1 c++ plus data structures nell dale chapter 4 adts stack and queue modified from the slides by...

76
1 C++ Plus Data Structures Nell Dale Chapter 4 ADTs Stack and Queue Modified from the slides by Sylvia Sorkin, Community College of Baltimore County - Essex Campus

Upload: ashley-harper

Post on 03-Jan-2016

235 views

Category:

Documents


2 download

TRANSCRIPT

1

C++ Plus Data Structures

Nell DaleChapter 4

ADTs Stack and Queue

Modified from the slides by Sylvia Sorkin, Community College of Baltimore County - Essex Campus

2

Stacks

3

Stacks of Coins and Bills

4

Stacks

What is a stack?

Logical (or ADT) level: A stack is an ordered group of homogeneous items (elements), in which the removal and addition of stack items can take place only at the top of the stack.

A stack is a LIFO “last in, first out” structure.

5

Stacks of Boxes and Books

TOP OF THE STACK TOP OF THE STACK

Stack ADT Operations

MakeEmpty -- Sets stack to an empty state.

IsEmpty -- Determines whether the stack is currently

empty.

IsFull -- Determines whether the stack is currently full.

Push (ItemType newItem) -- Adds newItem to the top of the stack.

Pop (ItemType& item) -- Removes the item at the top

of the stack and returns it in item.6

ADT Stack Operations

Transformers MakeEmpty Push Pop

Observers IsEmpty IsFull

change state

observe state

7

//----------------------------------------------------------

// SPECIFICATION FILE (stack.h)

//----------------------------------------------------------

#include "bool.h"

#include "ItemType.h" // for MAX_ITEMS and

// class ItemType definition

class StackType {

public:

StackType( );

// Default constructor.

// POST: Stack is created and empty.

void MakeEmpty( );

// PRE: None.

// POST: Stack is empty.

bool IsEmpty( ) const;

// PRE: Stack has been initialized.

// POST: Function value = (stack is empty)

8

// SPECIFICATION FILE continued (Stack.h)

bool IsFull( ) const;

// PRE: Stack has been initialized.

// POST: Function value = (stack is full)

void Push( ItemType newItem );

// PRE: Stack has been initialized and is not full.

// POST: newItem is at the top of the stack.

void Pop( ItemType& item );

// PRE: Stack has been initialized and is not empty.

// POST: Top element has been removed from stack.

// item is a copy of removed element.

private:

int top;

ItemType items[MAX_ITEMS]; // array of ItemType

}; 9

10

Private data

value

Print

Initialize

class ItemType

ItemType Class/Struct Interface Diagram

//-------------------------------------------------------

// IMPLEMENTATION FILE (Stack.cpp)

//------------------------------------------------------

// Private data members of class:

// int top;

// ItemType items[MAX_ITEMS];

//-------------------------------------------------------

#include “bool.h”

#include “ItemType.h”

StackType::StackType( )

//------------------------------------------------

// Default Constructor

//------------------------------------------------

{

top = -1;

}

11

// IMPLEMENTATION FILE continued (Stack.cpp)

//----------------------------------------------------------

void StackType::MakeEmpty( )

//---------------------------------------------------

// PRE: None.

// POST: Stack is empty.

//---------------------------------------------------

{

top = -1;

}

12

// IMPLEMENTATION FILE continued (Stack.cpp)

//----------------------------------------------------------

bool StackType::IsEmpty( ) const

//---------------------------------------------------

// PRE: Stack has been initialized.

// POST: Function value = (stack is empty)

//---------------------------------------------------

{

return ( top == -1 );

}

bool StackType::IsFull( ) const

//---------------------------------------------------

// PRE: Stack has been initialized.

// POST: Function value = (stack is full)

//---------------------------------------------------

{

return ( top == MAX_ITEMS-1 );

}13

// IMPLEMENTATION FILE continued (Stack.cpp)

//-------------------------------------------------------------

void StackType::Push ( ItemType newItem )

//------------------------------------------------------

// PRE: Stack has been initialized and is not full.

// POST: newItem is at the top of the stack.

//------------------------------------------------------

{

top++;

items[top] = newItem;

}

14

// IMPLEMENTATION FILE continued (Stack.cpp)

//-------------------------------------------------------------

void StackType::Pop ( ItemType& item )

//------------------------------------------------------

// PRE: Stack has been initialized and is not empty.

// POST: Top element has been removed from stack.

// item is a copy of removed element.

