09 arens ag chems

30
3/10/16 1 New Fumigants, Herbicides, Insecticides, and Other Agricultural Chemicals Ann Arens, MD Senior Medical Toxicology Fellow University of California – San Francisco Veteran’s Affairs Hospital Common Insecticides, Herbicides, and Fungicides Ann Arens, MD Senior Medical Toxicology Fellow University of California – San Francisco Veteran’s Affairs Hospital

Upload: dinhtram

Post on 03-Jan-2017

238 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 09 Arens Ag Chems

◆ 3/10/16

◆ 1

New Fumigants, Herbicides, Insecticides, and Other Agricultural Chemicals

Ann Arens, MD

Senior Medical Toxicology Fellow University of California – San Francisco

Veteran’s Affairs Hospital

Common Insecticides, Herbicides, and Fungicides

Ann Arens, MD

Senior Medical Toxicology Fellow University of California – San Francisco

Veteran’s Affairs Hospital

Page 2: 09 Arens Ag Chems

◆ 3/10/16

◆ 2

Disclosures

I have no disclosures

Page 3: 09 Arens Ag Chems

◆ 3/10/16

◆ 3

Introduction

u  Most commonly used agrochemicals

u  Insecticide u  Systemic insecticides

u  Neonicitionoids

u  Herbicide u  Glyphosate

u  Fungicide u  Triazoles

Page 4: 09 Arens Ag Chems

◆ 3/10/16

◆ 4

■  Nicotinic acetylcholine receptor agonists ◆  Selective for invertebrates

■  Examples:

◆  Imidacloprid and thiacloprid (Bayer CropScience)

◆  Clothianidin (Bayer CropScience and Sumitomo) ◆  Thiamethoxam (Syngenta) ◆  Aetamiprid (NipponSoda) ◆  Nitenpyram (Sumitomo) ◆  Dinotefuran (Mitsui Chemicals). ◆  Sulfoxaflor

Neonicitinoids

■  1980’s reports of resistance of pests to: ◆  Organophosphates ◆  Carbamates ◆  Pyrethroids

■  1991 – Imidacloprid market introduction ■  1999 - Thiamethoxam

◆  Clothianidin – metabolite

■  Now are included in the top 5 insecticide used worldwide

History

Page 5: 09 Arens Ag Chems

◆ 3/10/16

◆ 5

http://usgs.gov/

National

Crop Use

http://usgs.gov/

Page 6: 09 Arens Ag Chems

◆ 3/10/16

◆ 6

Use in California

Environ Sci Pollut Res (2015) 22:5–34.

Mechanism of Action

■  Nicotinic acetylcholine receptor (nAChR) agonists ◆  Specific to arthropod nicotinic AChR

✦  Different composition of nicotinic acetylcholine receptor subunits

■  Arthropods – bind to neuronal nAChR ◆  Continuous excitation of neuronal membranes ◆  Paralysis and cell energy exhaustion

■  Not affected by acetylcholinesterase ◆  Prolonged action at nAChR

Page 7: 09 Arens Ag Chems

◆ 3/10/16

◆ 7

Systemic Insecticide

■  Insecticide distributed to every part of the plant ■  Seeds are coated with 1-17 mg/kg (depending on

crop) ◆  2-20% of the insecticide is taken up into all parts of

the plant ◆  Includes flowers, pollen, nectar

✦  Up to 11-24% of pollen, 17-65% of nectar is

contaminated ✦  Pollinators are exposed – bees and butterflies

Non-Target Organism

Page 8: 09 Arens Ag Chems

◆ 3/10/16

◆ 8

Bee Colony Collapse

■  1994 – French beekeepers noticed honey bee colonies disappearing

■  2006-2007 large scale loss of managed honey bee

colonies (Apis mellifera) in the US ◆  Colony Collapse Disorder

✦  Rapid loss of adult worker bees ✦  Lack of dead worker bees within and surrounding

the affected hives ✦  Delayed invasion of hive pests

What Is Happening?

