1 2 - umpir.ump.edu.my

18
PERPUST AKAAN UMP 11111111 Ill 0000119921 EFFECT OF n..1 .uv.1. .1..n'-' '-'U . .J AND ELECTRICAL TRANSPORT PROPERTIES OF YBCOSUPERCONDUCTOR MUHAMMAD IRF AN BIN IZHAM Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Applied Science (Honours) Material Technology Faculty oflndustrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG DECEMBER 2016 PERPUSTA!<AAN UNIVERSITI MALAYSIA PAHANG -::; No. Perolehan 119921; Tarikh 1 2 OCT 2017 No.Panggilan I=HT ·I l011 Y' P.,c;.

Upload: others

Post on 25-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 2 - umpir.ump.edu.my

PERPUST AKAAN UMP

11111111 Ill 0000119921

EFFECT OF n..1 .uv.1. .1..n'-' '-'U ~~H . .J .n.u.~ROSTRUCTURE

AND ELECTRICAL TRANSPORT PROPERTIES OF

YBCOSUPERCONDUCTOR

MUHAMMAD IRF AN BIN IZHAM

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Applied Science (Honours) Material

Technology

Faculty oflndustrial Sciences & Technology

UNIVERSITI MALAYSIA PAHANG

DECEMBER 2016 .------~----.t PERPUSTA!<AAN o~lt:l'

UNIVERSITI MALAYSIA PAHANG -::;

No. Perolehan

119921; Tarikh

1 2 OCT 2017

No.Panggilan I=HT ·I ~LI l011

Y'

P.,c;.

Page 2: 1 2 - umpir.ump.edu.my

---------·-------- --- --·---·-----

SUPERVISORS' DECLARATION

I hereby declare that I have checked the thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Bachelor of

Applied Science (Honours) Material Technology.

Signature

N arne of Supervisor

Position

Date

Dr Muhammad Hafiz b Mazwir

SENIOR LECTURER

, ft 1 ").b\1

111

Page 3: 1 2 - umpir.ump.edu.my

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitred for award of other degree.

Signature

Name

IDNumber

Date

Muhammad lrfan b Izham

SC13037

lV

Page 4: 1 2 - umpir.ump.edu.my

DEDICATION

My biggest dedication goes to my families; Izham, Shahida, flya, Isfahan and

Imran for their supporting commends, their understanding towards my research and

many more~

Next, I would like to dedicated this to Nurul Amalina. For her non-stop support

from the beginning towards the endofthis research. For her help. For her time spend

For her sincerity. Thanks.

Well, lastly it goes to my fellow Universiti Malaysia Pahang lecturers,

classmates, friends and anyone that directly or indirectly related to my research.

THANKYOU!

v

Page 5: 1 2 - umpir.ump.edu.my

---------------------------------------------------------·------

ACKNOWLEDGEMENTS

My humble acknowledgemt goes to my one and only family, lecturers, laboratory assistant, friends, and all the people around me for their sincere direct or indirect coaching during completion of my research. For their unlimited and outstanding supportive energy towards me to complete my own research.

Dr Muhammad Hafiz as my fmal year project supervisor; I would like to thank him for trusting me in completing my research though there are many lacking expert skills in compared his professional experienced. Stephanie and Nabilah as my fmal year project teammates; they helped me a lot in my samples preparation, analysis, calculation and many other stuff. Although, our method is a little different, but they managed to help me complete my research on time and perfectly.

Material technology students; thanks a lot for a very wann. helped, useful opinion and unlimited coaching during my research. They helped me by giving ideas on the preparation method, procedures and sometimes useful journals.

V1

Page 6: 1 2 - umpir.ump.edu.my

ABSTRACT

Superconductor used is YBa2Cu30 7 (YBCO) with addition dopant element of Aluminium (AI). The Ab03 doping is used to study the microstructure and electrical transport properties of YBCO superconductor. Process involved in preparation of YBCO superconductor is by using solid state reaction method. The superconductors were prepared with different composition of aluminium oxide doping which are 0.01 wt%, 0.02 wt%, 0.03 wt%, 0.04 wt%. The samples were tested with four analyses which are for phase formation; X-Ray Diffractometer (XRD) is used, for microstructure; Scanning Electron Microscopy (SEM) is used, for critical current; Four Point Probe is used, and for Meissner Effect of superconductors. The results obtained for XRD can be conclude that YBCO compound having an orthorhombic structure which shows superconducting behaviour. For SEM results, the microstructure obtain is almost the same with constant or pure YBCO superconductor although doping process were done to the samples this is due to the concentration of magnetic nanoparticles were too small to act as impurity and to cause porous structure. Next, for four point probe testing, the result obtained is the resistance value = 0 n when cooled at critical temperature, Tc but some errors might occur that causes some changes to the results. Lastly, Meissner Effect test shows that the critical temperature of YBCO superconductor is high when addition of Ab03 element is added, compared to pure YBCO superconductor.

