1 chapter 1. three-phase system. 1.1: review of single-phase system the sinusoidal voltage v 1 (t) =...

90
1 Chapter 1. Three-Phase System

Post on 20-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

1

Chapter 1.

Three-Phase System

Page 2: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

1.1: Review of Single-Phase System

The Sinusoidal voltagev1(t) = Vm sin t

i

v1

Load

AC generator

v2

2

Page 3: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

3

1.1: Review of Single-Phase System

The Sinusoidal voltagev(t) = Vm sin t

whereVm = the amplitude of the sinusoid = the angular frequency in radian/s t = time

v(t)

Vm

-Vm

t

Page 4: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

4

v(t)

Vm

-Vm

t

2

TT

1f

f2The angular frequency in radians per second

Page 5: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

5

A more general expression for the sinusoid (as shown in the figure):

v2(t) = Vm sin (t + )

where is the phase

v(t)

Vm

-Vm

t

V1 = Vm sin t

V2 = Vm sin t + )

Page 6: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

6

A sinusoid can be expressed in either sine or cosine form. When comparing two sinusoids, it is expedient to express both as either sine or cosine with positive amplitudes.

We can transform a sinusoid from sine to cosine form or vice versa using this relationship:

sin (ωt ± 180o) = - sin ωt

cos (ωt ± 180o) = - cos ωt

sin (ωt ± 90o) = ± cos ωt

cos (ωt ± 90o) = + sin ωt

Page 7: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

7

Sinusoids are easily expressed in terms of phasors. A phasor is a complex number that represents the amplitude and phase of a sinusoid.

v(t) = Vm cos (ωt + θ)

Time domain Phasor domain

Time domain

mVV Phasor domain

)cos( tVm mV

)sin( tVm

om 90V

)cos( tmI mI

)sin( tmIo

m 90I

Page 8: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

8

Time domain

Phasor domain

v(t)

Vm

-Vm

t

V1 = Vm sin t

V2 = Vm sin t + )

θ

V1

V2

v2(t) = Vm sin (t + )

v1(t) = Vm sint

mVV2

01 mVV

or

or 01 rmsVV

rmsVV2

Page 9: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

9

1.1.1: Instantaneous and Average Power

The instantaneous power is the power at any instant of time.

p(t) = v(t) i(t)

Where v(t) = Vm cos (t + v) i(t) = Im cos (t + i)

Using the trigonometric identity, gives

)cos()cos()( ivmmivmm t2IV2

1IV

2

1t p

Page 10: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

10

The average power is the average of the instantaneous power over one period.

T

dttpT

P0

)(1

)cos( ivmmIV2

1P

p(t)

t

)cos( ivmmIV2

1

mmIV2

1

Page 11: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

11

The effective value is the root mean square (rms) of the periodic signal.The average power in terms of the rms values is

Where

)cos( ivP rmsrmsIV

2

VV m

rms

2

II m

rms

Page 12: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

12

1.1.2: Apparent Power, Reactive Power and Power Factor

The apparent power is the product of the rms values of voltage and current.

The reactive power is a measure of the energy exchange between the source and the load reactive part.

rmsrmsIVS

)sin( ivQ rmsrmsIV

Page 13: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

13

The power factor is the cosine of the phase difference between voltage and current.

The complex power:

)cos( ivfactor Power S

P

iv

jQP

rmsrms IV

Page 14: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

14

1.2: Three-Phase System

In a three phase system the source consists of three sinusoidal voltages. For a balanced source, the three sources have equal magnitudes and are phase displaced from one another by 120 electrical degrees.

A three-phase system is superior economically and advantage, and for an operating of view, to a single-phase system. In a balanced three phase system the power delivered to the load is constant at all times, whereas in a single-phase system the power pulsates with time.

Page 15: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

15

1.3: Generation of Three-Phase

Three separate windings or coils with terminals R-R’, Y-Y’ and B-B’ are physically placed 120o apart around the stator.

