1-1 number theory (presentation)

37
Unit 1 Functions and Relations 1‐1 Number Theory Number Systems Rational and Irrational Numbers 1‐2 Functions and Linear Graphs Functions and Function Notation 1‐1 and Onto Graphing 1‐3 Equations and Inequalities Solving Linear and Quadratic Equations and Inequalities Solving for a Variable

Upload: sandra-miller

Post on 10-Apr-2015

340 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 1-1 Number Theory (Presentation)

Unit 1 Functions and Relations

1‐1  Number TheoryNumber SystemsRational and Irrational Numbers

1‐2  Functions and Linear GraphsFunctions and Function Notation1‐1 and OntoGraphing

1‐3  Equations and InequalitiesSolving Linear and Quadratic Equations and InequalitiesSolving for a Variable

Page 2: 1-1 Number Theory (Presentation)

1‐1 Number Theory

Unit 1 Functions and Relations

Page 3: 1-1 Number Theory (Presentation)

Concepts and Objectives

Number Theory (Obj. #1)Identify subsets of real numbersSimplify expressions using order of operationsIdentify real number axioms

Rational Numbers (Obj. #2)Convert between fractions and decimals

Page 4: 1-1 Number Theory (Presentation)

Number Systems

What we currently know as the set of real numbers was only formulated around 1879.  We usually present this as sets of numbers.

Page 5: 1-1 Number Theory (Presentation)

Number Systems

The set of natural numbers ( ) and the set of integers ( ) have been around since ancient times, probably prompted by the need to maintain trade accounts.  Ancient civilizations, such as the Babylonians, also used ratios to compare quantities.One of the greatest mathematical advances was the introduction of the number 0.  

Page 6: 1-1 Number Theory (Presentation)

Properties of Real Numbers

Closure Propertya + b ∈ab ∈

Commutative Propertya + b = b + aab = ba

Associative Property(a + b) + c = a + (b + c)(ab)c = a(bc)

Identity Propertya + 0 = aa i 1 = a

Inverse Propertya + (–a) = 0

Distributive Propertya(b + c) = ab + ac

For all real numbers a, b, and c:

i 1    =1 aa

Page 7: 1-1 Number Theory (Presentation)

Properties of Real Numbers

The properties are also called axioms.0 is called the additive identity and 1 is called the multiplicative identity.Notice the relationships between the identities and the inverses (called the additive inverse and the multiplicative inverse).Saying that a set is “closed” under an operation (such as multiplication) means that performing that operation on numbers in the set will always produce an answer that is also in the set – there are no answers outside the set.

Page 8: 1-1 Number Theory (Presentation)

Properties of Real Numbers

ExamplesThe set of natural numbers ( ) is not closed under the operation of subtraction.  Why?

–20 ÷ 5 = –4.  Does this show that the set of integers is closed under division?

Page 9: 1-1 Number Theory (Presentation)

Properties of Real Numbers

ExamplesThe set of natural numbers ( ) is not closed under the operation of subtraction.  Why?

5 – 7 = –2, which is not in  .

–20 ÷ 5 = –4.  Does this show that the set of integers is closed under division?

No.  Any division that has a remainder is not in  .

Page 10: 1-1 Number Theory (Presentation)

Order of Operations

Parentheses (or other grouping symbols, such as square brackets or fraction bars) – start with the innermost set, following the sequence below, and work outward.ExponentsMultiplicationDivisionAdditionSubtraction

working from left to right

working from left to right

Page 11: 1-1 Number Theory (Presentation)

Order of Operations

Use order of operations to explain why

( )− ≠ −2 23 3

Page 12: 1-1 Number Theory (Presentation)

Order of Operations

Use order of operations to explain why

We can think of –3 as being –1 i 3.  Therefore we have

It should be easier now to see that on the left side we multiply first and then apply the exponent, and on the right side, we apply the exponent and then multiply.

( )− ≠ −2 23 3

( )− ≠ −i i2 21   3 1   3

Page 13: 1-1 Number Theory (Presentation)

Order of Operations

Work the following examples without using your calculator.

1.

2.

3.

