09park_phdpres

59
7/21/2009 Potential-based Fracture Mechanics Using Cohesive Zone and Virtual Internal Bond Modeling Kyoungsoo Park Advisor /Co-advisor : Glauci o H. Paulino / Jeffery R. Roesler Department of Civil & Environmental Engineering University of Illinois at Urbana-Champaign Dissertation Defense

Upload: kishore-shetty

Post on 19-Oct-2015

8 views

Category:

Documents


0 download

DESCRIPTION

VIB

TRANSCRIPT

  • 7/21/2009

    Potential-based Fracture Mechanics Using Cohesive Zone and Virtual

    Internal Bond Modeling

    Kyoungsoo Park

    Advisor/Co-advisor: Glaucio H. Paulino / Jeffery R. RoeslerDepartment of Civil & Environmental EngineeringUniversity of Illinois at Urbana-Champaign

    Dissertation Defense

  • 7/21/2009 2Kyoungsoo Park ([email protected])

    Micro-Branching Experiment

    Sharon E, Fineberg J. Microbranching instability and the dynamic fracture of brittle materials. Physical Review B 1996; 54(10):71287139.

  • 7/21/2009 3Kyoungsoo Park ([email protected])

    Cohesive Zone Modeling

    Constitutive Relationship of Cohesive Fracture Non-potential based-model vs. Potential based-model

    Computational Methods Cohesive surface elements, enrichment functions,

    embedded discontinuities

    Macro-crack tip

    Voids and micro-cracks

    Macro-crack tip

    nT

    max

    Wells, G. N., Sluys, L. J., 2001. A new method for modelling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 50 (12), 26672682. Jirasek, M., 2000. Comparative study on finite elements with embedded discontinuities. Computer Methods in Applied Mechanics and Engineering 188 (1-3), 307330. Linder, C., Armero, F., 2009. Finite elements with embedded branching. Finite Elements in Analysis and Design 45 (4), 280293.

  • 7/21/2009 4Kyoungsoo Park ([email protected])

    Contents

    Introduction (Ch. 1) Potential-based Cohesive Model (Ch. 3) Quasi-Static Fracture (Ch. 5) Particle/matrix debonding

    Dynamic Fracture Problems (Ch. 4, 6, 7) Computational framework Micro-branching and fragmentation Mode I predefined crack, mixed-mode and branching

    Virtual Internal Pair-Bond (VIPB) Model (Ch. 2) Summary (Ch. 8)

  • 7/21/2009 5Kyoungsoo Park ([email protected])

    Potentials for Cohesive Fracture Needleman, A. (1987)

    Polynomial potential / linear shear interaction Needleman, A. (1990)

    Exponential potential / periodic dependence Beltz, G.E. and Rice, J.R. (1991)

    Generalized the potential (Exponential + Sinusoid) Xu, X.P. and Needleman, A. (1993)

    Exponential potential (Exponential + Exponential) Park, K., Paulino, G.H. and Roesler, J.R. (2009) PPR

    Polynomial potential (Polynomial + Polynomial)

    Beltz GE and Rice JR, 1991, Dislocation nucleation versus cleavage decohesion at crack tip, Modeling the Deformation of Crystalline Solids, 457-480.

    Needleman A. 1990, An analysis of tensile decohesion along an interface, Journal of the Mechanics and Physics of Solid, 3, 289-324

    Needleman A. 1987, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics, 54, 525-531

    Xu XP and Needleman, 1993, Void nucleation by inclusion debonding in a crystal matrix, Modeling Simulation Material Science Engineering, 1, 111-132. Park K, Paulino GH, Roesler JR, 2009, A unified potential-based cohesive model of mixed-mode fracture, Journal of the Mechanics and Physics of Solids 57, 891-908.