vii

Page 7: 1 2 - umpir.ump.edu.my

ABSTRAK

Superkonduktor yang digunakan adalah YBa2Cu30 7 (YBCO) dengan elemen tambahan dopan daripada Aluminium (AI). Ah03 doping digunakan untuk mengkaji mikrostruktur dan pengangkutan elektrik sifat YBCO superkonduktor. Proses yang terlibat dalam penyediaan YBCO superkonduktor adalah dengan menggunakan kaedah tindak balas keadaan pepejal. Superkonduktor telah disediakan dengan komposisi yang berbeza daripada aluminium oksida doping yang 0.01 %berat, 0.02 %berat, 0.03 %berat, 0.04 %berat. Sampel diuji dengan empat analisis iaitu bagi pembentukan fasa; X-ray Pembelauan (XRD) digunakan, untuk mikrostruktur; Mikroskop Pemindai Elektron (SEM) digunakan, tintuk suhu kritikal; empat mata siasatan digunakan, dan untuk Kesan Meissner superkonduktor. Keputusan yang diperolehi untuk XRD boleh menyimpulkan bahawa sebatian YBCO mempunyai struktur otorombik yang menunjukkan · tingkah laku superkonduktor. Untuk keputusan SEM, mikrostruktur mendapatkan hampir sama dengan pemalar atau tulen superkonduktor YBCO walaupun proses doping telah' dilakukan untuk sampel ini adalah disebabkan oleh kepekatan nanopartikel magnet terlalu kecil untuk bertindak sebagai bendasing dan menyebabkan struktur berliang. Seterusnya, untuk empat mata siasatan ketika, keputusan yang diperolehi adalah nilai rintangan = 0 n apabila disejukkan pada suhu kritikal, Tc tetapi beberapa kesilapan mungkin berlaku yang menyebabkan beberapa perubahan kepada keputusan. Akhir sekali, ujian Kesan Meissner menunjukkan bahawa suhu genting superkonduktor YBCO adalah tinggi apabila penambahan Ah03 elemen ditambah, berbanding YBCO superkonduktor tulen.

viii

Page 8: 1 2 - umpir.ump.edu.my

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION

STUDENT'S DECLARATION

DEDICATION

ACKNOWLEDGEMENTS

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LISTOF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

1.2 PROBLEMSTATEMENT

1.3 OBJECTIVES OF RESEARCH

1.4 SCOPE OF STUDY

CHAPTER 2 LITERATURE REVIEW

2.1 HISTORY OF YBCO SUPERCONDUCTOR

2.2 YBCOGENERALSTRUCTURE

2.3 ALUMINIUM DOPING

2.4 FABRICATION OF YBCO

CHAPTER3 MATERIALSANDMETHODS

3.1 INTRODUCTION

3.2 RESEARCH METHODOLOGY

3.3 MATERIAL AND APPARATUS

3.4 MATERIAL SYNTHESIS METHODS

3.4.1 GRINDING

IX

Page

111

iv

v

Vl

Vll

vm

IX

XI

Xll

XIV

XV

1

1

4

4

5

6

6

7

8

8

9

9

10

11

12

12

--

Page 9: 1 2 - umpir.ump.edu.my

------ ----------------- --------·-

3.4.2 SINTERING 13

3.4.3 PELLETIZING 13

3.5 MATERIAL CHARACTERIZATIONS 14

3.5.1 INTRODUCTION 14

3.5.2 FOUR POINT PROBE TEST 15

3.5.3 MEISSNER EFFECT 17

3.5.4 SCANNING ELECTRON MICROSCOPY (SEM) 19

3.5.5 X-RAY DIFFRACTOMETER (XRD) 20

CHAPTER4 RESULT AND DISCUSSION 21

4.1 CHARACTERIZATION OF YBCO SUPERCONDUCTOR WITH

ADDITION OF ALUMINIUM OXIDE

4.2 FOUR POINT PROBE TEST ANALYSIS

4.3 MEISSNER EFFECT ANALYSIS

4.4 SCANNING ELECTRON MICROSCOPY (SEM) ANALYSIS

4.5 X-RAY DIFFRACTOMETER (XRD) ANALYSIS

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

5.2 RECOMMENDATIONS

REFERENCES

APPENDICES

X

21

21

25

27

34

41

41

42

43

44

Page 10: 1 2 - umpir.ump.edu.my

-----=========================-=-=--=--=--=-=-=-======================-=-=--=-=-==~=~-

