1 dc/ac iping wang, minjie chen cdc/ac li l c i ac/dc i c l i c i power electronics...

1
max o Towards Power FPGA: Architecture, Modeling and Control of Multiport Power Converters Ping Wang, Minjie Chen Power Electronics Research Lab, Princeton University Background & Motivation Power Rating & Convergence Analysis Control Framework V 1 V 2 y 12 I 1 I 2 y 1n y 2n V n I n V 3 , , V n-1 y 1 y n y 2 V 1 V 2 C 1 L 12 C 2 I 1 I 2 L 1n L 2n V n C n I n V 3 , , V n-1 V 1 V 2 V n C 1 L 1 C n L n C 2 L 2 L m I 1 I 2 I n Fig. 1: Energy system with numerous modular power converters. Future applications need multiport power converters Equivalent circuit of the multi-winding transformer Control framework Fig. 4: Equivalent circuit. Fig. 5: Control framework. (a) Star model (b) Inductor Delta model (c) Impedance Delta model Power rating of the multiport converters Convergence analysis Fig. 6: Power rating analysis. Fig. 7: Convergence analysis. Maximal and minimal power in trapezoidal mode Maximal and minimal power in resonant mode If C i is very large: trapezoidal mode, If C i resonates with L i : resonant mode, V 1 V 2 V 3 DC/AC DC/AC DC/AC AC/DC V BUF Circuit Topology for Multiport Converters Multi-stage v.s. single-stage multiport converters Number of Devices Multi-stage Single-stage Benefits Dc-ac cells 6 4 33% size/cost reduction Transformers 3 1 66% size/cost reduction Dc-ac-dc stages 2 1 50% loss reduction Fig. 2: (a) Multi-stage dc-ac-dc; (b) single-stage dc-ac-dc. (a) (b) Circuit topology of a generalized multiport power converter V 1 C 1 L 1 Port 1 V 2 C 2 L 2 Port 2 V n C n L n Port n V 3 C 3 L 3 Port 3 Fig. 3: Example topology of a multiport power converter. Experimental Results Experimental results of three cases Power (w) Port 1 Port 2 Port 3 Port 4 Case I Target -30.00 0.00 30.00 0.00 Trapezoidal -27.25 0.9 32.4 0.6 Resonant -27.90 0.30 30.90 0.90 Case II Target -30.00 10.00 20.00 0.00 Trapezoidal -27.67 10.8 21.3 0.6 Resonant -27.40 9.30 20.40 0.90 Case III Target -30.00 5.00 10.00 15.00 Trapezoidal -27.83 5.1 11.4 15.6 Resonant -27.23 4.80 9.90 15.30 Three example cases Fig. 11: Experimental setup. Fig. 12: Experimental waveforms. Passive Network Port 1 Port 2 Port 3 Port 4 10W 20W Passive Network Port 1 Port 2 Port 3 Port 4 5W 10W 15W Passive Network Port 1 Port 2 Port 3 Port 4 30W (a) Case I (b) Case II (c) Case III Fig. 13: Three typical power flow. Simulation Results Voltage (V) Voltage (V) Voltage (V) Voltage (V) Current (A) Current (A) Current (A) Current (A) Time (us) Voltage (V) Voltage (V) Voltage (V) Voltage (V) Current (A) Current (A) Current (A) Current (A) Time (us) f: 500000 Delay: -1.332E-07 L1 L: 1e-6 R1 R: 3e-3 Half Bridge1 + - PWM f: 500000 Delay: -2.464E-08 L2 L: 1e-6 R2 R: 3e-3 Half Bridge2 + - PWM f: 500000 Delay: 5.087E-08 L3 L: 1e-6 R3 R: 3e-3 Half Bridge3 + - PWM f: 500000 Delay: 1.04E-07 L4 L: 1e-6 R4 R: 3e-3 Half Bridge4 + - PWM f: 500000 Delay: -2.464E-08 L5 L: 1e-6 R5 R: 3e-3 Half Bridge5 + - PWM f: 500000 Delay: -1.962E-08 L6 L: 1e-6 R6 R: 3e-3 Half Bridge6 + - PWM f: 500000 