  • 7/21/2009 6Kyoungsoo Park ([email protected])

    1. Needleman A. (1987)

    Polynomial Potential

    Cohesive Relationship

    :n n

    0n tT T= s: shear stiffness parametermax9 / 16n n =

    ( ) max0, / 3n nT =Shear dependence linearDisplacement jump small

    Needleman A. 1987, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics, 54, 525-531

    :n n >

  • Mode IIMode I

    max 30MPa =100 /n N m =

    10s =

  • 7/21/2009 8Kyoungsoo Park ([email protected])

    Exponential Potential with Periodic Dependence

    Motivation Universal binding energy (Normal direction)

    Periodicity of the underlying lattice (Tangential direction)

    Cohesive Relationship

    2. Needleman A. (1990)

    ( ) ( ) ( )1 expE a a a = + Rose JH, Rerrante J and Smith JR, 1981, Universal binding energy curves for metals and bimetallic interfaces, Physical Review Letters, 47, 675-678

    Needleman A. 1990, An analysis of tensile decohesion along an interface, Journal of the Mechanics and Physics of Solid, 3, 289-324

  • max

    nn

    ze

    =

    16 / 9z e=

    / zn / 4t

    n t =1/ 2s ez =

    Mode IIMode I

    max 30MPa =100 /n N m =

  • 7/21/2009 10Kyoungsoo Park ([email protected])

    3. Beltz G.E. and Rice J.R. (1991)

    Cohesive Relationship Normal direction: Exponential Tangential direction: Sinusoid Boundary Condition + Exact differential (Potential)

    Beltz GE and Rice JR, 1991, Dislocation nucleation versus cleavage decohesion at crack tip, Modeling the Deformation of Crystalline Solids, 457-480.

    ( )lim , 0n n tn T =( )lim , 0t n tn T =

    2 expn n

    n nnn

    T = Universal bonding correlation.

    Rose JH, Rerrante J and Smith JR, 1981, Universal binding energy curves for metals and bimetallic interfaces, Physical Review Letters, 47, 675-678

    ( )/2

    lim , 0n n tt b T

    ( )/2

    lim , 0t n tt b T = Introduce additional condition n* instead of ( )/2lim , 0n n tt b T =( ) ( ) ( ) */*, / 2 / 2 * / 2 0n nn n nT b B b C b e = =

  • 7/21/2009 11Kyoungsoo Park ([email protected])

    3. Beltz G.E. and Rice J.R. (1991)

    Solve PDE with BCs

    2us

    s

    q =

    *nn

    r =

    ( ) ( ) ( )1 expE a a a = + Rose JH, Rerrante J and Smith JR, 1981, Universal binding energy curves for metals and bimetallic interfaces, Physical Review Letters, 47, 675-678

    ( )0 0C =( )lim , 0n n tn T = ( )lim , 0t n tn T =

  • * 0nn

    r = =

    n* is the value of n after shearing to the state t =b/2 under conditions of zero tension, Tn=0 (i.e. relaxed shearing)

    / zn / 4t

    Mode IIMode I

    max

    max

    3040

    MPaMPa

    ==

    100 /200 /

    n

    t

    N mN m

    ==

    ( ) ( ) ( ) */*, / 2 / 2 * / 2 0n nn n nT b B b C b e = =

  • 7/21/2009 13Kyoungsoo Park ([email protected])

    4. Xu X.P. and Needleman A. (1993)

    Cohesive Relationship Normal direction: Exponential Tangential direction: Exponential Boundary Condition

    Xu XP and Needleman, 1993, Void nucleation by inclusion debonding in a crystal matrix, Modeling Simulation Material Science Engineering, 1, 111-132.

    ( ) 2 2exp( / )tt n t tt

    T A =

    ( ) ( ) exp( / )n t n t n nT B C =

    ( )0

    ,0 = n n n nT d ( )0 0,t t t tT d = ( )0 0C =( )lim , 0n n tt T

    Introduce additional condition n* instead of ( )lim , 0n n tt T =( ) =lim *, 0t n n tT

    ( )lim , 0n n tn T = ( )lim , 0t n tn T = ( )lim , 0t n tt T =

  • 0nn

    r = =

    ( )lim , 0n n tt T < Mode IIMode I

    max

    max

    3040

    MPaMPa

    ==

    100 /200 /

    n

    t

    N mN m

    ==

    14

  • 7/21/2009 15Kyoungsoo Park ([email protected])

    Previous Potential Boundary condition is not symmetric Vague fracture parameter, r (or n*) Okay if fracture energies

    are the same

    Complete separation at infinity Could not control initial slope Large compliance

    Proposed Potential Expressed by a single function Different fracture energy : Different cohesive strength : Different cohesive law: Different initial slope :