LIST OF TABLES

Table 3.1 Table of weight percent ratio of material used to fabricate Ah03 doped YBCO

superconductor with Ah03 compositon of (0.01, 0.02, 0.03 and 0.04)

wt.% .................................................................................................. 10

Table 3.2 List of minimum materials and apparatus in fabricating Ah03 doped YBCO

superconductor ...................................................................................... 11

Table 4.1 Levitation time and average time for sample with different Ah03

composition .......................................................................................... 25

Table 4.2 Calculated lattice parameters of pure YBCO and Ah03-doped YBCO

superconductors with different percentage ...................................................... 40

Xl

I

Page 11: 1 2 - umpir.ump.edu.my

LIST OF FIGURES

Figure 1.1 Type I superconductor ................................................................ .3

Figure 1.2 Type II superconductor ............................................................... 3

Figure 2.1 Structur~ of YBCO ............................................. ~ ....................... 7

Figure 3.1 Flowchart for preparation of Ah03 doped YBCO

superconductor ........................................................................................ 12

Figure 3.2 Flowchart of standard operating procedure (SOP) for analyzing Ah03-

doped YBCO superconductor in this research .................................................. 14

Figure 3.3 Laboratory four point probe setup ................................................... 15

Figure 3.4 Four point probe wire connecting and thermocouple ........................... 16

Figure 3.5 Apparatus needed for meissner effect test ......................................... 17

Figure 3.6 Example leviatation of successful Meissner Effect test ......................... 17

Figure 3.7 Another example of Meissner Effect leviatatio ................................... 18

Figure 3.8 Scanning Electron Microscopy (SEM) ............................................ 19

Figure 3.9 Instrument used for X-Ray Diffractometer (XRD) test .......................... 20

Figure 4.1 Normalized resistance versus temperature for 0.01 wt.% Ah03 doped YBCO

superconductor ........................................................................................ 22

Figure 4.2 Normalized resistance versus temperature for 0.02 wt.% Ah03 doped YBCO

superconductor ...................................................................................... 22

Figure 4.3 Normalized resistance versus temperature for 0.03 wt.% Ah03 doped YBCO

.supercond1Jctor ................ n .......................... ,. ........... ··~·· ........................ 23

Figure 4.4 Normalized resistance versus temperature for 0.04 wt.% Ah03 doped YBCO

superconductor ...................................................................................... 23

Figure 4.5 Meissner effect of Ah03 doped YBCO superconductor when cooled below

critical temperature, T c of superconductor ..................................................... 26

Figure 4.6 Images of aluminium oxide (Ah03) nanoparticles observed under

Transmission Electron Microscope (TEM) .................................................... 27

Figure 4.7 SEM images ofYBCO superconductor under 500x magnification ............. 28

Figure 4.8 SEM images ofYBCO superconductor under 1000x magnification ......... :28

Figure 4.9 SEM images of 0.01% Ah03 doped YBCO superconductor under 500x

magnification ....................................................................................... 30

xii

Page 12: 1 2 - umpir.ump.edu.my

----------------~-----------------_-_· _-----=========~==-==================

Figure 4.10 SEM images of 0.01% AhDJ doped YBCO superconductor under 1000x

magnification .................................................................................... : .. 3 0

Figure 4.11 SEM images of 0.02% Ah03 doped YBCO superconductor under 500x

magnification ..................................... , ................................................. 31

Figure 4.12 SEM images of 0.02% AhDJ doped YBCO superconductor under 1 OOOx

magnification ........................................................................................ 31

Figure 4.13 SEM images of 0.03% Ah03 doped YBCO superconductor under 500x

magnification ... _ ..................................................................................... 32

Figure 4.14 SEM images of 0.03% Ah03 doped YBCO superconductor under 1000x

magnification ....................................................................................... 32

Figure 4.15 SEM images of 0.04% Ah03 doped YBCO superconductor under 500x

magnification ....................................................................................... 33