− + ÷i2   5 12 3

( ) ( )( )− − + −34 9 8 7 2

( )( )( )

− + − − ÷− −

8 4 6 124 3

Page 14: 1-1 Number Theory (Presentation)

Order of Operations

Work the following examples without using your calculator.

1.

2.

3.

− + ÷i2   5 12 3

( ) ( )( )− − + −34 9 8 7 2

( )( )( )

− + − − ÷− −

8 4 6 124 3

1.  –6

2.  –60  

−63.  7

Page 15: 1-1 Number Theory (Presentation)

Absolute Value

The absolute value of a real number a, denoted by |a|, is the distance from 0 to a on the number line.  This distance is always taken to be nonnegative.

        if  0     if  0

x xx

x x

≥⎧= ⎨− <⎩

Page 16: 1-1 Number Theory (Presentation)

Absolute Value Properties

For all real numbers a and b:1.

2.

3.

4.

5.

≥0a

− =a a

=i   a b ab

= ≠ ( 0)a a

bb b

+ ≤ +a b a b

Page 17: 1-1 Number Theory (Presentation)

Absolute Value

Example: Rewrite each expression without absolute value bars.

1.

2.

3.

3 1−

2−π

,  if  0x

xx

<

Page 18: 1-1 Number Theory (Presentation)

Absolute Value

Example: Rewrite each expression without absolute value bars.

1.

2.

3.

3 1−

2−π

,  if  0x

xx

<

−1.   3 1

2.  π – 2

3.  –1

Page 19: 1-1 Number Theory (Presentation)

Rational Numbers

The Greeks, specifically Pythagoras of Samos, originally believed that the lengths of all segments in geometric objects could be expressed as ratios of positive integers.A number is a rational number ( ) if and only if it can be expressed as the ratio (or quotient) of two integers.Rational numbers include decimals as well as fractions.  The definition does not require that a rational number must be written as a quotient of two integers, only that it can be.

Page 20: 1-1 Number Theory (Presentation)

Examples

Example:  Prove that the following numbers are rational numbers by expressing them as ratios of integers.

1. 2‐4  4.

2. 64‐½ 5.

3. 6. –5.4322986ππ4

20.3

0.96.3

Page 21: 1-1 Number Theory (Presentation)

Examples

Example:  Prove that the following numbers are rational numbers by expressing them as ratios of integers.

1. 2‐4  4.

2. 64‐½ 5.

3. 6. –5.4322986ππ4

20.3

0.96.3

116

18

4

17

=1 61203 3

−5432298610000000

Page 22: 1-1 Number Theory (Presentation)

Irrational Numbers

Unfortunately, the Pythagoreans themselves later discovered that the side of a square and its diagonal could not be expressed as a ratio of integers.

Prove        is irrational.Proof (by contradiction):  Assume         is rational.  This means that there exist relatively prime integers a and bsuch that

22

= ⇒ =2

22 2a ab b=2 22 ,  therefore,   is evenb a a

Page 23: 1-1 Number Theory (Presentation)

Irrational Numbers

This means there is an integer j such that 2j=a.

If a and b are both even, then they are not relatively prime.  This is a contradiction.  Therefore,         is irrational.

Theorem:  Let n be a positive integer.  Then         is either an integer or it is irrational.

( )222 2b j=2 22 4b j=

2 22  is evenb j b= ⇒

2

n

Page 24: 1-1 Number Theory (Presentation)

Real Numbers

The number line is a geometric model of the system of real numbers.  Rational numbers are thus fairly easy to represent:

What about irrational numbers?  Consider the following:

(1,1)

2

Page 25: 1-1 Number Theory (Presentation)

Real Numbers

In this way, if an irrational number can be identified with a length, we can find a point on the number line corresponding to it.What this emphasizes is that the number line is continuous—there are no gaps.

Page 26: 1-1 Number Theory (Presentation)

Intervals

ba

ba

ba ba

ba

ba

Name of Interval

NotationInequality Description

Number Line Representation

finite, open (a, b) a < x < bfinite, closed [a, b] a ≤ x ≤ bfinite, half­open (a, b]

[a, b)a < x ≤ ba ≤ x < b

infinite, open (a, ∞)(‐∞, b)

a < x < ∞‐∞ < x < b

infinite, closed

[a, ∞)(‐∞, b]

a ≤ x < ∞‐∞< x ≤ b

ba

ba

ba

ba

b

a

b

a

Page 27: 1-1 Number Theory (Presentation)

Finite and Repeating Decimals

If a nonnegative real number x can be expressed as a finite sum of of the form

where D and each dn are nonnegative integers and           0 ≤ dn ≤ 9 for n = 1, 2, …, t, then D.d1d2…dt is the finite decimal representing x.