    ,n t

    Remarks

    max max,

    ,n t ,

    ( )lim , 0n n tt T

  • 7/21/2009 16Kyoungsoo Park ([email protected])

    Boundary Conditions

    Various material behavior, i.e.Plateau-typeBrittle materialQuasi-brittle material

    <

  • 7/21/2009 17Kyoungsoo Park ([email protected])

    PPR: Unified Mixed Mode Potential

    Energy Constants: n and t Exponents: m and n

    Characteristic length scales: n and t Shape parameters : and K. Park, GH. Paulino, JR. Roesler, 2009, A unified potential-based cohesive model of mixed-mode fracture, Journal of the Mechanics and Physics of Solids 57, 891-908.

    Fracture energy Cohesive strength Cohesive interaction shape Initial slope

  • 7/21/2009 18Kyoungsoo Park ([email protected])

    Softening Region

  • Fracture energy Cohesive strength Cohesive interaction shape Initial slope

    0.2t =1.3 =

    0.1n =5 =

    Mode IIMode I

    max 30MPa =100 /n N m = 200 /t N m =

    max 40MPa =

    19

  • 7/21/2009 20Kyoungsoo Park ([email protected])

    Correct Limit Procedure Limit of initial slope indicators in the potential

    Energy constants: n and t Characteristic length scales: n and t Shape parameters: and

    Exclude elastic behavior Extrinsic model Consider different fracture energy: Describe different cohesive strength: Represent various cohesive shape: ,

    Extension for the EXTRINSIC Model

    max max,

    ,n t

  • 7/21/2009 21Kyoungsoo Park ([email protected])

    Softening Region

  • Mode IIMode I

    max 30MPa =100 /n N m = 200 /t N m =

    max 40MPa =1.3 =5 =

    22

  • 7/21/2009 23Kyoungsoo Park ([email protected])

    Remarks

    Consistent boundary condition Fracture parameters

    Energy, strength, shape, slope

    Intrinsic/Extrinsic cohesive zone modeling Path dependence of work-of-separation

    Proportional path Non-proportional path

    Unloading/reloading relationship is independent of the potential-based model Coupled unloading/reloading relationship Uncoupled unloading/reloading relationship

  • 7/21/2009 24Kyoungsoo Park ([email protected])

    Contents

    Introduction Potential-based Cohesive Model Quasi-Static Fracture Particle/matrix debonding

    Dynamic Fracture Problems Computational framework Micro-branching and fragmentation Mode I predefined crack, mixed-mode and branching

    Virtual Internal Pair-Bond (VIPB) Model Summary

  • 7/21/2009 25Kyoungsoo Park ([email protected])

    Particle/Matrix Debonding

    Macroscopic Constitutive Relationship

    Micromechanics Extended Mori-Tanaka Method

    Hydro-static state Interface debonding of cohesive constitutive relationship

    Computational Method Cohesive surface elements

    Tan, H., Huang, Y., Liu, C., Ravichandran, G., Paulino, G. H., 2007. Constitutivebehaviors of composites with interface debonding: The extended Mori-Tanakamethod for uniaxial tension. International Journal of Fracture 146 (3), 139148.

  • 7/21/2009 26Kyoungsoo Park ([email protected])

    Finite Element Analysis

    Equi-biaxial Tension

    Assumptions Reduced to 2D Problem

    Plane strain

    Quarter domain Symmetry boundary conditions of unit cell

    Poissons ratio = 0.25 Cohesive surface elements are inserted along the

    interface

  • 7/21/2009 27Kyoungsoo Park ([email protected])

    XX

    Finite Element Mesh

    E = 122 GPa

    v = 0.25

    a = 2 mm

    b = 2.29 mm

    f = 60 %a

    b

    X

    Y

    Z X

    Y

    Z

  • 7/21/2009 28Kyoungsoo Park ([email protected])

    Effect of Cohesive Strength

    D. Ngo, K. Park, G.H. Paulino, and Y. Huang, 2009, On the constitutive relation of materials with microstructure using the PPR potential-based cohesive model for interface interaction, Engineering Fracture Mechanics (submitted).