Delay: -4.588E-09 L7 L: 1e-6 R7 R: 3e-3 Half Bridge7 + - PWM f: 500000 Delay: 5.087E-08 L8 L: 1e-6 R8 R: 3e-3 Half Bridge8 + - PWM f: 500000 Delay: -7.639E-08 L9 L: 1e-6 R9 R: 3e-3 Half Bridge9 + - PWM f: 500000 Delay: -2.464E-08 L10 L: 1e-6 R10 R: 3e-3 Half Bridge10 + - PWM f: 500000 Delay: 5.087E-08 L11 L: 1e-6 R11 R: 3e-3 Half Bridge11 + - PWM f: 500000 Delay: 5.087E-08 L12 L: 1e-6 R12 R: 3e-3 Half Bridge12 + - PWM f: 500000 Delay: -1.0393E-07 L13 L: 1e-6 R13 R: 3e-3 Half Bridge13 + - PWM f: 500000 Delay: -2.464E-08 L14 L: 1e-6 R14 R: 3e-3 Half Bridge14 + - PWM f: 500000 Delay: 5.087E-08 L15 L: 1e-6 R15 R: 3e-3 Half Bridge15 + - PWM f: 500000 Delay: 7.6789E-08 L16 L: 1e-6 R16 R: 3e-3 Half Bridge16 + - PWM f: 500000 Delay: -5.0094E-08 L17 L: 1e-6 R17 R: 3e-3 Half Bridge17 + - PWM f: 500000 Delay: -7.6396E-08 L18 L: 1e-6 R18 R: 3e-3 Half Bridge18 + - PWM f: 500000 Delay: 5.087E-08 L19 L: 1e-6 R19 R: 3e-3 Half Bridge19 + - PWM f: 500000 Delay: 7.6789E-08 L20 L: 1e-6 R20 R: 3e-3 Half Bridge20 + - PWM f: 500000 Delay: -1.3933E-07 L21 L: 1e-6 R21 R: 3e-3 Half Bridge21 + - PWM f: 500000 Delay: -2.9682E-08 L22 L: 1e-6 R22 R: 3e-3 Half Bridge22 + - PWM f: 500000 Delay: 4.5788E-08 L23 L: 1e-6 R23 R: 3e-3 Half Bridge23 + - PWM f: 500000 Delay: 9.8460E-08 L24 L: 1e-6 R24 R: 3e-3 Half Bridge24 + - PWM f: 500000 Delay: -2.9682E-08 L25 L: 1e-6 R25 R: 3e-3 Half Bridge25 + - PWM Transformer C1 C: 10e-6 C2 C: 10e-6 C3 C: 10e-6 C4 C: 10e-6 C5 C: 10e-6 C6 C: 10e-6 C7 C: 10e-6 C8 C: 10e-6 C9 C: 10e-6 C10 C: 10e-6 C11 C: 10e-6 C12 C: 10e-6 C13 C: 10e-6 C14 C: 10e-6 C15 C: 10e-6 C16 C: 10e-6 C17 C: 10e-6 C18 C: 10e-6 C19 C: 10e-6 C20 C: 10e-6 C21 C: 10e-6 C22 C: 10e-6 C23 C: 10e-6 C24 C: 10e-6 C25 C: 10e-6 f: 500000 Delay: -2.464E-08 L26 L: 1e-6 R26 R: 3e-3 Half Bridge26 + - PWM f: 500000 Delay: -9.599E-09 L27 L: 1e-6 R27 R: 3e-3 Half Bridge27 + - PWM f: 500000 Delay: 4.579E-08 L28 L: 1e-6 R28 R: 3e-3 Half Bridge28 + - PWM f: 500000 Delay: -8.179E-08 L29 L: 1e-6 R29 R: 3e-3 Half Bridge29 + - PWM f: 500000 Delay: -2.968E-08 L30 L: 1e-6 R30 R: 3e-3 Half Bridge30 + - PWM f: 500000 Delay: 4.579E-08 L31 L: 1e-6 R31 R: 3e-3 Half Bridge31 + - PWM f: 500000 Delay: 4.579E-08 L32 L: 1e-6 R32 R: 3e-3 Half Bridge32 + - PWM f: 500000 Delay: -1.096E-07 L33 L: 1e-6 R33 R: 3e-3 Half Bridge33 + - PWM f: 500000 Delay: -2.968E-08 L34 L: 1e-6 R34 R: 3e-3 Half Bridge34 + - PWM f: 500000 Delay: 4.579E-08 L35 L: 1e-6 R35 R: 3e-3 Half Bridge35 + - PWM f: 500000 Delay: 7.152E-08 L36 L: 1e-6 R36 R: 3e-3 Half Bridge36 + - PWM f: 500000 Delay: -5.528E-08 L37 L: 1e-6 R37 R: 3e-3 Half Bridge37 + - PWM f: 500000 Delay: -8.179E-08 L38 L: 1e-6 R38 R: 3e-3 Half Bridge38 + - PWM f: 500000 Delay: 4.579E-08 L39 L: 1e-6 R39 R: 3e-3 Half Bridge39 + - PWM f: 500000 Delay: 7.152E-08 L40 L: 1e-6 R40 R: 3e-3 Half Bridge40 + - PWM f: 500000 Delay: -1.272E-07 L41 L: 1e-6 R41 R: 3e-3 Half Bridge41 + - PWM f: 500000 Delay: -1.962E-08 L42 L: 1e-6 R42 R: 3e-3 Half Bridge42 + - PWM f: 500000 Delay: 5.598E-08 L43 L: 1e-6 R43 R: 3e-3 Half Bridge43 + - PWM f: 500000 Delay: 1.097E-07 