Figure 4.16 SEM images of 0.04% Ah03 doped YBCO superconductor under 1000x

magnification ....................................................................................... 3 3

Figure 4.17 XRD analysis of pure YBCO superconductor with corresponding Miller

indices of each peaks where Y=YBCO ............ , ............................................. 34

Figure 4.18 XRD analysis of 0.01 wt.% of Ah03 doped in YBCO superconductor with

corresponding Miller Indices of each peaks where

Y=YBC0 ............................................................................................. 34

Figure 4.19 XRD analysis of 0.02 wt.% of Ah03 doped in YBCO superconductor with

corresponding Miller Indices of each peaks where

Y=YBCO .......................................................... :: ............................. .. 36

Figure 4.20 XRD analysis of 0.03 wt.% of Ah03 doped in YBCO superconductor with

corresponding Miller Indices of each peaks where

Y=YBC0 ............................................................................................... 37

Figure 4.21 XRD analysis of 0.04 wt.% of Ah03 doped in YBCO superconductor with

corresponding Miller Indices of each peaks where

Y=YBC0 ................................. -............ _. ................................................ 38

Figure 4.22 Stacked XRD analysis of pure YBCO superconductor and Aluminium

doped YBCO superconductor based on composition difference ........................... .39

X111

Page 13: 1 2 - umpir.ump.edu.my

LIST OF SYMBOLS

Tc Critical Temperature

% Percent

Jc Critical Current Density

A. Penetration Depth

( Coherence Length

¢ Permit Magnetic Flux

B Magnetic Field

Bc1 Lower Critical Magnetic Field

Bc2 Upper Critical Magnetic Field

I Current

v Voltage

n Resistance

wt.% Weight Percentage

28 Bragg Angle

XlV

Page 14: 1 2 - umpir.ump.edu.my

Ah03

BaC03

BCS

BSCCO

CH3CH20H

CH3COCH3

CuO

EDX

FESEM

SEM

XRD

Y123

Y203

YBCO

YBa2Cu307

YBa2Cu3-xAlx07

LIST OF ABBREVIATIONS

"-

Aluminium Oxide

Bariun Carbonate

Bardeen Copper Schrieffer

Bismuth Strontium Calcium Copper Oxide

Ethanol

Acetone

Copper (II) Oxide

Energy Dispersive X-ray

Field Emission Scanning Electron Microscope

Scanning Electron Microscopy

X-ray Diffraction

Yttrium Barium Cuprate

Yttrium Oxide

Yttrium Barium Copper Oxide

Yttrium Barium Copper Oxide

Yttrium Barium Copper Oxide AI Doped

XV

Page 15: 1 2 - umpir.ump.edu.my

CHAPTER!

INTRODUCTION

1.1 INTRODUCTION

Superconductors are materials that permit current to stream with no resistance. They

are additionally utilized as immaculate diamagnets when presented to moderate

magnetic fields. High temperature superconductor has an incredible potential to be

created for high vitality transport applications. Nonetheless, the flux pinning capacity

and intergrain link should be enhanced keeping in mind the end goal to reduce the quick

decay of the critical current density Jc at high temperature and in magnetic fields.

The electrical resistivity of numerous metal and alloys drops abruptly to zero when

the sample is cooled to adequate temperature, regularly in the fluid helium temperature

range. This marvel is called superconductivity and was initially seen by Kamerlingh

Onnes in 1911. At critical temperature, Tc the example experiences a phase transition

from a state of ordinary electrical resistivity to superconducting state. In the

superconducting state the de electrical resistivity is zero, or so close to zero that

electrical current have been seen to flow without constriction in superconducting ring.

Other vital property of superconductors was found in 1933 by Meissner and

Ochsenfeld. One would expect, because of the ideal conductivity, that magnetic flux

ought to be prohibited from entering a superconductor, additionally it was found that

flux was ousted from the material as it was cooled through its critical temperature. This

marvel is called 'Meissner' effect. Ginzburg-Landau hypothesis was. created in 1950,

which characterizes two parameters which are the London magnetic field penetration

1

Page 16: 1 2 - umpir.ump.edu.my

-~--- ----------~---~--

depth (A.) and the superconducting coherence length (~. In 1957, BCS hypothesis was

pro4uced to clarify the superconductivity.