    Particle size: 100 m Particle size: 2 mm

    Micromechanics (Analytical)

  • 7/21/2009 29Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 1

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 30Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 2

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 31Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 3

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 32Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 4

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 33Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 5

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 34Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 6

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 35Kyoungsoo Park ([email protected])

    0

    5

    10

    15

    20

    25

    30

    0 0.01 0.02 0.03

    Avergaedhorizontalvertical

    Average strain (%)

    A

    v

    e

    r

    a

    g

    e

    s

    t

    r

    e

    s

    s

    (

    M

    P

    a

    )

    Debonding Process 7

    G (N/m)

    Tmax(MPa) Shape Slope

    5 25 3 0.04

    Fracture Parameters

  • 7/21/2009 36Kyoungsoo Park ([email protected])

    Contents

    Introduction Potential-based Cohesive Model Quasi-Static Fracture Particle/matrix debonding

    Dynamic Fracture Problems Computational framework Micro-branching and fragmentation Mode I predefined crack, mixed-mode and branching

    Virtual Internal Pair-Bond (VIPB) Model Summary

  • 7/21/2009 37Kyoungsoo Park ([email protected])

    Nodal Perturbation

    Edge-Swap

    Topological Operators

    0.0 0.1 0.3

    K. Park, G.H. Paulino, W. Celes, and R. Espinha, 2009, Adaptive dynamic cohesive fracture simulation using edge-swap and nodal perturbation operators, International Journal for Numerical Methods in Engineering (submitted).

  • 7/21/2009 38Kyoungsoo Park ([email protected])

    Adaptive Mesh Refinement & Coarsening

    Edge-Split Adaptive mesh refinement based on a priori knowledge

    Vertex-Removal (or Edge-Collapse) Adaptive mesh coarsening based on a posteriori error

    estimation, i.e. root mean square of strain error

    K. Park, G.H. Paulino, W. Celes, and R. Espinha, 2009, Adaptive mesh refinement and coarsening for cohesive dynamic fracture, (in preparation).

  • 7/21/2009 39Kyoungsoo Park ([email protected])

    Topology-based Data Structure (TopS)

    Complete Topological Data & Reduced Representation Support for Adaptive Analysis Client-Server Architecture

    Separate computational mechanics from data representation

    W. Celes, G.H. Paulino, R. Espinha, 2005, A compact adjacency-based topological data structure for finite element mesh representation, IJNME 64(11), 1529-1556 G. H. Paulino, W. Celes, R. Espinha, Z. Zhang, 2008, A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes, EWC 24, 59-78 K. Park, G.H. Paulino, W. Celes, and R. Espinha, 2009, Adaptive dynamic cohesive fracture simulation using edge-swap and nodal perturbation operators, International Journal for Numerical Methods in Engineering (submitted).

    Client(Analysis code)

    Server(TopS)

    API functions

    Callback functions

  • 7/21/2009 40Kyoungsoo Park ([email protected])

    Explicit Time Integration

    Initialization: displacement, velocity, accelerationfor n = 0 to nmax do

    Update displacement: Adaptive mesh coarsening (vertex-removal) Check the insertion of cohesive element (edge-swap) Update acceleration: Update velocity: Update boundary conditions Adaptive mesh refinement (edge-split, nodal perturbation)

    end

  • 7/21/2009 41Kyoungsoo Park ([email protected])

    Micro-Branching Experiment

    1 mm

    0

    4 mm

    16 mm

    Sharon E, Fineberg J. Microbranching instability and the dynamic fracture of brittle materials. Physical Review B 1996; 54(10):71287139.