1 22 ...

10 10 10

t

t

d d dx D= + + + +

Page 28: 1-1 Number Theory (Presentation)

Finite and Repeating Decimals

If the decimal representation of a rational number does not terminate, then the decimal is periodic (or repeating).  The repeating string of numbers is called the period of the decimal.It turns out that for a rational number        where b > 0, the period is at most b – 1.

ab

Page 29: 1-1 Number Theory (Presentation)

Finite and Repeating Decimals

Example: Use long division (yes, long division) to find 

the decimal representation of             and find its period.

What is the period of this decimal?

46213

Page 30: 1-1 Number Theory (Presentation)

Finite and Repeating Decimals

Example: Use long division (yes, long division) to find 

the decimal representation of             and find its period.

What is the period of this decimal?

46213

462 35.53846113

=

6

Page 31: 1-1 Number Theory (Presentation)

Finite and Repeating Decimals

The repeating portion of a decimal does not necessarily start right after the decimal point.  A decimal which starts repeating after the decimal point is called a simple­periodic decimal; one which starts later is called a delayed­periodic decimal.

1 2 30. ... td d d d ≠( 0)td

0.3, 0.142857, 0.1, 0.09, 0.0769231 2 30. ... pd d d d

0.16, 0.083, 0.0714285, 0.06 1 2 3 1 2 30. ... ...t t t t t pd d d d d d d d+ + + +

Type of Decimal Examples General Form

terminating 0.5, 0.25, 0.2, 0.125, 0.0625

simple­periodic

delayed­periodic

Page 32: 1-1 Number Theory (Presentation)

Decimal Representation

If we know the fraction, it’s fairly straightforward (although sometimes tedious) to find its decimal representation.  What about going the other direction?  How do we find the fraction from the decimal, especially if it repeats?We’ve already seen how to represent a terminating decimal as the sum of powers of ten.  More generally, we can state that the decimal 0.d1d2d3…dt can be written as

, where M is the integer d1d2d3…dt.10tM

Page 33: 1-1 Number Theory (Presentation)

Decimal Representation

For simple‐periodic decimals, the “trick” is to turn them into fractions with the same number of 9s in the denominator as there are repeating digits and simplify:

To put this more generally, the decimal                         

can be written as the fraction                 , where M is the 

integer d1d2d3…dp.

3 10.39 3

= =9 10.0999 11

= =153846 20.153846999999 13

= =

1 2 30. ... pd d d d

10 1p

M−

Page 34: 1-1 Number Theory (Presentation)

Decimal Representation

For delayed‐periodic decimals, the process is a little more complicated.  Consider the following:

What is the decimal representation of         ?

is the product of what two fractions? 

Notice that the decimal representation has characteristics of each factor.

112

0.083

112 i1 1 

4 3

Page 35: 1-1 Number Theory (Presentation)

Decimal Representation

It turns out you can break a delayed‐periodic decimal into a product of terminating and simple‐periodic decimals, so the general form is also a product of the general forms:  

The decimal                                                      can be written 

as the fraction                           , where N is the integer            

d1d2d3…dtdt+1dt+2dt+3…dt+p – d1d2d3…dt .

1 2 3 1 2 30. ... ...t t t t t pd d d d d d d d+ + + +

( )−10 10 1t p

N

Page 36: 1-1 Number Theory (Presentation)

Decimal Representation

Example: Convert the decimal                              to a fraction.

0.467988654

Page 37: 1-1 Number Theory (Presentation)

Decimal Representation

Example: Convert the decimal                              to a fraction.

It’s possible this might reduce, but we can see that there are no obvious common factors (2, 3, 4, 5, 6, 8, 9, or 10), so it’s okay to leave it like this. 

0.467988654

( )−

= =−3 6

467988654 467 4679881870.46798865499999900010 10 1