L44 L: 1e-6 R44 R: 3e-3 Half Bridge44 + - PWM f: 500000 Delay: -1.962E-08 L45 L: 1e-6 R45 R: 3e-3 Half Bridge45 + - PWM f: 500000 Delay: -1.461E-08 L46 L: 1e-6 R46 R: 3e-3 Half Bridge46 + - PWM f: 500000 Delay: 4.251E-10 L47 L: 1e-6 R47 R: 3e-3 Half Bridge47 + - PWM f: 500000 Delay: 5.598E-08 L48 L: 1e-6 R48 R: 3e-3 Half Bridge48 + - PWM f: 500000 Delay: -7.105E-08 L49 L: 1e-6 R49 R: 3e-3 Half Bridge49 + - PWM f: 500000 Delay: -1.962E-08 L50 L: 1e-6 R50 R: 3e-3 Half Bridge50 + - PWM C26 C: 10e-6 C27 C: 10e-6 C28 C: 10e-6 C29 C: 10e-6 C30 C: 10e-6 C31 C: 10e-6 C32 C: 10e-6 C33 C: 10e-6 C34 C: 10e-6 C35 C: 10e-6 C36 C: 10e-6 C37 C: 10e-6 C38 C: 10e-6 C39 C: 10e-6 C40 C: 10e-6 C41 C: 10e-6 C42 C: 10e-6 C43 C: 10e-6 C44 C: 10e-6 C45 C: 10e-6 C46 C: 10e-6 C47 C: 10e-6 C48 C: 10e-6 C49 C: 10e-6 C50 C: 10e-6 f: 500000 Delay: 5.598E-08 L51 L: 1e-6 R51 R: 3e-3 Half Bridge51 + - PWM f: 500000 Delay: 5.598E-08 L52 L: 1e-6 R52 R: 3e-3 Half Bridge52 + - PWM f: 500000 Delay: -9.830E-08 L53 L: 1e-6 R53 R: 3e-3 Half Bridge53 + - PWM f: 500000 Delay: -1.962E-08 L54 L: 1e-6 R54 R: 3e-3 Half Bridge54 + - PWM f: 500000 Delay: 5.598E-08 L55 L: 1e-6 R55 R: 3e-3 Half Bridge55 + - PWM f: 500000 Delay: 8.211E-08 L56 L: 1e-6 R56 R: 3e-3 Half Bridge56 + - PWM f: 500000 Delay: -4.495E-08 L57 L: 1e-6 R57 R: 3e-3 Half Bridge57 + - PWM f: 500000 Delay: -7.105E-08 L58 L: 1e-6 R58 R: 3e-3 Half Bridge58 + - PWM f: 500000 Delay: 5.598E-08 L59 L: 1e-6 R59 R: 3e-3 Half Bridge59 + - PWM f: 500000 Delay: 8.211E-08 L60 L: 1e-6 R60 R: 3e-3 Half Bridge60 + - PWM f: 500000 Delay: -1.456E-07 L61 L: 1e-6 R61 R: 3e-3 Half Bridge61 + - PWM f: 500000 Delay: -3.474E-08 L62 L: 1e-6 R62 R: 3e-3 Half Bridge62 + - PWM f: 500000 Delay: 4.072E-08 L63 L: 1e-6 R63 R: 3e-3 Half Bridge63 + - PWM f: 500000 Delay: 9.295E-08 L64 L: 1e-6 R64 R: 3e-3 Half Bridge64 + - PWM f: 500000 Delay: -3.474E-08 L65 L: 1e-6 R65 R: 3e-3 Half Bridge65 + - PWM f: 500000 Delay: -2.968E-08 L66 L: 1e-6 R66 R: 3e-3 Half Bridge66 + - PWM f: 500000 Delay: -1.461E-08 L67 L: 1e-6 R67 R: 3e-3 Half Bridge67 + - PWM f: 500000 Delay: 4.072E-08 L68 L: 1e-6 R68 R: 3e-3 Half Bridge68 + - PWM f: 500000 Delay: -8.723E-08 L69 L: 1e-6 R69 R: 3e-3 Half Bridge69 + - PWM f: 500000 Delay: -3.474E-08 L70 L: 1e-6 R70 R: 3e-3 Half Bridge70 + - PWM f: 500000 Delay: 4.072E-08 L71 L: 1e-6 R71 R: 3e-3 Half Bridge71 + - PWM f: 500000 Delay: 4.072E-08 L72 L: 1e-6 R72 R: 3e-3 Half Bridge72 + - PWM f: 500000 Delay: -1.154E-07 L73 L: 1e-6 R73 R: 3e-3 Half Bridge73 + - PWM f: 500000 Delay: -3.474E-08 L74 L: 1e-6 R74 R: 3e-3 Half Bridge74 + - PWM f: 500000 Delay: 4.072E-08 L75 L: 1e-6 R75 R: 3e-3 Half Bridge75 + - PWM C51 C: 10e-6 C52 C: 10e-6 C53 C: 10e-6 C54 C: 10e-6 C55 C: 10e-6 C56 C: 10e-6 C57 C: 10e-6 C58 C: 10e-6 C59 C: 10e-6 C60 C: 10e-6 C61 C: 10e-6 C62 C: 10e-6 C63 C: 10e-6 C64 C: 10e-6 C65 C: 10e-6 C66 C: 10e-6 C67 C: 10e-6 C68 C: 10e-6 C69 C: 10e-6 C70 C: 10e-6 C71 C: 10e-6 C72 C: 10e-6 C73 C: 10e-6 C74 C: 10e-6 C75 C: 10e-6 f: 500000 Delay: 6.629E-08 L76 L: 1e-6 R76 R: 3e-3 Half Bridge76 + - PWM f: 500000 Delay: -6.050E-08 L77 L: 1e-6 R77 R: 3e-3 Half Bridge77 + - PWM f: 500000 Delay: -8.723E-08 L78 L: 1e-6 R78 R: 3e-3 Half Bridge78 + - PWM f: 500000 Delay: 4.072E-08 L79 L: 1e-6 R79 R: 3e-3 Half Bridge79 + - PWM f: 500000 Delay: 6.629E-08 L80 L: 1e-6 R80 R: 3e-3 Half Bridge80 + - PWM f: 500000 Delay: -1.212E-07 L81 L: 1e-6 R81 R: 3e-3 Half Bridge81 + - PWM f: 500000 Delay: -1.461E-08 L82 L: 1e-6 R82 R: 3e-3 Half Bridge82 + - PWM f: 500000 Delay: 6.112E-08 L83 L: 1e-6 R83 R: 3e-3 Half Bridge83 + - PWM f: 500000 Delay: 1.154E-07 L84 L: 1e-6 R84 R: 3e-3 Half Bridge84 + - PWM f: 500000 Delay: -1.461E-08 L85 L: 1e-6 R85 R: 3e-3 Half Bridge85 + - PWM f: 500000 Delay: -9.599E-09 L86 L: 1e-6 R86 R: 3e-3 Half Bridge86 + - PWM f: 500000 Delay: 5.443E-09 L87 L: 1e-6 R87 R: 3e-3 Half Bridge87 + - PWM f: 500000 Delay: 6.112E-08 L88 L: 1e-6 R88 R: 3e-3 Half Bridge88 + - PWM f: 500000 Delay: -6.575E-08 L89 L: 1e-6 R89 R: 3e-3 Half Bridge89 + - PWM f: 500000 Delay: -1.461E-08 L90 L: 1e-6 R90 R: 3e-3 Half Bridge90 + - PWM f: 500000 Delay: 6.112E-08 L91 L: 1e-6 R91 R: 3e-3 Half Bridge91 + - PWM f: 500000 Delay: 6.112E-08 L92 L: 1e-6 R92 R: 3e-3 Half Bridge92 + - PWM f: 500000 Delay: -9.273E-08 L93 L: 1e-6 R93 R: 3e-3 Half Bridge93 + - PWM f: 500000 Delay: -1.461E-08 L94 L: 1e-6 R94 R: 3e-3 Half Bridge94 + - PWM f: 500000 Delay: 6.112E-08 L95 L: 1e-6 R95 R: 3e-3 Half Bridge95 + - PWM f: 500000 Delay: 8.750E-08 L96 L: 1e-6 R96 R: 3e-3 Half Bridge96 + - PWM f: 500000 Delay: -3.983E-08 L97 L: 1e-6 R97 R: 3e-3 Half Bridge97 + - PWM f: 500000 Delay: -6.575E-08 L98 L: 1e-6 R98 R: 3e-3 Half Bridge98 + - PWM f: 500000 Delay: 6.112E-08 L99 L: 1e-6 R99 R: 3e-3 Half Bridge99 + - PWM f: 500000 Delay: 8.750E-08 L100 L: 1e-6 R100 R: 3e-3 Half Bridge100 + - PWM C76 C: 10e-6 C77 C: 10e-6 C78 C: 10e-6 C79 C: 10e-6 C80 C: 10e-6 C81 C: 10e-6 C82 C: 10e-6 C83 C: 10e-6 C84 C: 10e-6 C85 C: 10e-6 C86 C: 10e-6 C87 C: 10e-6 C88 C: 10e-6 C89 C: 10e-6 C90 C: 10e-6 C91 C: 10e-6 C92 C: 10e-6 C93 C: 10e-6 C94 C: 10e-6 C95 C: 10e-6 C96 C: 10e-6 C97 C: 10e-6 C98 C: 10e-6 C99 C: 10e-6 C100 C: 10e-6 Simulation with 4 ports Simulation with 100 ports Fig. 8: Simulated waveforms. Fig. 9: 100-port “Power FPGA”. Fig. 10: 100-port power programming. V 1 V 2 V 3 V BUF DC/AC DC/AC DC/AC AC/DC AC/DC AC/DC Newton- Raphson Solver Port 1 Measured P i ,V i Port 2 Port n Passive Network PID Controller V i *, θ i * P i_ref, V i_ref V i_base , θ i_base ... P 1 P 2 P n = 1− = 8 2 =1 ( cos + sin ) 1 2 −1 = : −1 −1 1 2 −1 _ max = 4 _ min =− 4 = 8 2 _ max 2 + 2 ≥0 max = 8 2 V max G 2 +B 2 −V _ max G V _ max 8 2 σ V _ max G 2 +B 2 2 G 8 2 V max G 2 +B 2 −V _ max G V _ max =− 8 2 <0&− 2 ≤V _ max <0&− 2 >V _ max <0 min = 8 2 V max G 2 +B 2 +V _ max G V _ max 8 2 σ V _ max G 2 +B 2 2 G 8 2 V max G 2 +B 2 +V _ max G V _ max ≥0& 2 ≤V _ max ≥0& 2 >V _ max (a) Trapezoidal (b) Sinusoidal Solver tool in Github: https://github.com/PingWang3741/Multiport-Power-Converter.git (a) Trapezoidal (b) Sinusoidal Table II: Simulation & experimental results. Table II: Advantages of the single-stage architecture.