■  Honey bees ◆  Chronic sublethal doses result in: impaired olfactory

learning, memory, locomotor impairment, and inhibited feeding ✦  Death of worker bees and feeding inhibition results in

relative increased honey storage •  Colony growth fails next season

✦  Queen failure

■  Bumble bees ◆  85% fewer queens per colony when exposed to ‘realistic’

concentrations of imidacloprid

■  Impaired immune systems ◆  Increased susceptibility to Nosema spp. (microsporidia) ◆  Increased prevalence of infections and increased mortality

Page 9: 09 Arens Ag Chems

◆ 3/10/16

◆ 9

Acute Human Toxicity

■  Literature review of acute exposures (2013) ◆  66 patients included

✦  44 non-severe outcomes ✦  22 severe outcomes

◆  Severe outcomes*: ✦  73% Dyspnea or apnea ✦  64% Coma ✦  50% Tachycardia ✦  45% Hypotension

*significant difference vs non-severe outcomes

◆  Additional symptoms: ✦  Nausea/vomiting, diaphoresis, fever, dizziness, seizure,

odynophagia, abdominal pain

Basic  &  Clinical  Pharmacology  &  Toxicology,  2013,  112,  282–286    

Summary: Neonicitinoids

■  Systemic Insecticides ◆  Provide protection to the entire plant

■  Invertebrate specific nicotinic acetylcholine

receptor agonist ■  Pollinators are at risk of exposure

◆  Contribution to Bee Colony Collapse Disorder

■  Acute human toxicity ◆  Coma, respiratory depression, hemodynamic

instability, GI symptoms

Page 10: 09 Arens Ag Chems

◆ 3/10/16

◆ 10

Herbicides

◆  Glyphosate ◆  Broad spectrum

perennial weed control

◆  Use in over 130 countries

◆  Global volume > 600 kilotons annually

Page 11: 09 Arens Ag Chems

◆ 3/10/16

◆ 11

History ◆  1970 – Monsanto Agriculture division

◆  Dr. John Franz and Dr. Phil Hamm ◆  Glyphosate analog developed elsewhere in the

company

◆  1970 – Greenhouse testing

◆  1971 – Original RoundUp® available for use in the US

Introduction

http://usgs.gov/

Page 12: 09 Arens Ag Chems

◆ 3/10/16

◆ 12

Introduction

http://usgs.gov/

Mechanism of Action

■  Interrupts synthesis of plant aromatic amino acids and hormones

■  Inhibits enzyme 5 - enolpyruvylshikimate - 3 - phosphate synthase (EPSPS) ◆  Found in bacteria, fungi, plants, NOT in animals ◆  Required to catalyze synthesis of aromatic amines ◆  Primary translocation is by phloem transport to areas

of plant growth

■  Microbial metabolism to Aminomethylphosphonic Acid (AMPA)

Page 13: 09 Arens Ag Chems

◆ 3/10/16

◆ 13

Market Share

■  Glyphosate-resistant crops allow for indiscriminate spraying rather than spot spraying

◆  Soybeans – 1996 ◆  Canola – 1996 ◆  Cotton – 1997 ◆  Corn – 1998 ◆  Sugarbeet – 2008

Non-Target Organism

Page 14: 09 Arens Ag Chems

◆ 3/10/16

◆ 14

Human Toxicity?

■  March 2015 – Designated an IARC 2A

“Probably carcinogenic to humans.”

Human Data

■  2014 – meta-analysis reviewing risk of NHL with occupational exposure to agricultural pesticides ◆  Glyphosate associated with RR of Non-Hodgkins

Lymphoma 1.5 (95% CI 1.1-2.0) ✦  B-cell lymphoma 2.0 (95% CI 1.1-3.6)

■  IARC Review of the meta-analysis ◆  Estimated meta risk-ratio 1.3 (95% CI 1.03-1.65)

Page 15: 09 Arens Ag Chems

◆ 3/10/16

◆ 15

Animal Data

■  Mice – feeding studies ◆  Trend toward increased incidence of renal

tubule adenoma or carcinoma and hemangiosarcoma

• Males only

■  Rats – feeding studies ◆  Increased incidence in pancreatic islet cell

adenoma in males ✦  Trend toward hepatocellular adenoma in males,

thyroid C-cell adenoma in females

Daily Exposure?

