1 chapter 16 waves-i. 2 mechanical wave sound (f: 20hz ~ 20khz) water wave, ultrasound (f: 1mhz ~...

44
1 Chapter 16 Chapter 16 Waves-I Waves-I

Upload: ginger-francis

Post on 18-Jan-2016

225 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

11

Chapter 16Chapter 16

Waves-IWaves-I

Page 2: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

22

Mechanical Wave Mechanical Wave Sound (f: 20Hz ~ 20KHz)Sound (f: 20Hz ~ 20KHz) Water wave,Water wave,Ultrasound (f: 1MHz ~ 10MHz)Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating stringWave on a vibrating string

Electromagnetic WaveElectromagnetic Wave Radio wave Radio wave Micro Wave ( Micro Wave (0.10.1 ~ 30cm) ~ 30cm) Light ( Light (400400 ~700nm) ~700nm) X-ray ( X-ray (0.010.01 ~ 1nm) ~ 1nm)

Matter WaveWave

particle a of momentum:p

constant splanck':h ;

p

h

Page 3: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

33

WavesWaves Wave CharacteristicsWave Characteristics Mathematical Expression of Traveling WaveMathematical Expression of Traveling Wave

Pulse WavePulse Wave Harmonic WaveHarmonic Wave

Speed of a transverse wave on a stringSpeed of a transverse wave on a string longitudinal (sound) in a fluid longitudinal (sound) in a fluid

Energy TransportEnergy Transport Superposition of WavesSuperposition of Waves Reflection and TransmissionReflection and Transmission

(Boundary Problem) (Boundary Problem)

Page 4: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

44

Wave CharacteristicsWave Characteristics1)1) Definite speed (vDefinite speed (vww))

A: Amplitude A: Amplitude : Wave length: Wave length T: Period T: Period

2)2) Transport Energy (Not matter)Transport Energy (Not matter)

3)3) Particles of the medium moves Particles of the medium moves back and forthback and forth “or” “or” up and downup and down about their equilibrium point about their equilibrium point (For Mechanical Wave only)(For Mechanical Wave only)

Tff

Tvw

1 velocity Wave

Page 5: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

55

In a transverse wave, the displacement of every such oscillating element along the wave is perpendicular to the direction of travel of the wave, as indicated in Fig. 16-1.

In a longitudinal wave the motion ofthe oscillating particles is parallel to the direction of the wave’s travel, as shown in Fig. 16-2.

16.3 Transverse and Longitudinal Waves

Page 6: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

66

如何描述波函數 (Wave Function)

Page 7: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

77

Traveling PulseTraveling Pulse

( )y f x ae 2bx

x0

, v y x t F x t-v

2b(x vt )y(x, t) f (x, t) ae 2b(x vt)y(x, t) f (x, t) ae

The shape of the Pulse does not change with time.The shape of the Pulse does not change with time.

Page 8: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

88

如何描述 Harmonic Wave ( 諧波 ) 函數

Page 9: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

99

Harmonic WaveHarmonic Wavefv

0t

xyxy

Page 10: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1010

2 At time 0 ; sin

After time ; ,

2sin

sin 2

2 2sin sin

Ge , sinerally n

t y x F x A x

t y x t F x vt

A x vt

x tA

T

A x t A kx tT

y x t A k

k

x t

22 f

Tk ;

2

vT

Page 11: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1111

16.4 Wave variables

Page 12: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1212

16.4 The Speed of a Traveling Wave

If point A retains its displacement as it moves, the phase giving it that displacement mustremain a constant:

Page 13: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1313

0

22

2

At fixed point

S.H.M

x x

d yy

dt

0xx

Wave speed vT

0

0

22

02

sin ;

cos

sin

y A k x t

dyA kx t

dt

d yA kx t

dt

Proof :

Velocity of a particle of the medium

Page 14: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1414

Which of the following functions Which of the following functions represent traveling waves ?represent traveling waves ?

y( , ) = A cos( - )(b) tx t e kx t

2y( , ) = Asi( n - c) x t kx t

2

Ay( , ) =

B + ( 3a)

)(

-x t

x t

Page 15: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1515

2

20(a) y( , ) =

3 + ( - 3 ) x t

x t

y(x,t)

x

t=0t=2

t=5

Page 16: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1616

y( , ) =(b) 5 cos(3 - 3 )tx t e x t

t=0 t=1 t=2y(x,t)

x

y(x,t)

t

x=0

Page 17: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1717

2y( , ) = 5 sin - 3 (c) x t 3x t

t=0y(x,t)

x

t=1 t=2

Page 18: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1818

利用牛頓定律推導波動方程式利用牛頓定律推導波動方程式

The Wave EquationThe Wave Equation

Wave Speed on a Stretched String

Page 19: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

1919

x

y

Wave Speed on a Stretched String

Page 20: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2020

Θ

;

2 22 2x 2y

2y 2y

2x 2

F F F

F Ftan = sin =

F F

2 1F F F����������������������������

2y 2x

2 2x

If F F sin tan

F F

Page 21: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2121

x

y

x

dx

x+dx

y+dyyF=|F1|

F=|F2|

dyΘ(x+dx)

Θ(x)

F2y=FsinΘ(x+dx)