Upload: others

Post on 25-Jul-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 DC/AC IPing Wang, Minjie Chen CDC/AC LI L C I AC/DC I C L I C I Power Electronics …minjie/files/multiport_poster.pdf · 2018. 6. 22. · Power Electronics Research Lab, Princeton

max

o

Towards Power FPGA: Architecture, Modeling and Control of Multiport Power Converters

Ping Wang, Minjie Chen

Power Electronics Research Lab, Princeton University

Background & Motivation

Power Rating & Convergence Analysis

Control Framework

V1 V2

y12I1 I2

y1n

y2n

Vn

In

V3, , Vn-1

y1

yn

y2

V1 V2

C1 L12 C2I1 I2

L1n

L2n

Vn

Cn

In V3, , Vn-1

V1 V2

Vn

C1 L1

CnLn

C2L2

Lm

I1 I2

In

Fig. 1: Energy system with numerous modular power converters.

➢ Future applications need multiport power converters➢ Equivalent circuit of the multi-winding transformer

➢ Control framework

Fig. 4: Equivalent circuit.

Fig. 5: Control framework.

(a) Star model (b) Inductor Delta model (c) Impedance Delta model

➢ Power rating of the multiport converters

➢ Convergence analysis

Fig. 6: Power rating analysis.

Fig. 7: Convergence analysis.

▪ Maximal and minimal power in trapezoidal mode

▪ Maximal and minimal power in resonant mode

▪ If Ci is very large: trapezoidal mode,

▪ If Ci resonates with Li: resonant mode,

V1

V2

V3

DC/AC

DC/AC

DC/AC

AC/DCVBUF

Circuit Topology for Multiport Converters

➢ Multi-stage v.s. single-stage multiport converters

Number of Devices Multi-stage Single-stage Benefits

Dc-ac cells 6 4 33% size/cost reduction

Transformers 3 1 66% size/cost reduction

Dc-ac-dc stages 2 1 50% loss reduction

Fig. 2: (a) Multi-stage dc-ac-dc; (b) single-stage dc-ac-dc.

(a) (b)

➢ Circuit topology of a generalized multiport power converter

V1

C1 L1

Port 1

V2

C2 L2

Port 2

Vn

CnLn

Port n

V3

C3L3

Port 3

Fig. 3: Example topology of a multiport power converter.

Experimental Results

➢ Experimental results of three cases

Power (w) Port 1 Port 2 Port 3 Port 4

Case I

Target -30.00 0.00 30.00 0.00

Trapezoidal -27.25 0.9 32.4 0.6

Resonant -27.90 0.30 30.90 0.90

Case II

Target -30.00 10.00 20.00 0.00

Trapezoidal -27.67 10.8 21.3 0.6

Resonant -27.40 9.30 20.40 0.90

Case III

Target -30.00 5.00 10.00 15.00

Trapezoidal -27.83 5.1 11.4 15.6

Resonant -27.23 4.80 9.90 15.30

➢ Three example cases

Fig. 11: Experimental setup.

Fig. 12: Experimental waveforms.

Passive

Network

Port 1 Port 2

Port 3Port 4

10W

20W

Passive

Network

Port 1 Port 2

Port 3Port 4

5W

10W

15W

Passive

Network

Port 1 Port 2

Port 3Port 4

30W

(a) Case I

(b) Case II (c) Case III

Fig. 13: Three typical power flow.

Simulation Results

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Time (us)

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Vo

lta

ge

(V

)V

olt

ag

e (

V)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Cu

rre

nt

(A)

Time (us)