//------------------------------------------------------

{

item = items[top];

top--;

}

15

16

Class Interface Diagram

StackType class

StackType

MakeEmpty

Pop

Push

IsFull

IsEmpty

Private data:

top

[MAX_ITEMS-1] . . .

[ 2 ]

[ 1 ]

items [ 0 ]

17

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Code

Private data:

top

[MAX_ITEMS-1] . . .

[ 2 ]

[ 1 ]

items [ 0 ]

letter ‘V’

18

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘V’

Private data:

top -1

[MAX_ITEMS-1] . . .

[ 2 ]

[ 1 ]

items [ 0 ]

19

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘V’

Private data:

top 0

[MAX_ITEMS-1] . . .

[ 2 ]

[ 1 ]

items [ 0 ] ‘V’

20

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘V’

Private data:

top 1

[MAX_ITEMS-1] . . .

[ 2 ]

[ 1 ] ‘C’

items [ 0 ] ‘V’

21

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘V’

Private data:

top 2

[MAX_ITEMS-1] . . .

[ 2 ] ‘S’

[ 1 ] ‘C’

items [ 0 ] ‘V’

22

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘V’

Private data:

top 2

[MAX_ITEMS-1] . . .

[ 2 ] ‘S’

[ 1 ] ‘C’

items [ 0 ] ‘V’

23

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘S’

Private data:

top 1

[MAX_ITEMS-1] . . .

[ 2 ] ‘S’

[ 1 ] ‘C’

items [ 0 ] ‘V’

24

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘S’

Private data:

top 2

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

25

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘S’

Private data:

top 2

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

26

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘K’

Private data:

top 1

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

27

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘K’

Private data:

top 1

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

28

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘C’

Private data:

top 0

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

29

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘C’

Private data:

top 0

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

30

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

Tracing Client Codeletter ‘V’

Private data:

top -1

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

31

char letter = ‘V’;StackType charStack;

charStack.Push(letter);

charStack.Push(‘C’);

charStack.Push(‘S’);

if ( !charStack.IsEmpty( )) charStack.Pop(letter);

charStack.Push(‘K’);

while (!charStack.IsEmpty( )) charStack.Pop(letter);

End of Traceletter ‘V’

Private data:

top -1

[MAX_ITEMS-1] . . .

[ 2 ] ‘K’

[ 1 ] ‘C’

items [ 0 ] ‘V’

32

What is a Class Template?

A class template allows the compiler to generate multiple versions of a class type by using type parameters.

The formal parameter appears in the class template definition, and the actual parameter appears in the client code. Both are enclosed in pointed brackets, < >.

// Laboratory 4, Class declaration... listarr.h

...

template < class LE >

class List {

public:

List ( int maxNumber = defMaxListSize );

~List ();

void insert ( const LE &newElement );

void remove ();

...

LE getCursor () const; // Return element

..

void moveToNth ( int n ); // InLab 2

int find ( const LE &searchElement ); // InLab 3

private:

// Data members

int maxSize, size, cursor;

LE *element; // Array containing the list elements

}; 33

// Laboratory 4, Class implementation ... listarr.cpp #include <assert.t>#include "listarr.h"//--------------------------------------------template < class LE >List<LE> :: List ( int maxNumber )// Creates an empty list. Allocates enough memory for

maxNumber// elements (defaults to defMaxListSize). : maxSize(maxNumber),size(0),cursor(-1){ element = new LE [ maxSize ]; assert ( element != 0 );}//-----------------------------------------------template < class LE >List<LE> :: ~List () // Frees the memory used by a list.{ delete [] element;}//------------------------------------------------

...34

//Laboratory 4, Client code: test4.cpp (modified)

#include <iostream.h>

#include "listarr.cpp"

void main()

{

List<char> testList_char(8); // Test list

List<int> testList_int(10); // Test list

char testElement_char; // List element

int testElement_int; // List element

...

}

35

List<char> testList_char(8);

[ 7 ] . . .

[ 3 ] B

[ 2 ] A

[ 1 ] R

element[ 0 ] M

36

ACTUAL PARAMETER

List<int> testList_int(10);

[ 9 ] . . .

[ 3 ] 789

[ 2 ] -56

[ 1 ] 132

element[ 0 ] 5670

37

ACTUAL PARAMETER

Using class templates

The actual parameter to the template is a data type. Any type can be used, either built-in or user-defined.