Y’

BY

B’

Stator

Rotor

Y

R

B

R

R’

N

S

Page 16: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

16

V or v is generally represented a voltage, but to differentiate the emf voltage of generator from voltage drop in a circuit, it is convenient to use e or E for induced (emf) voltage.

Page 17: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

1717

v(t)

t

vR

vY vB

The instantaneous e.m.f. generated in phase R, Y and B:

eR = EmR sin t

eY = EmY sin (t -120o)

eB = EmB sin (t -240o) = EmBsin (t +120o)

Page 18: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

IN

18

Page 19: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

The instantaneous e.m.f. generated in phase R, Y and B:

eR = EmR sin ωt

eY = EmY sin (ωt -120o)

eB = EmB sin (ωt -240o) = EmBsin (ωt +120o)

In phasor domain:

ER = ERrms

0o

EY = EYrms

-120o

EB = EBrms

120o

Phase voltagePhase voltage

120o

-120o

0o

ERrms = EYrms = EBrms = Ep ERrms = EYrms = EBrms = Ep Magnitude of phase voltage19

Page 20: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

IN

Line voltageLine voltage

ERY

ERY = ER - EYERY = ER - EY

Page 21: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

21

Line voltageLine voltage

ERY = ER - EYERY = ER - EY

120o

-120o

0o

-EY

ERY= Ep 0o - Ep -120o

= 1.732Ep

ERY

30o= √3 Ep

= EL 30o

30o

Page 22: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

IN

Line voltageLine voltage

EYB

EYB = EY - EBEYB = EY - EB

Page 23: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

Line voltageLine voltage

EYB = EY - EBEYB = EY - EB

120o

-120o

0o

-EB

EYB

= Ep -120o - Ep120o

= 1.732Ep

EYB

-90o

-90o= √3 Ep

= EL -90o

Page 24: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

IN

Line voltageLine voltage

EBR

EBR = EB - EREBR = EB - ER

Page 25: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

2525

Line voltageLine voltage

EBR = EB - EREBR = EB - ER

120o

-120o

0o

-ER

EBR

= Ep 120o- Ep 0o

= 1.732Ep

EBR

150o

150o= √3 Ep

= EL 150o

For star connected supply, EL= √3 Ep

Page 26: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

26

120o

-120o

0o

Phase voltagesPhase voltages

ER = Ep

0o

EY = Ep

-120o

EB = Ep

120o

Line voltagesLine voltages

ERY = EL 30o

EYB = EL -90o

EBR = EL 150o

It can be seen that the phase voltage ER is reference.

Page 27: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

2727

Phase voltagesPhase voltages

ER = Ep

-30o

EY = Ep

-150o

EB = Ep

90o

Line voltagesLine voltages

ERY = EL 0o

EYB = EL -120o

EBR = EL 120o

Or we can take the line voltage ERY as reference.

Page 28: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

ERY

Delta connected Three-Phase supply

ERY= ER = Ep 0o

Page 29: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

EYB

EBR

For delta connected supply, EL= Ep

Delta connected Three-Phase supply

Page 30: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

30

Connection in Three Phase System

4-wire system (neutral line with impedance)

3-wire system (no neutral line )

4-wire system (neutral line without impedance)

Star-Connected Balanced Loads a) 4-wire system b) 3-wire system

3-wire system (no neutral line ), delta connected load

Delta-Connected Balanced Loads a) 3-wire system

Page 31: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

INZN

VN

4-wire system (neutral line with impedance)

VN = INZNVN = INZNVoltage drop across neutral impedance:

1.1

Page 32: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

INZN

VN

4-wire system (neutral line with impedance)

IR + IY + IB= IN

Applying KCL at star pointApplying KCL at star point

1.2

Page 33: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

INZN

VN

4-wire system (neutral line with impedance)

Applying KVL on R-phase loopApplying KVL on R-phase loop

33

Page 34: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

IR

VR ZR

INZN

VN

Applying KVL on R-phase loopApplying KVL on R-phase loop

ER – VR – VN = 0

ER – IRZR – VN = 0

IR = Thus ER – VN

ZR

1.3

4-wire system (neutral line with impedance)