  • 7/21/2009 42Kyoungsoo Park ([email protected])

    Computational Results

    0 = 0.010

    0 = 0.012

    0 = 0.015

  • 7/21/2009 43Kyoungsoo Park ([email protected])

    Computational Results

    Crack Velocity Energy Evolution (0=0.015)

  • 7/21/2009 44Kyoungsoo Park ([email protected])

    Fragmentation Problem

  • 7/21/2009 45Kyoungsoo Park ([email protected])

    Computational Results

  • 7/21/2009 46Kyoungsoo Park ([email protected])

    Mode I Pre-defined Crack Propagation

    Predefined path

    4k mesh

    E v GI Tmax3.24 GPa 0.35

    1190 kg/m3

    352 N/m

    324 MPa

  • 7/21/2009 47Kyoungsoo Park ([email protected])

    Computational Results Uniform Mesh Refinement

    400x40 mesh grid Element size: 5m 64000 elements, 128881 nodes

    Adaptive Mesh Refinement 100x10 mesh grid Element size: 20~5m 4448 elements, 9147 nodes

  • 7/21/2009 48Kyoungsoo Park ([email protected])

    Computational Results (AMR)

  • 7/21/2009 49Kyoungsoo Park ([email protected])

    Computational Results (AMR+C)

  • 7/21/2009 50Kyoungsoo Park ([email protected])

    Mixed-Mode Crack Propagation

    Kalthoff-Winklers Experiments

    25 mm

    1

    0

    0

    m

    m

    100 mm

    v0

    v0

    100 mm

    50 mm

    5

    0

    m

    m

    7

    5

    m

    m

    2

    0

    0

    m

    m

    Kalthoff, J. F., Winkler, S., 1987. Failure mode transition at high rates of shear loading. International Conference on Impact Loading and Dynamic Behavior of Materials 1, 185195.

  • 7/21/2009 51Kyoungsoo Park ([email protected])

    Finite Element Mesh

    Initial Discretization

    Animations (FE Mesh & Strain energy)

  • 7/21/2009 52Kyoungsoo Park ([email protected])

    Computational Results

    Crack Path Crack Velocity

    Belytschko, T., Chen, H., Xu, J., Zi, G., 2003. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering 58 (12), 18731905.

    Previous results (X-FEM)

  • 7/21/2009 53Kyoungsoo Park ([email protected])

    Branching Problem

    1.5 MPa

    Elastic modulus: 32GPa

    Poissons ratio: 0.2

    Density: 2450 kg/m3

    Fracture energy: 3N/m

    Cohesive strength: 12 MPa

  • 7/21/2009 54Kyoungsoo Park ([email protected])

    Computational Results

  • 7/21/2009 55Kyoungsoo Park ([email protected])

    Contents

    Introduction Potential-based Cohesive Model Quasi-Static Fracture Particle/matrix debonding

    Dynamic Fracture Problems Computational framework Micro-branching and fragmentation Mode I predefined crack, mixed-mode and branching

    Virtual Internal Pair-Bond (VIPB) Model Summary

  • 7/21/2009 56Kyoungsoo Park ([email protected])

    Summary

    The potential-based constitutive model Consistent boundary conditions Physical fracture parameters

    Adaptive operators Insertion of cohesive elements (Extrinsic model) Nodal perturbation, Edge-swap Edge-split, Vertex-removal

    Effective and efficient computational framework to simulate physical phenomena associated with quasi-static fracture, dynamic fracture, branching, and fragmentation problems

  • 7/21/2009 57Kyoungsoo Park ([email protected])

    Contributions K. Park, G.H. Paulino, and J.R. Roesler, 2009, A unified potential-based cohesive model of mixed-mode

    fracture, Journal of the Mechanics and Physics of Solids 57 (6), 891-908. D. Ngo, K. Park, G.H. Paulino, and Y. Huang, 2009, On the constitutive relation of materials with

    microstructure using the PPR potential-based cohesive model for interface interaction, Engineering Fracture Mechanics (submitted).

    K. Park, G.H. Paulino, W. Celes, and R. Espinha, 2009, Adaptive dynamic cohesive fracture simulation using edge-swap and nodal perturbation operators, International Journal for Numerical Methods in Engineering (submitted).

    K. Park, G.H. Paulino, W. Celes, and R. Espinha, 2009, Adaptive mesh refinement and coarsening for cohesive dynamic fracture, (in preparation).

    K. Park, G.H. Paulino, and J.R. Roesler, 2008, Virtual internal pair-bond model for quasi-brittle materials, Journal of Engineering Mechanics-ASCE 134 (10), 856-866.

    K. Park, J.P. Pereira, C.A. Duarte, and G.H. Paulino, 2009, Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems, International Journal for Numerical Methods in Engineering 78 (10), 1220-1257.

