1 analysis and simulation exercises ~dc circuit analysis (1) basic circuit laws (kirchhoff ’ s...

16
1 Analysis and Simulation Ex ercises ~DC Circuit Analys is (1) Basic Circuit Laws (Kirchhoff ’s Voltage/ Current Law) Thévenin’s Theorem Norton’s Theorem

Upload: deon-raye

Post on 14-Dec-2015

226 views

Category:

Documents


2 download

TRANSCRIPT

1

Analysis and Simulation Exercises ~DC Circuit Analysis (1)

Basic Circuit Laws (Kirchhoff’s Voltage/ Current Law)

Thévenin’s Theorem Norton’s Theorem

2

Circuit with three meshes

1

3

Spice fileBridge Circuit for use with Basic Circuit LawsV 3 0 25vR1 1 2 100R2 1 0 75R3 2 3 50R4 4 0 60R5 2 4 150R6 1 4 200.OP.PRINT DC I(R1) I(R2) I(R3).PRINT DC I(R4) I(R5) I(R6).DC V 25V 25V 25V.OPT nopage.END

4

Output file(1)

**** 09/19/02 11:39:09 ************** PSpice Lite (Mar 2000) ***************** Bridge Circuit for use with Basic Circuit Laws **** CIRCUIT DESCRIPTION********************************************V 3 0 25vR1 1 2 100R2 1 0 75R3 2 3 50R4 4 0 60R5 2 4 150R6 1 4 200.OP.PRINT DC I(R1) I(R2) I(R3).PRINT DC I(R4) I(R5) I(R6).DC V 25V 25V 25V.OPT nopage.END

5

Output file(2)

**** DC TRANSFER CURVES TEMPERATURE = 27.000 DEG C

V I(R1) I(R2) I(R3) 2.500E+01 -9.704E-02 8.885E-02 -1.726E-01 **** DC TRANSFER CURVES TEMPERATURE = 27.000 DEG C V I(R4) I(R5) I(R6) 2.500E+01 8.379E-02 7.560E-02 8.184E-03

* SMALL SIGNAL BIAS SOLUTION TEMPERATURE =27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 6.6641 ( 2) 16.3680 ( 3) 25.0000 ( 4) 5.0273

6

Output file(3)

VOLTAGE SOURCE CURRENTS NAME CURRENT V -1.726E-01

TOTAL POWER DISSIPATION 4.32E+00 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

JOB CONCLUDEDTOTAL JOB TIME .07

7

Verify Kirchhoff’s Voltage Law Check V12+V23+V30+V01=0 ?? V1= 6.6641 V2=16.3680 V3= 25.0000

V4= 5.0273 V12=V1-V2=-9.7039, V23=V2-V3=-8.632,

V30=V3=25.000, V01=-V1=-6.6641 V12+V23+V30+V01=

-9.7039 -8.632+ 25.000 -6.6641=0

8

Verify Kirchhoff’s Current Law Finding the sum of the currents

entering node 1. For node 1, I21+I01+I41=0. I21= -I(R1)= 97.04mA, I01= -I(R2)=-88.85mA, I41= -I(R6)=-8.184mA I21+I01+I41=97.04 - 88.85 - 8.184 = 0.0

9

THÉVENIN’S Theorem

Circuit to illustrate Thévenin’s theorem

10

Thévenin voltage and series

11

Spice fileThevenin Circuit for spiceV 1 0 75vR1 1 2 100R2 2 3 150R3 2 0 200RL 3 0 1E12.OP.OPT nopage.TF V(3) V.END

12

Simulation Output File (Partial)

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 75.0000 ( 2) 50.0000 ( 3) 50.0000

**** SMALL-SIGNAL CHARACTERISTICS V(3)/V = 6.667E-01 INPUT RESISTANCE AT V = 3.000E+02

OUTPUT RESISTANCE AT V(3) = 2.167E+02

13

Norton’s Theorem

T Circuit for Norton analysis

14

Spice FileFind the short-current for R4

Norton's Theorem; Find IscV 1 0 48VR1 1 2 20KR2 2 0 20KR3 2 3 5KR4 3 0 0.001.DC V 48V 48V 48V .OP.OPT nopage.PRINT DC I(R4) V(1,2).END

15

Simulation Output File**** DC TRANSFER CURVES TEMPERATURE = 27.000 DE

G C V I(R4) V(1,2) 4.800E+01 1.600E-03 4.000E+01

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 48.0000 ( 2) 8.0000 ( 3) 1.600E-06

16

Question & Answer