34

Page 35: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

35

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

INZN

VN

4-wire system (neutral line with impedance)

Applying KVL on Y-phase loopApplying KVL on Y-phase loop

Page 36: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

36Three-phase

Load

Three-phase AC generator

VYEY

IY

ZY

INZN

VN

Applying KVL on Y-phase loopApplying KVL on Y-phase loop

4-wire system (neutral line with impedance)

EY – VY – VN = 0

EY – IYZY – VN = 0IY =

Thus EY – VN

ZY

1.4

Page 37: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

Three-phase Load

Three-phase AC generator

EB

IB

ZB

VB

INZN

VN

4-wire system (neutral line with impedance)

Applying KVL on B-phase loopApplying KVL on B-phase loop

EB – VB – VN = 0

EB – IBZB – VN = 0IB =

Thus EB – VN

ZB

1.5

37

Page 38: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

38

4-wire system (neutral line with impedance)

IR + IY + IB= IN

Substitute Eq. 1.2, Eq.1.3, Eq. 1.4 and Eq. 1.5 into Eq. 1.1:

=EB – VN

ZB

+ EY – VN

ZY

ER – VN

ZR

+ VN

ZN

ER – VN EY – VN + + EB – VN = VN

ZNZR ZR ZY ZY ZB ZB

ER

ZR

+ EY

ZY

+ EB

ZB

=1

ZN

+ 1

ZR

+ 1

ZY

VN + 1

ZB

Page 39: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

39

4-wire system (neutral line with impedance)

ER

ZR

+ EY

ZY

+ EB

ZB

=1

ZN

+ 1

ZR

+ 1

ZY

VN + 1

ZB

VN =

ER

ZR

+ EY

ZY

+ EB

ZB

1

ZN

+ 1

ZR

+ 1

ZY

+ 1

ZB

1.6

Page 40: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

4-wire system (neutral line with impedance)

VN =

ER

ZR

+ EY

ZY

+ EB

ZB

1

ZN

+ 1

ZR

+ 1

ZY

+ 1

ZB

1.6

VN is the voltage drop across neutral line impedance or the potential different between load star point and supply star point of three-phase system.

We have to determine the value of VN in order to find the values of currents and voltages of star connected loads of three-phase system. 40

Page 41: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

ZY= 2 Ω

IR

VR

EY

EB

ZR = 5 Ω

IY

IB

ZB = 10 Ω

VB

INZN =10 Ω

VN

Find the line currents IR ,IY and IB. Also find the neutral current IN.

EL = 415 volt

Page 42: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

INZN

VN

3-wire system (no neutral line )

Page 43: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

VN

3-wire system (no neutral line )

No neutral line = open circuit , ZN = ∞No neutral line = open circuit , ZN = ∞ 43

Page 44: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

44

VN =

ER

ZR

+ EY

ZY

+ EB

ZB

1

ZN

+ 1

ZR

+ 1

ZY

+ 1

ZB

1.6

3-wire system (no neutral line )

∞=ZN ∞

1

∞= 0

Page 45: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

45

VN =

ER

ZR

+ EY

ZY

+ EB

ZB

1

ZR

+ 1

ZY

+ 1

ZB

1.7

3-wire system (no neutral line )

Page 46: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

ZY= 2 Ω

IR

VR

EY

EB

ZR = 5 Ω

IY

IB

ZB = 10 Ω

VBVN

EL = 415 volt

Find the line currents IR ,IY and IB . Also find the voltages VR, VY and VB.