    K. Park, G.H. Paulino, and J.R. Roesler, 2008, Determination of the kink point in the bilinear softening model for concrete, Engineering Fracture Mechanics 75 (13), 3806-3818.

    J.R. Roesler, G.H. Paulino, K. Park, and C. Gaedicke, 2007, Concrete fracture prediction using bilinear softening, Cement & Concrete Composites 29 (4), 300-312.

    J.R. Roesler, G.H. Paulino, C. Gaedicke, A. Bordelon, and K. Park, 2007, Fracture behavior of functionally graded concrete materials (FGCM) for rigid pavements, Transportation Research Record 2037, 40-49.

    K. Park, G.H. Paulino, and J.R. Roesler, 2009, Cohesive fracture modeling of functionally graded fiber reinforced concrete composite, ACI Materials Journal (submitted).

  • 7/21/2009 58Kyoungsoo Park ([email protected])

    Acknowledgements

    Advisor/Co-advisor Glaucio H. Paulino / Jeffery R. Roesler

    Committee Glaucio H. Paulino, Jeffery R. Roesler, Yonggang Huang, C. Armando Duarte,

    Robert B. Haber, Karel Matous, Spandan Maiti, Waldemar Celes Micromechanics

    Yonggang Huang, Duc Ngo Topological Data Structure

    Waldemar Celes, Rodrigo Espinha Fanatical Support

    National Science Foundation (NSF) Federal aviation of administration (FAA)

    Former/present group members and colleagues Special thanks to Younhee Ko

  • 7/21/2009 59Kyoungsoo Park ([email protected])

    Thank you for your attention !

    Potential-based Fracture Mechanics Using Cohesive Zone and Virtual Internal Bond ModelingMicro-Branching ExperimentCohesive Zone ModelingContentsPotentials for Cohesive Fracture1. Needleman A. (1987)2. Needleman A. (1990)3. Beltz G.E. and Rice J.R. (1991)3. Beltz G.E. and Rice J.R. (1991)4. Xu X.P. and Needleman A. (1993)RemarksBoundary ConditionsPPR: Unified Mixed Mode PotentialSoftening RegionExtension for the EXTRINSIC ModelSoftening RegionRemarksContentsParticle/Matrix DebondingFinite Element AnalysisFinite Element MeshEffect of Cohesive StrengthDebonding Process 1Debonding Process 2Debonding Process 3Debonding Process 4Debonding Process 5Debonding Process 6Debonding Process 7ContentsTopological Operators Adaptive Mesh Refinement & CoarseningTopology-based Data Structure (TopS)Explicit Time IntegrationMicro-Branching ExperimentComputational ResultsComputational ResultsFragmentation ProblemComputational ResultsMode I Pre-defined Crack PropagationComputational ResultsComputational Results (AMR)Computational Results (AMR+C)Mixed-Mode Crack PropagationFinite Element MeshComputational ResultsBranching ProblemComputational ResultsContentsSummaryContributionsAcknowledgementsAdditional SlidesObjective and ScopeLimitation: Non-Potential Based ModelMixed Mode Bending TestsAnalytical SolutionsNumerical Results (Verification)Numerical Results (Verification)Work of SeparationSeparation PathProportional PathProportional PathProportional PathNon-Proportional PathsNon-Proportional PathsNon-Proportional PathsNon-Proportional PathsCoupled Unloading/ReloadingCoupled Unloading/ReloadingCoupled Unloading/ReloadingDebonding Process ADebonding Process BDebonding Process CDebonding Process DCrack Length ConvergenceResultsConvergence of LengthCrack Angle ConvergenceConvergence of AngleEdge SwapInterpolationAdaptive Mesh CoarseningTotal Energy EvolutionResult of Convergence AnalysisResult of Convergence AnalysisMicro-branching ResultsFragmentation SimulationFragmentation SimulationFragmentation SimulationMicro-branching ResultsMicro-branching ResultsKalthoff-Winklers ExperimentsKalthoff-Winklers ExperimentsVirtual Internal Bond ModelVirtual Internal Pair-Bond ModelComputational ResultFuture Work