f: 500000Delay: -1.332E-07

L1L: 1e-6

R1R: 3e-3Half Bridge1

+-PWM

f: 500000Delay: -2.464E-08

L2L: 1e-6

R2R: 3e-3Half Bridge2

+-PWM

f: 500000Delay: 5.087E-08

L3L: 1e-6

R3R: 3e-3Half Bridge3

+-PWM

f: 500000Delay: 1.04E-07

L4L: 1e-6

R4R: 3e-3Half Bridge4

+-PWM

f: 500000Delay: -2.464E-08

L5L: 1e-6

R5R: 3e-3Half Bridge5

+-PWM

f: 500000Delay: -1.962E-08

L6L: 1e-6

R6R: 3e-3Half Bridge6

+-PWM

f: 500000Delay: -4.588E-09

L7L: 1e-6

R7R: 3e-3Half Bridge7

+-PWM

f: 500000Delay: 5.087E-08

L8L: 1e-6

R8R: 3e-3Half Bridge8

+-PWM

f: 500000Delay: -7.639E-08

L9L: 1e-6

R9R: 3e-3Half Bridge9

+-PWM

f: 500000Delay: -2.464E-08

L10L: 1e-6

R10R: 3e-3Half Bridge10

+-PWM

f: 500000Delay: 5.087E-08

L11L: 1e-6

R11R: 3e-3Half Bridge11

+-PWM

f: 500000Delay: 5.087E-08

L12L: 1e-6

R12R: 3e-3Half Bridge12

+-PWM

f: 500000Delay: -1.0393E-07

L13L: 1e-6

R13R: 3e-3Half Bridge13

+-PWM

f: 500000Delay: -2.464E-08

L14L: 1e-6

R14R: 3e-3Half Bridge14

+-PWM

f: 500000Delay: 5.087E-08

L15L: 1e-6

R15R: 3e-3Half Bridge15

+-PWM

f: 500000Delay: 7.6789E-08

L16L: 1e-6

R16R: 3e-3Half Bridge16

+-PWM

f: 500000Delay: -5.0094E-08

L17L: 1e-6

R17R: 3e-3Half Bridge17

+-PWM

f: 500000Delay: -7.6396E-08

L18L: 1e-6

R18R: 3e-3Half Bridge18

+-PWM

f: 500000Delay: 5.087E-08

L19L: 1e-6

R19R: 3e-3Half Bridge19

+-PWM

f: 500000Delay: 7.6789E-08

L20L: 1e-6

R20R: 3e-3Half Bridge20

+-PWM

f: 500000Delay: -1.3933E-07

L21L: 1e-6

R21R: 3e-3Half Bridge21

+-PWM

f: 500000Delay: -2.9682E-08

L22L: 1e-6

R22R: 3e-3Half Bridge22

+-PWM

f: 500000Delay: 4.5788E-08

L23L: 1e-6

R23R: 3e-3Half Bridge23

+-PWM

f: 500000Delay: 9.8460E-08

L24L: 1e-6

R24R: 3e-3Half Bridge24

+-PWM

f: 500000Delay: -2.9682E-08

L25L: 1e-6

R25R: 3e-3Half Bridge25

+-PWM

Transformer

C1C: 10e-6

C2C: 10e-6

C3C: 10e-6

C4C: 10e-6

C5C: 10e-6

C6C: 10e-6

C7C: 10e-6

C8C: 10e-6

C9C: 10e-6

C10C: 10e-6

C11C: 10e-6

C12C: 10e-6

C13C: 10e-6

C14C: 10e-6

C15C: 10e-6

C16C: 10e-6

C17C: 10e-6

C18C: 10e-6

C19C: 10e-6

C20C: 10e-6

C21C: 10e-6

C22C: 10e-6

C23C: 10e-6

C24C: 10e-6

C25C: 10e-6

f: 500000Delay: -2.464E-08

L26L: 1e-6

R26R: 3e-3 Half Bridge26

+- PWM

f: 500000Delay: -9.599E-09

L27L: 1e-6

R27R: 3e-3 Half Bridge27

+- PWM

f: 500000Delay: 4.579E-08

L28L: 1e-6

R28R: 3e-3 Half Bridge28

+- PWM

f: 500000Delay: -8.179E-08

L29L: 1e-6

R29R: 3e-3 Half Bridge29

+- PWM

f: 500000Delay: -2.968E-08

L30L: 1e-6

R30R: 3e-3 Half Bridge30

+- PWM

f: 500000Delay: 4.579E-08

L31L: 1e-6

R31R: 3e-3 Half Bridge31

+- PWM

f: 500000Delay: 4.579E-08

L32L: 1e-6

R32R: 3e-3 Half Bridge32

+- PWM

f: 500000Delay: -1.096E-07

L33L: 1e-6

R33R: 3e-3 Half Bridge33

+- PWM

f: 500000Delay: -2.968E-08

L34L: 1e-6

R34R: 3e-3 Half Bridge34

+- PWM

f: 500000Delay: 4.579E-08

L35L: 1e-6

R35R: 3e-3 Half Bridge35

+- PWM

f: 500000Delay: 7.152E-08

L36L: 1e-6

R36R: 3e-3 Half Bridge36

+- PWM

f: 500000Delay: -5.528E-08

L37L: 1e-6

R37R: 3e-3 Half Bridge37

+- PWM

f: 500000Delay: -8.179E-08

L38L: 1e-6

R38R: 3e-3 Half Bridge38

+- PWM

f: 500000Delay: 4.579E-08

L39L: 1e-6

R39R: 3e-3 Half Bridge39

+- PWM

f: 500000Delay: 7.152E-08

L40L: 1e-6

R40R: 3e-3 Half Bridge40

+- PWM

f: 500000Delay: -1.272E-07

L41L: 1e-6

R41R: 3e-3 Half Bridge41

+- PWM

f: 500000Delay: -1.962E-08

L42L: 1e-6