Page 47: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

3-wire system (no neutral line ),delta connected load

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IY

IB

ZB ZY

VB

Page 48: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

3-wire system (no neutral line ),delta connected load

ER

Three-phase Load

Three-phase AC generator

IR

EY

EB

IY

IB

VRY

ZRYZBR

ZYB

VYB

VBR

Ir

IbIy

Page 49: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

3-wire system (no neutral line ),delta connected load

ER

Three-phase Load

Three-phase AC generator

IR

EY

EB

IY

IB

VRY

ZRYZBR

ZYB

VYB

VBR

Ir

IbIy

ERY=VRY

EYB =VYB

EBR =VBR

Page 50: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

50

3-wire system (no neutral line ),delta connected load

Phase currentsPhase currents

30o

Ir = VRY

ZRY

=ERY

ZRY

=EL

ZRY

-90o

Iy = VYB

ZYB

=EYB

ZYB

=EL

ZYB

150o

Ib = VBR

ZBR

=EBR

ZBR

=EL

ZBR

Page 51: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

3-wire system (no neutral line ),delta connected load

ER

Three-phase Load

Three-phase AC generator

IR

EY

EB

IY

IB

VRY

ZRYZBR

ZYB

VYB

VBR

Ir

IbIy

ERY=VRY

EYB =VYB

EBR =VBR

Line currentsLine currents

IR = Ir Ib -

= EL

ZRY

30o- 150oEL

ZBR

IY = Iy Ir -

= EL

ZYB

-90o- 30oEL

ZRY

Page 52: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

3-wire system (no neutral line ),delta connected load

ER

Three-phase Load

Three-phase AC generator

IR

EY

EB

IY

IB

VRY

ZRYZBR

ZYB

VYB

VBR

Ir

IbIy

ERY=VRY

EYB =VYB

EBR =VBR

Line currentsLine currents

IB = Ib Iy -

= EL

ZBR

150o- -90oEL

ZYB

Page 53: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ZRYZBR

ZYB

ZR

ZB

ZY

Star to delta conversion

ZRY = ZRZY + ZYZB + ZBZR

ZB

ZYB = ZRZY + ZYZB + ZBZR

ZR

ZBR = ZRZY + ZYZB + ZBZR

ZY

Page 54: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

ZY= 2 Ω

IR

VR

EY

EB

ZR = 5 Ω

IY

IB

ZB = 10 Ω

VBVN

Find the line currents IR ,IY and IB .

EL = 415 volt

Use star-delta conversion.

Page 55: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ER

Three-phase Load

Three-phase AC generator

VY

IR

VR

EY

EB

ZR

IR

IB

ZB ZY

VB

INZN

VN

4-wire system (neutral line without impedance)

= 0 Ω

VN = INZN = IN(0) = 0 voltVN = INZN = IN(0) = 0 volt 55

Page 56: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

56

4-wire system (neutral line without impedance)

For 4-wire three-phase system, VN is equal to 0, therefore Eq. 1.3, Eq. 1.4, and Eq. 1.5 become,

IB = EB

ZB

1.5EB – VN

IY = EY

ZY

1.4EY – VN

IR = ER

ZR

1.3ER – VN

Page 57: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

ZY= 2 Ω

IR

VR

EY

EB

ZR = 5 Ω

IY

IB

ZB = 10 Ω

VB

IN

VN

Find the line currents IR ,IY and IB . Also find the neutral current IN.

EL = 415 volt

Page 58: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

58

v(t)

t

vR

vY vB

The instantaneous e.m.f. generated in phase R, Y and B:

eR = EmR sin t

eY = EmY sin (t -120o)

eB = EmB sin (t -240o) = EmBsin (t +120o)

Page 59: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

59

1.4: Phase sequencesRYB and RBY

120o

-120o

120oVR

VY

VB

o

)rms(RR 0VV

o

)rms(YY 120VV

o

)rms(B

o

)rms(BB

120V

240VV

VR leads VY, which in turn leads VB.This sequence is produced when the rotor rotates in the counterclockwise direction.

(a) RYB or positive sequence

Page 60: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

60

(b) RBY or negative sequence

120o

-120o

120oVR

VB

VY

o

)rms(RR 0VV

o

)rms(BB 120VV

ormsY

ormsYY

V

V

120

240

)(

)(

V

VR leads VB, which in turn leads VY.This sequence is produced when the rotor rotates in the clockwise direction.

