

LR

sVdc

1)0()()(1)(

)()(

)(1)(

0

tuIdt

tdvCdxxv

LR

tvdc

t

s

IsC

sLRsV dc

11)(

=0

Page 59: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

)()( 1 sVLtv

)1()1()(

2 LCsRCsC

I

sVdc

Page 60: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

ExEx

Obtain the Laplace transform for the function below:

0 1 2 3

t

2

h(t)

4 5

Page 61: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Find the expression of f(t):Find the expression of f(t):

Expression for the ramp function with slope, m =2 and period, T=2:

For a periodic ramp function, we can write:

ttf 2)(1

)1()(2)(1 tututtf

Page 62: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Expanding:Expanding:

)1(2)(2

)1()(2)(1

ttuttu

tututtf

Different time occurred:Different time occurred:t=0t=0 and and t=1t=1

Page 63: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Equal time shift:Equal time shift:

)1(2)1()1(2)(2)(

)1()11(2)(2

)1(2)(2

)1()(2)(

1

1

tututttutf

tutttu

ttuttu

tututtf

Page 64: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Inverse Laplace using Inverse Laplace using translation in time property:translation in time property:

ss

ss

sees

s

e

s

e

ssF

tututttutf

12

222

)(

)1(2)1()1(2)(2)(

2

221

1

Page 65: 1 EKT919 ELECTRIC CIRCUIT II Chapter 2 Laplace Transform

Time periodicity property:Time periodicity property:

sss

Ts

seees

e

sFsF

1)1(

21

)()(

22

1

Tse

sFsFnTtftf

1

)()()()( 1