R42R: 3e-3 Half Bridge42

+- PWM

f: 500000Delay: 5.598E-08

L43L: 1e-6

R43R: 3e-3 Half Bridge43

+- PWM

f: 500000Delay: 1.097E-07

L44L: 1e-6

R44R: 3e-3 Half Bridge44

+- PWM

f: 500000Delay: -1.962E-08

L45L: 1e-6

R45R: 3e-3 Half Bridge45

+- PWM

f: 500000Delay: -1.461E-08

L46L: 1e-6

R46R: 3e-3 Half Bridge46

+- PWM

f: 500000Delay: 4.251E-10

L47L: 1e-6

R47R: 3e-3 Half Bridge47

+- PWM

f: 500000Delay: 5.598E-08

L48L: 1e-6

R48R: 3e-3 Half Bridge48

+- PWM

f: 500000Delay: -7.105E-08

L49L: 1e-6

R49R: 3e-3 Half Bridge49

+- PWM

f: 500000Delay: -1.962E-08

L50L: 1e-6

R50R: 3e-3 Half Bridge50

+- PWM

C26C: 10e-6

C27C: 10e-6

C28C: 10e-6

C29C: 10e-6

C30C: 10e-6

C31C: 10e-6

C32C: 10e-6

C33C: 10e-6

C34C: 10e-6

C35C: 10e-6

C36C: 10e-6

C37C: 10e-6

C38C: 10e-6

C39C: 10e-6

C40C: 10e-6

C41C: 10e-6

C42C: 10e-6

C43C: 10e-6

C44C: 10e-6

C45C: 10e-6

C46C: 10e-6

C47C: 10e-6

C48C: 10e-6

C49C: 10e-6

C50C: 10e-6

f: 500000Delay: 5.598E-08

L51L: 1e-6

R51R: 3e-3Half Bridge51

+-PWM

f: 500000Delay: 5.598E-08

L52L: 1e-6

R52R: 3e-3Half Bridge52

+-PWM

f: 500000Delay: -9.830E-08

L53L: 1e-6

R53R: 3e-3Half Bridge53

+-PWM

f: 500000Delay: -1.962E-08

L54L: 1e-6

R54R: 3e-3Half Bridge54

+-PWM

f: 500000Delay: 5.598E-08

L55L: 1e-6

R55R: 3e-3Half Bridge55

+-PWM

f: 500000Delay: 8.211E-08

L56L: 1e-6

R56R: 3e-3Half Bridge56

+-PWM

f: 500000Delay: -4.495E-08

L57L: 1e-6

R57R: 3e-3Half Bridge57

+-PWM

f: 500000Delay: -7.105E-08

L58L: 1e-6

R58R: 3e-3Half Bridge58

+-PWM

f: 500000Delay: 5.598E-08

L59L: 1e-6

R59R: 3e-3Half Bridge59

+-PWM

f: 500000Delay: 8.211E-08

L60L: 1e-6

R60R: 3e-3Half Bridge60

+-PWM

f: 500000Delay: -1.456E-07

L61L: 1e-6

R61R: 3e-3Half Bridge61

+-PWM

f: 500000Delay: -3.474E-08

L62L: 1e-6

R62R: 3e-3Half Bridge62

+-PWM

f: 500000Delay: 4.072E-08

L63L: 1e-6

R63R: 3e-3Half Bridge63

+-PWM

f: 500000Delay: 9.295E-08

L64L: 1e-6

R64R: 3e-3Half Bridge64

+-PWM

f: 500000Delay: -3.474E-08

L65L: 1e-6

R65R: 3e-3Half Bridge65

+-PWM

f: 500000Delay: -2.968E-08

L66L: 1e-6

R66R: 3e-3Half Bridge66

+-PWM

f: 500000Delay: -1.461E-08

L67L: 1e-6

R67R: 3e-3Half Bridge67

+-PWM

f: 500000Delay: 4.072E-08

L68L: 1e-6

R68R: 3e-3Half Bridge68

+-PWM

f: 500000Delay: -8.723E-08

L69L: 1e-6

R69R: 3e-3Half Bridge69

+-PWM

f: 500000Delay: -3.474E-08

L70L: 1e-6

R70R: 3e-3Half Bridge70

+-PWM

f: 500000Delay: 4.072E-08

L71L: 1e-6

R71R: 3e-3Half Bridge71

+-PWM

f: 500000Delay: 4.072E-08

L72L: 1e-6

R72R: 3e-3Half Bridge72

+-PWM

f: 500000Delay: -1.154E-07

L73L: 1e-6

R73R: 3e-3Half Bridge73

+-PWM

f: 500000Delay: -3.474E-08

L74L: 1e-6

R74R: 3e-3Half Bridge74

+-PWM

f: 500000Delay: 4.072E-08

L75L: 1e-6

R75R: 3e-3Half Bridge75

+-PWM

C51C: 10e-6

C52C: 10e-6

C53C: 10e-6

C54C: 10e-6

C55C: 10e-6

C56C: 10e-6

C57C: 10e-6

C58C: 10e-6

C59C: 10e-6

C60C: 10e-6

C61C: 10e-6

C62C: 10e-6

C63C: 10e-6

C64C: 10e-6

C65C: 10e-6

C66C: 10e-6

C67C: 10e-6

C68C: 10e-6

C69C: 10e-6

C70C: 10e-6

C71C: 10e-6

C72C: 10e-6

C73C: 10e-6

C74C: 10e-6

C75C: 10e-6

f: 500000Delay: 6.629E-08

L76L: 1e-6

R76R: 3e-3 Half Bridge76

+- PWM

f: 500000Delay: -6.050E-08

L77L: 1e-6

R77R: 3e-3 Half Bridge77

+- PWM

f: 500000Delay: -8.723E-08

L78L: 1e-6

R78R: 3e-3 Half Bridge78

+- PWM

f: 500000Delay: 4.072E-08