38

39

Pointer Types

Recall that …

char msg [ 8 ];

msg is the base address of the array. We say msg is a pointer because its value is an address. It is a pointer constant because the value of msg itself cannot be changed by assignment. It “points” to the memory location of a char.

msg [0] [1] [2] [3] [4] [5] [6] [7]

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

40

Addresses in Memory When a variable is declared, enough memory to

hold a value of that type is allocated for it at an unused memory location. This is the address of the variable.

int x;

float number;

char ch;

2000 2002 2006

x number ch

41

Obtaining Memory Addresses

The address of a non-array variable can be obtained

by using the address-of operator &.

int x;

float number;

char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

42

What is a pointer variable?

A pointer variable is a variable whose value is the address of a location in memory.

To declare a pointer variable, you must specify the type of value that the pointer will point to. For example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

43

Using a pointer variable

int x;

x = 12;

int* ptr;

ptr = &x;

NOTE: Because ptr holds the address of x,

we say that ptr “points to” x

2000

12

x

3000

2000

ptr

44

2000

12

x

3000

2000

ptr

int x;

x = 12;

int* ptr;

ptr = &x;

cout << *ptr;

NOTE: The value pointed to by ptr is denoted by *ptr

Unary operator * is the deference (indirection) operator

45

int x;

x = 12;

int* ptr;

ptr = &x;

*ptr = 5; // changes the value // at adddress ptr to 5

Using the dereference operator

2000

12 5

x

3000

2000

ptr

46

char ch;

ch = ‘A’;

char* q; q = &ch;

*q = ‘Z’;

char* p; p = q; // the right side has value 4000

// now p and q both point to ch

Another Example

4000

A Z

ch

5000 6000

4000 4000

q p

47

C++ Data TypesC++ Data Types

Structured

array struct union class

Address

pointer reference

Simple

Integral Floating

char short int long enum

float double long double

48

The NULL Pointer

There is a pointer constant 0 called the “null pointer” denoted by NULL in stddef.h

But NULL is not memory address 0.

NOTE: It is an error to dereference a pointer whose value is NULL. Such an error may cause your program to crash, or behave erratically. It is the programmer’s job to check for this.

while (ptr != NULL) {

. . . // ok to use *ptr here

}

49

Allocation of memory

STATIC ALLOCATION

Static allocation is the allocation of memory space at compile time.

DYNAMIC ALLOCATION

Dynamic allocation is the allocation of memory space at run time by using operator new.

50

3 Kinds of Program Data STATIC DATA: memory allocation exists

throughout execution of program. static long SeedValue;

AUTOMATIC DATA: automatically created at function entry, resides in activation frame of the function, and is destroyed when returning from function.

DYNAMIC DATA: explicitly allocated and deallocated during program execution by C++ instructions written by programmer using unary operators new and delete

Using operator new

If memory is available in an area called the free store (or heap), operator new allocates the requested object or array, and returns a pointer to (address of ) the memory allocated.

Otherwise, the null pointer 0 is returned.

The dynamically allocated object exists until the delete operator destroys it.

51

52

2000

ptr

Dynamically Allocated Data

char* ptr = 0;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

53

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

ptr

54

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

ptr

‘B’

55

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

2000

ptr

NOTE: Delete deallocates the memory pointed to by ptr.

?

The object or array currently pointed to by the pointer is deallocated, and the pointer is considered unassigned. The memory is returned to the free store.

Square brackets are used with delete to deallocate a dynamically allocated array of classes.

Using operator delete

56

Some C++ pointer operations

Precedence Higher -> Select member of class pointed to

Unary: ++ -- ! * new delete Increment, Decrement, NOT, Dereference, Allocate, Deallocate

+ - Add Subtract

< <= > >= Relational operators

== != Tests for equality, inequality

Lower = Assignment

58

Dynamic Array Allocation

char *ptr; // ptr is a pointer variable that // can hold the address of a char

ptr = new char[ 5 ]; // dynamically, during run time, allocates

// memory for 5 characters and places into // the contents of ptr their beginning address

ptr

6000

6000

59

Dynamic Array Allocation

char *ptr ;

ptr = new char[ 5 ];

strcpy( ptr, “Bye” );

ptr[ 1 ] = ‘u’; // a pointer can be subscripted

cout << ptr[ 2] ;

ptr

6000

6000 ‘B’ ‘y’ ‘e’ ‘\0’ ‘u’

60

Dynamic Array Deallocation

char *ptr ;

ptr = new char[ 5 ];

strcpy( ptr, “Bye” );

ptr[ 1 ] = ‘u’;

delete [ ] ptr; // deallocates array pointed to by ptr // ptr itself is not deallocated, but // the value of ptr is considered unassigned

ptr

?