F1y=FsinΘ(x)

ay=d2y/dt2

; 2

2y 1y 2

d yF - F = Fsin (x + dx) - Fsin (x

Newton's

) = m m = d

2nd

xdt

Law

y

利用

方 向

2

2

Fsin (x + dx) - Fsin (x) d y=

dx dt

Page 22: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2222

2

2dx 0

sin (x + dx) - sin (x) d yF =

dx dtlim

2

2

d d yF sin (x) =

dx dt

For small vibration

y dysin (x) = tan (x) =

x dx

dx

dy

Θ(x)

2

2

d d yF =

dx

dy

dx dt

2

2

2

2 d y =Fd y

dx dt /

22

2

2

2

d d y

dx

y

dF =

t/ v

Page 23: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2323

The Wave EquationThe Wave Equation

2

2

2

2

2 2 22

2 2 2 2 2

y A

y Aty A

t

y Ax

y y yx t v t

si n ;

cos

2si n

同理2si n

1

kx t

kx t

kx t

k kx t

k

2 /

2

2 2 22

2

1 1

vk

f f

Page 24: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2424

0

22

2

At fixed point

S.H.M

x x

d yy

dt

0xx

Wave speed vT

0

0

22

02

sin ;

cos

sin

y A k x t

dyA kx t

dt

d yA kx t

dt

Proof :

Velocity of a particle of the medium

Page 25: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2525

16.6: Energy and Power of a Wave Traveling along a String

The average power, which is the average rate at which energy of both kinds (kinetic energy and elastic potential energy) is transmitted by the wave, is:

Page 26: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2626

15.2 Simple Harmonic Motion

In the figure snapshots of a simple oscillatory system is shown. A particle repeatedly moves back and forth about the point x=0.

The time taken for one complete oscillation is the period, T. In the time of one T, the system travels from x=+xm, to –xm, and then back to its original position xm.

The velocity vector arrows are scaled to indicate the magnitude of the speed of the system at different times. At x=±xm, the velocity is zero.

Page 27: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2727

Elastic potential energy

If the disturbance is small,

Page 28: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2828

2

22

= vF k

Page 29: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

2929

Page 30: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3030

Energy Transmitted by Harmonic Wave on Energy Transmitted by Harmonic Wave on stringstring

0

1

1

21 1

2

;

2

T

dtT

2

2

2 2

( )

v

0(x=x )在一固定空間點 的能量

2 2m

avg time a

0

2m

2 2m

verage

avgm

y cos kx - ωt dx

y d

dE dE

dE

d

x

dxy

tty

d

Page 31: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3131

16.6: Energy and Power of a Wave Traveling along a String

The average power, which is the average rate at which energy of both kinds (kinetic energy and elastic potential energy) is transmitted by the wave, is:

Page 32: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3232

HomeworkHomework

Chapter 16 ( page 438 )Chapter 16 ( page 438 )

9 , 21, 24, 25, 29, 31, 34, 46, 58, 599 , 21, 24, 25, 29, 31, 34, 46, 58, 59

Page 33: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3333

16.9: The Superposition of Waves

•Overlapping waves algebraically add to produce a resultant wave (or net wave).

•Overlapping waves do not in any way alter the travel of each other.

Page 34: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3434

16.9: Interference of Waves

If two sinusoidal waves of the same amplitude and wavelength travel in the same direction along a stretched string, they interfere to produce a resultant sinusoidal wave traveling in that direction.

1 2 1 2 1 2

1 1sin sin 2sin ( )cos ( )

2 2

Page 35: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3535

16.9: Interference of Waves

Page 36: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3636

16.9: Interference of Waves

Page 37: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3737

Superposition of two Harmonic WaveSuperposition of two Harmonic Wave

difference phase

h wavelengtsame the

frequency same the

amplitude same the

)sin(),(

)sin(),(

2

1

tKxAtxy

tKxAtxy

Page 38: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3838)! veStandingWa(

)2

cos()2

sin(2),(

)(2

1cos)(

2

1sin2sinsin

Applying

)sin()sin(

),(),(),(

212121

21

駐波

合成

合成

tKxAtxy

tKxAtKxA

txytxytxy

Page 39: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

3939

16.12: Standing Waves, Reflections at a Boundary

Page 40: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

4040

例例::

22

average time

22

2

2

1

Area

Power Intensity

)(sin4

)Amplitude(Intensity

)cos(

Amplitude

)sin(2),(

0

0),0( ; 0

AvI

KxA

tKxAtxy

txyx

駐波

Page 41: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

4141

Page 42: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

4242

2

33

23

22

2

2

11

21

...4,3,2,12

...4,3,2,2

02

sin

2

LL

n

LL

n

LL

n

nnL

L

L

k

2cos

2sin2

0sin

0,2

02

0sin

0,01

tkxAy

kL

tLxy

txy

合成

合成

合成

邊界條件

合成

合成

2...0

1...00

L,txy

,txy

Page 43: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

4343

16.12: Standing Waves

Page 44: 1 Chapter 16 Waves-I. 2  Mechanical Wave Sound (f: 20Hz ~ 20KHz) Water wave, Ultrasound (f: 1MHz ~ 10MHz) Wave on a vibrating string  Electromagnetic

4444

16.13: Standing Waves and Resonance

Fig. 16-19 Stroboscopic photographs reveal (imperfect) standing wave patterns on a string being made to oscillate by an oscillator at the left end. The patterns occur at certain frequencies of oscillation. (Richard Megna/Fundamental Photographs)

For certain frequencies, the interference produces a standing wave pattern(or oscillation mode) with nodes and large antinodes like those in Fig. 16-19.

Such a standing wave is said to be produced at resonance, and the string is said to resonate at these certain frequencies, called resonant frequencies.