L79L: 1e-6

R79R: 3e-3 Half Bridge79

+- PWM

f: 500000Delay: 6.629E-08

L80L: 1e-6

R80R: 3e-3 Half Bridge80

+- PWM

f: 500000Delay: -1.212E-07

L81L: 1e-6

R81R: 3e-3 Half Bridge81

+- PWM

f: 500000Delay: -1.461E-08

L82L: 1e-6

R82R: 3e-3 Half Bridge82

+- PWM

f: 500000Delay: 6.112E-08

L83L: 1e-6

R83R: 3e-3 Half Bridge83

+- PWM

f: 500000Delay: 1.154E-07

L84L: 1e-6

R84R: 3e-3 Half Bridge84

+- PWM

f: 500000Delay: -1.461E-08

L85L: 1e-6

R85R: 3e-3 Half Bridge85

+- PWM

f: 500000Delay: -9.599E-09

L86L: 1e-6

R86R: 3e-3 Half Bridge86

+- PWM

f: 500000Delay: 5.443E-09

L87L: 1e-6

R87R: 3e-3 Half Bridge87

+- PWM

f: 500000Delay: 6.112E-08

L88L: 1e-6

R88R: 3e-3 Half Bridge88

+- PWM

f: 500000Delay: -6.575E-08

L89L: 1e-6

R89R: 3e-3 Half Bridge89

+- PWM

f: 500000Delay: -1.461E-08

L90L: 1e-6

R90R: 3e-3 Half Bridge90

+- PWM

f: 500000Delay: 6.112E-08

L91L: 1e-6

R91R: 3e-3 Half Bridge91

+- PWM

f: 500000Delay: 6.112E-08

L92L: 1e-6

R92R: 3e-3 Half Bridge92

+- PWM

f: 500000Delay: -9.273E-08

L93L: 1e-6

R93R: 3e-3 Half Bridge93

+- PWM

f: 500000Delay: -1.461E-08

L94L: 1e-6

R94R: 3e-3 Half Bridge94

+- PWM

f: 500000Delay: 6.112E-08

L95L: 1e-6

R95R: 3e-3 Half Bridge95

+- PWM

f: 500000Delay: 8.750E-08

L96L: 1e-6

R96R: 3e-3 Half Bridge96

+- PWM

f: 500000Delay: -3.983E-08

L97L: 1e-6

R97R: 3e-3 Half Bridge97

+- PWM

f: 500000Delay: -6.575E-08

L98L: 1e-6

R98R: 3e-3 Half Bridge98

+- PWM

f: 500000Delay: 6.112E-08

L99L: 1e-6

R99R: 3e-3 Half Bridge99

+- PWM

f: 500000Delay: 8.750E-08

L100L: 1e-6

R100R: 3e-3 Half Bridge100

+- PWM

C76C: 10e-6

C77C: 10e-6

C78C: 10e-6

C79C: 10e-6

C80C: 10e-6

C81C: 10e-6

C82C: 10e-6

C83C: 10e-6

C84C: 10e-6

C85C: 10e-6

C86C: 10e-6

C87C: 10e-6

C88C: 10e-6

C89C: 10e-6

C90C: 10e-6

C91C: 10e-6

C92C: 10e-6

C93C: 10e-6

C94C: 10e-6

C95C: 10e-6

C96C: 10e-6

C97C: 10e-6

C98C: 10e-6

C99C: 10e-6

C100C: 10e-6

➢ Simulation with 4 ports ➢ Simulation with 100 ports

Fig. 8: Simulated waveforms.

Fig. 9: 100-port “Power FPGA”.

Fig. 10: 100-port power programming.

V1

V2

V3

VBUF

DC/AC

DC/AC

DC/AC AC/DC

AC/DC

AC/DC

Newton-

Raphson Solver

Port 1

Measured Pi ,Vi

Port 2

Port n

Pa

ss

ive

Ne

two

rk

PID

Controller

Vi*, θi* Pi_ref,

Vi_ref

Vi_base ,

θi_base

...

P1

P2

Pn

𝑃𝑖 =

𝑘≠𝑖

𝑉𝑖𝑉𝑘𝜔𝐿𝑖𝑘

𝜙𝑖𝑘 1 −𝜙𝑖𝑘𝜋

𝑃𝑖 =8

𝜋2

𝑘=1

𝑛

𝑉𝑖𝑉𝑘(𝐺𝑖𝑘 cos𝜙𝑖𝑘 + 𝐵𝑖𝑘 sin𝜙𝑖𝑘)

𝑃1𝑃2⋮

𝑃𝑛−1

= 𝑓: 𝑅𝑛−1 → 𝑅𝑛−1

𝜙1𝜙2⋮

𝜙𝑛−1

𝑃𝑖_ max =𝜋

4

𝑘≠𝑖

𝑉𝑖𝑉𝑘𝜔𝐿𝑖𝑘

𝑃𝑖_ min = −𝜋

4

𝑘≠𝑖

𝑉𝑖𝑉𝑘𝜔𝐿𝑖𝑘

𝑏 =8

𝜋2

𝑘≠𝑖

𝑉𝑘_ max 𝐺𝑖𝑘2 + 𝐵𝑖𝑘

2

𝑎 ≥ 0

𝑃max =

8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 − V𝑖_ max G𝑖𝑘 V𝑖_ max

8

𝜋2

σ𝑘≠𝑖 V𝑘_ max G𝑖𝑘2 + B𝑖𝑘

2

2

4σ𝑘≠𝑖 G𝑖𝑘8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 − V𝑖_ max G𝑖𝑘 V𝑖_ max

𝑎 = −8

𝜋2

𝑘≠𝑖

𝐺𝑖𝑘

𝑎 < 0 & −𝑏

2𝑎≤ V𝑖_ max

𝑎 < 0 & −𝑏

2𝑎> V𝑖_ max

𝑎 < 0

𝑃min =

−8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 + V𝑖_ max G𝑖𝑘 V𝑖_ max

8

𝜋2

σ𝑘≠𝑖 V𝑘_ max G𝑖𝑘2 + B𝑖𝑘

2

2

4σ𝑘≠𝑖 G𝑖𝑘

−8

𝜋2

𝑘≠𝑖

V𝑘maxG𝑖𝑘2 + B𝑖𝑘

2 + V𝑖_ max G𝑖𝑘 V𝑖_ max

𝑎 ≥ 0 &𝑏

2𝑎≤ V𝑖_ max

𝑎 ≥ 0 &𝑏

2𝑎> V𝑖_ max

(a) Trapezoidal

(b) Sinusoidal▪ Solver tool in Github: https://github.com/PingWang3741/Multiport-Power-Converter.git

(a) Trapezoidal

(b) Sinusoidal

Table II: Simulation & experimental results.

Table II: Advantages of the single-stage architecture.