61

int* ptr = new int;

*ptr = 3;

ptr = new int; // changes value of ptr

*ptr = 4;

What happens here?

3

ptr

3

ptr

4

62

Memory Leak

A memory leak occurs when dynamic memory (that was created using operator new) has been left without a pointer to it by the programmer, and so is inaccessible.

int* ptr = new int;

*ptr = 8;

int* ptr2 = new int;

*ptr2 = -5;

How else can an object become inaccessible?

8

ptr

-5

ptr2

63

Causing a Memory Leak

int* ptr = new int;

*ptr = 8;

int* ptr2 = new int;

*ptr2 = -5;

ptr = ptr2; // here the 8 becomes inaccessible

8

ptr

-5

ptr2

8

ptr

-5

ptr2

64

occurs when two pointers point to the same object and delete is applied to one of them.

int* ptr = new int;

*ptr = 8;

int* ptr2 = new int;

*ptr2 = -5;

ptr = ptr2;

A Dangling Pointer

8

ptr

-5

ptr2

FOR EXAMPLE,

65

int* ptr = new int;

*ptr = 8;

int* ptr2 = new int;

*ptr2 = -5;

ptr = ptr2;

delete ptr2; // ptr is left dangling

ptr2 = NULL;

Leaving a Dangling Pointer

8

ptr

-5

ptr2

8

ptr

NULL

ptr2

66

Queues

What is a queue?

Logical (or ADT) level: A queue is an ordered group of homogeneous items (elements), in which new elements are added at one end (the rear), and elements are removed from the other end (the front).

A queue is a FIFO “first in, first out” structure.

Queue ADT Operations

MakeEmpty -- Sets queue to an empty state.

IsEmpty -- Determines whether the queue is currently

empty.

IsFull -- Determines whether the queue is currently full.

Enqueue (ItemType newItem) -- Adds newItem to the rear of the queue.

Dequeue (ItemType& item) -- Removes the item at the

front of the queue and returns it in item.

67

ADT Queue Operations

Transformers MakeEmpty Enqueue Dequeue

Observers IsEmpty IsFull

change state

observe state

68

Queue Designs

69

Queue Designs

Queue can be stored in a

Static array – with its size fixed at compile time

or

Dynamically allocated array – with its size

determined at run time.

70

71

DYNAMIC ARRAY IMPLEMENTATION

QueType

~QueType

Enqueue

Dequeue . . .

class QueType

Private Data:

front 1

rear 4

maxQue 5

items‘C’ ‘X’ ‘J’

items [0] [1] [2] [3] [4]

RE

SE

RV

ED

//--------------------------------------------------------// CLASS TEMPLATE DEFINITION FOR CIRCULAR QUEUE (queue.h)

#include "ItemType.h" // for ItemType

template<class ItemType>class QueType {public:

QueType( ); QueType( int max ); // PARAMETERIZED CONSTRUCTOR~QueType( ) ; // DESTRUCTOR

. . .

bool IsFull( ) const;void Enqueue( ItemType item );void Dequeue( ItemType& item );

private:int front;int rear;int maxQue; ItemType* items; // DYNAMIC ARRAY IMPLEMENTATION

}; 72

//---------------------------------------------------

// SPECIFICATION FILE (stack.h)

//---------------------------------------------------

#include "bool.h"

#include "ItemType.h" // for MAX_ITEMS and

// class ItemType definition

class StackType {

public:

private:

int top;

ItemType items[MAX_ITEMS]; //STATIC ARRAY IMPLEMENTATION

};73

Compare to …

//--------------------------------------------------------

// CLASS TEMPLATE DEFINITION FOR CIRCULAR QUEUE cont’d

//--------------------------------------------------------

template<class ItemType>

QueType<ItemType>::QueType( int max ) // PARAMETERIZED

{

maxQue = max + 1;

front = maxQue - 1;

rear = maxQue - 1;

items = new ItemType[maxQue]; // dynamically allocates

}

template<class ItemType>

bool QueType<ItemType>::IsEmpty( )

{

return ( rear == front )

}

74

//--------------------------------------------------------

// CLASS TEMPLATE DEFINITION FOR CIRCULAR QUEUE cont’d

//--------------------------------------------------------

template<class ItemType>

QueType<ItemType>::~QueType( )

{

delete [ ] items; // deallocates array

}

. . .

template<class ItemType>

bool QueType<ItemType>::IsFull( )

{ // WRAP AROUND

return ( (rear + 1) % maxQue == front )

}75

End

76