There are two types of superconductors which are Type I and Type II. In Type I,

superconductors that has single critical field Be, superconductivity is demolished by

method . for a first order phase transition when the nature of the associated field rises

above He. This type of superconductivity regularly appears in metals, e.g. aluminum,

lead, and mercury. Type II superconductor has two critical field, Bc1 and higher critical

field, Be2, The lower critical field Bel happens when appealing flux vortices invade the

material however the material stays superconducting outside of these microscopic

vortices. Exactly when the vortex thickness gets the opportunity to be excessively

sweeping, the entire material gets, making it impossible to be non-superconducting, this

identifies with the second, higher critical field Be2· In a type II superconductor, the

understandability length is smaller than the passage significance. Type II

superconductors are ordinarily made of meta1. mixes or complex oxide ceramic

generation. All high temperature superconductors are type II superconductors.

Ginzburg-Landau proposes that for Type-I; f < .Jz while for Type-II; f > .Jz. ·

The superconductor utilized as a part of this study is a type II superconductor YBCO

(YBa2Cu307) which was found by Maw-Kuen Wu and Chu Ching-Wu in 1987. YBCO

has Tc higher than the breaking point of fluid nitrogen. A few nanoparticles have been

included YBa2Cu307 superconductor to go about as pinning centers with a specific end

goal to enhance flux pinning capacity. As indicated by Lyuksyutov (1999) nanoparticles

with size bigger than superconducting coherence length, ~ and smaller than London

magnetic field penetration depth, A, ofYBCO have been recommended to build Je.

2

Page 17: 1 2 - umpir.ump.edu.my

Figure 1.1 Type I superconductor

(Sources: hyperphysics.phy-astr.gsu. edu)

Figure 2 Type· II superconductor

(Sources: hyperphysics.phy-astr.gsu. edu)

3

Page 18: 1 2 - umpir.ump.edu.my

REFERENCES

Abd-Ghani, S. N., Abd-Shukor, R., & Kong, W. (2012). Effects ofFe304 nano particles addition in high temperature superconductor YBa2Cu301-o· Advanced Materials Research, val. 501, 309-313

Abd-Shukor, R., & Kong, W. (2009). Effect of magnetic nanoparticels Fe304 on the transport current properties ofBi-Sr-Ca-Cu-0 superconductor tapes. Journal of Applied Physics, vall 05, no 7, Article ID 07E311-2.

Earnshaw A. and Greenwood N. N., (1997). Chemistry of Elements (2nd Edition) Morroco. Elseveir Ltd.

H. Green and B.G. Bagely, Physical Properties of High Temperature Superconductors, edited by D.M Ginsburg. (1990) World Scientific, Singapore

LF. Lyuksyutov and V.L. Pokrovsky, Superconducting Superlattices II: Native and Artificial, Vol. 3480 (Eds. Ivan Bozovic and Davor Pavuna), PIE­International Society B 59, (1999) 14099

K Develos-Bagarinao, Y Nakagawa, Y Mawatari, (2003), Flux pinning centers correlated along the c-axis in PLD YBCO films, 2004 lOP Publishing Ltd

Lin Chun-Liang, Fu Tsu-Yi, Tsay Sung-Lin, 2008. "Reconstructed structures of nanosized co islands on Ag/Ge(111) mean square root of 3 x mean square root of3 surfaces." Journal ofnanoscience and nanotechnology 8 (2): 608-12.

Saxena A. K. (2012). High Temperature Superconductors (2nd Edition). New York. Springer

Sozeri H., Ozkan H. and Ghazanfar N. (2007). Properties of YBCO superconductors prepared by ammonium nitrate melt and solid state reaction methods. Journal of Alloy and Compounds 428(1-2): 1-7

V. Pan, in: R. Kossowsky, S. Bose, V. Pan, Z. Durusoy (Eds.), Physics and Materials Science of Vortex States, Flux Pinning and Dynamics, NATO Advanced Studies Institute, Series B: Physics, Vol. 26, Plenum, New York, 1999, p. 1.

Wildad M. Faisal, Salwan K. J., Al-ani, Int. J. The Influence of aluminium doping, Nanoelectronics and Materials 6 (2013)

Wu M.K., Ashburn J.R., Tomg C.J., Hor P.H., Meng K.L., GaoL., Huang Z.J., Wang Y.Q. and Chu C.W. (1987). Superconductivity at 93 Kin a new mixed-phased Y-Ba-Cu-0 compound system at ambient pressure. Phys. Rev. Lett. 58:908-910

43