Page 61: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

61

1.5: Connection in Three Phase System

R

Y

B

ZR

1.5.1: Star Connection a) Three wire system

Page 62: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

62

Star Connection b) Four wire system

VRN

VBN VYN

ZR

Y B

R

BN

Y

Page 63: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

63

Wye connection of Load

Z1

Z3

Z2

R

B

Y

NLoad

Z3

12

R

Y

B

Load

N

Page 64: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

64

1.5.2: Delta Connection

R

Y

B

Y

B

R

Page 65: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

65

Delta connection of load

Zc

Za

Zb

R

B

Y

Load

c b

Za

R

Y

B

Load

Page 66: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

66

1.6: Balanced Load Connection in 3-Phase System

Page 67: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

67

ExampleExample

ER

Three-phase Load

ZY= 20 Ω

IR

VR

EY

EB

ZR = 20 Ω

IY

IB

ZB = 20 Ω

VBVN

EL = 415 volt

Find the line currents IR ,IY and IB . Also find the voltages VR, VY and VB.

Wye-Connected Balanced Loads b) Three wire system

Page 68: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

68

Wye-Connected Balanced Loads b) Three wire system

VN = = 0 voltVN = = 0 volt

VR = ER

VY = EY

VB = EB

Page 69: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

69

ExampleExample

ER

Three-phase Load

ZY= 20 Ω

IR

VR

EY

EB

ZR = 20 Ω

IY

IB

ZB = 20 Ω

VB

IN

VN

Find the line currents IR ,IY and IB . Also find the neutral current IN.

EL = 415 volt

1.6.1: Wye-Connected Balanced Loadsa) Four wire system

Page 70: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

70

VRN

VBN

Z1

Z 2Z

3

R

B

N

Y

VYN

IR

IY

IB

IN

BYRN IIII

For balanced load system, IN = 0 and Z1 = Z2 = Z3

3

o

BNB

2

o

YNY

1

o

RNR

Z

120VI

Z

120VI

Z

0VI

BNYNRNphasa

phasaBN

phasaYN

phasaRN

VVVVwhere

120VV

120VV

0VV

1.6.1: Wye-Connected Balanced Loadsa) Four wire system

Page 71: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

71

Wye-Connected Balanced Loads b) Three wire system

R

Y

B

Z1

Z 2 Z3

IR

IY

IB

VRY

VYB

VBR S

0III BYR

3

o

BSB

2

o

YSY

1

o

RSR

Z

120VI

Z

120VI

Z

0VI

BSYSRSphasa

phasaBS

phasaYS

phasaRS

VVVVwhere

240VV

120VV

0VV

Page 72: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

72

1.6.2: Delta-Connected Balanced Loads

Z

R

Y

B

VRY

VYB

VBR

IR

IRYIBR

IYB

IB

IY

Phase currents:

3

o

BRBR

2

o

YBYB

1

o

RYRY

Z

120VI

Z

120VI

Z

0VI

Line currents:

YBBRB

RYYBY

BRRYR

III

III

III

lineBYR

phasaBRYBRY

IIIIand

IIIIwhere

Page 73: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

73

1.7: Unbalanced Loads

Page 74: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

74

1.7.1: Wye-Connected Unbalanced LoadsFour wire system

VRN

VBN

Z1

2 3

R

B

N

Y

VYN

IR

IY

IB

IN

BYRN IIII

For unbalanced load system, IN 0 and Z1 Z2 Z3

3

o

BNB

2

o

YNY

1

o

RNR

Z

120VI

Z

120VI

Z

0VI

120VV

120VV

0VV

phasaBN

phasaYN

phasaRN

Page 75: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

75

1.7.2: Delta-Connected Unbalanced Loads

Z

R

Y

B

VRY

VYB

VBR

IR

IRYIBR

IYB

IB

IY

Phase currents:

3

o

BRBR

2

o

YBYB

1

o

RYRY

Z

120VI

Z

120VI

Z

0VI

Line currents:

YBBRB

RYYBY

BRRYR

III

III

III

120VV

120VV

0VV

phasaBN

phasaYN

phasaRN

Page 76: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

76

1.8 Power in a Three Phase System

Page 77: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

77

Power Calculation

The three phase power is equal the sum of the phase powers

P = PR + PY + PB

If the load is balanced: P = 3 Pphase = 3 Vphase Iphase cos θ

Page 78: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

78

1.8.1: Wye connection system:

I phase = I L and

Real Power, P = 3 Vphase Iphase cos θ

Reactive power, Q = 3 Vphase Iphase sin θ

Apparent power, S = 3 Vphase Iphase

or S = P + jQ

phaseLL VV 3

WattIV LLL cos3

VARIV3 LLL sin

VAIV3 LLL

Page 79: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

79

1.8.2: Delta connection system

VLL= Vphase

P = 3 Vphase Iphase cos θ

phaseL I3I

WattIV LLL cos3

Page 80: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

80

1.9: Three phase power measurement

Page 81: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

81

Power measurement

In a four-wire system (3 phases and a neutral) the real power is measured using three single-phase watt-meters.

Page 82: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

82

Three Phase Circuit Four wire system,

Each phase measured separately

A

A

V

W

W

Phase A

Phase B

Phase C

VAN

IA

IC

V

A

V

W

IB

VBN

VCN

Neutral (N)

PA

PB

PC

Page 83: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

8383

watt-meter connection

Current coil (low impedance)

voltage coil (high impedance)

W

Page 84: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

Ω

IR

VR

EY

EB

ZR = 5

IYIB

ZB = 20

VB

IN

VN

Find the three-phase total power, PT.

EL = 415 volt

a) Four wire system

30o

ZY = 10 90o

45o Ω

Ω

WR

WB

WY

Page 85: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

Ω

IR

VR

EY

EB

ZR = 5

IYIB

ZB = 20

VN

Find the three-phase total power, PT.

EL = 415 volt

b) Three wire system

30o

ZY = 10 90o

45o Ω

Ω

WR

WB

WY

Page 86: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

ExampleExample

ER

Three-phase Load

Ω

IR

VR

EY

EB

ZR = 5

IYIB

ZB = 20

VN

Find the three-phase total power, PT.

EL = 415 volt

b) Three wire system

30o

ZY = 10 90o

45o Ω

Ω

WR

WB

WY

VB

Page 87: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

87

Three Phase Circuit Three wire system,

The three phase power is the sum of the two watt-meters reading

A

A

V

V

W

W

Phase A

Phase B

Phase C

VAB = VA - VB

VCB = VC - VB

IA

IC

PAB

PCBCBABT PPP

Page 88: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

8888

The three phase power (3-wire system) is the sum of the two watt-meters reading

CBABT PPP Proving:

Instantaneous power:

pA = vA iA

pB = vB iB

pC = vC iC

A

A

V

W

W

Phase A

Phase B

Phase C

VAN

IA

IC

V

A

V

W

IB

VBN

VCN

Neutral (N)

PA

PB

PC

pT = pA + pB + pC = vA iA + vB iB +vC iC

= vA iA + vB iB +vC iC = vA iA + vB (-iA -iC) +vCiC

Page 89: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

8989

The three phase power (3-wire system) is the sum of the two watt-meters reading

CBABT PPP

Proving:

Instantaneous power: A

A

V

W

W

Phase A

Phase B

Phase C

VAN

IA

IC

V

A

V

W

IB

VBN

VCN

Neutral (N)

PA

PB

PC

pT = pAB + pCB

pT = vA iA + vB (-iA –iC) +vCiC

= (vA – vB )iA + (vC – vB )iC

= vAB iA + vCBiC

A

A

V

V

W

W

Phase A

Phase B

Phase C

VAB = VA - VB

VCB = VC - VB

IA

IC

PAB

PCB

Page 90: 1 Chapter 1. Three-Phase System. 1.1: Review of Single-Phase System The Sinusoidal voltage v 1 (t) = V m sin  t i v1v1 Load AC generator v2v2 2

9090

Power measurement

In a four-wire system (3 phases and a neutral) the real power is measured using three single-phase watt-meters.

In a three-wire system (three phases without neutral) the power is measured using only two single phase watt-meters. The watt-meters are supplied by the line current and the line-to-line voltage.