Glyphosate AMPA Water? 51 Streams (154 samples)

5.1 mcg/L (max)

3.67 mcg/L

Food? Cereals

0.08 – 0.11 mg/kg

US?!! 112 residents of areas sprayed for drug eradication in Colombia (urine samples)

7.6 mcg/L (ND – 130 mcg/L)

1.6 mcg/L (ND – 56 mcg/L)

Page 16: 09 Arens Ag Chems

◆ 3/10/16

◆ 16

Legislation

■  El Salvador – Sept 2013, Ban including glyphosate ◆  To be begin in 2015

■  Netherlands – prohibited for home use ■  Sri Lanka – May 2015 – use and import of glyphosate

banned ■  Bermuda – May 2015 – blocked importation and use of

glyphosate-containing herbicides ■  Colombia – May 2015 – announced would ‘stop the use of

glyphosate’ ■  France - June 2015 – Ecology minister requested that

nurseries stop supplying glyphosate-based products ◆  NOT officially banned

■  Germany – Sept 2015 - Retail store REWE removed glyphosate containing products

■  Switzerland – Coop supermarkets and retail company Migros stopped carrying glyphosate products

Page 17: 09 Arens Ag Chems

◆ 3/10/16

◆ 17

Acute Human Toxicity

■  107 patients with acute glyphosate toxicity ◆  Volume of surfactant most influenced

complications ✦ Volumes of 8mL or more (regardless of

surfactant) ◆  47.1% Hypotension ◆  38.6% CNS depression ◆  30.0% Respiratory failure ◆  17.1% Acute kidney injury ◆  10.0 % Arrhythmia

✦ 2 fatalities – refractory shock, hypotension, respiratory depression

         Clinical  Toxicology  (2011),  49,  892–899  

Summary Slide: Glyphosate

■  Interrupts synthesis of plant aromatic amino acids and hormones

■  Occupational exposures – highest risk

◆  Recognized as an IARC 2A carcinogen ✦  March, 2015 ✦  Increased risk of Non-Hodgkin’s Lymphoma ✦  B-cell Lymphoma

■  Acute human toxicity likely associated to surfactant (exposure > 8mL surfactant) ◆  refractory shock, hypotension, respiratory depression

Page 18: 09 Arens Ag Chems

◆ 3/10/16

◆ 18

Fungicides

Introduction

■  Most commonly used are the triazole class of fungicides ◆  1973 – triadimefon introduced by Bayer

◆  Includes multiple different products (in order of

global sales): ◆  Tebuconazole ◆  Epoxiconazole ◆  Propiconazole ◆  Difenoconazole

■  Used primarily for wheat and other crops

Page 19: 09 Arens Ag Chems

◆ 3/10/16

◆ 19

US

http://usgs.gov/

Crops

http://usgs.gov/

Page 20: 09 Arens Ag Chems

◆ 3/10/16

◆ 20

Mechanism of Action

■  Inhibit sterol biosynthesis and thus cell membrane synthesis ◆  Inhibits lanosterol-14α-demethylase (aka CYP 51)

■  Plasma membrane is disrupted ✦  Alters enzymes required for nutrient transport and

chitin synthesis (essential in cell wall and septa) ✦  Evolutionarily conserved between plants, fungi, and

animals •  Critical for cholesterol and steroid biosynthesis

■  Control of existing infections

◆  May prevent sporulation from internal infections

Environment

■  Rapid soil degradation and little residue on consumed foods ◆  Readily metabolized to excretable metabolites

✦  Unlikely to bioaccumulate

■  Aquatic environment ◆  Hydrolytically and phytolytically stable

•  SLOW microbial degradation –  Settles into sediment

•  Concern for aquatic persistence

◆  Example: Tebuconazole ✦  3d elimination half life in soil ✦  151 days in sediment under laboratory conditions

Page 21: 09 Arens Ag Chems

◆ 3/10/16

◆ 21

Fish

■  Concentrations at 5 points along a river at points up and down stream from wastewater treatment plants ◆  Maximum epiconazole concentrations 0.1 mcg/L ◆  Samples from streams in an agricultural area in

Northern Germany ✦  2.7 mcg/L maximum concentrations

■  NOEAEC (no observed ecological adverse effect concentration) for epiconazole 10 mcg/L

◆  Low risk to fish for chronic or endocrine effects.

Mammals

■  Propiconazole and triadimefon shown to inhibit CYP 19 aromatase in vitro ◆  Critical to the biosynthesis of testosterone and

estradiol ◆  Rats

✦  CYP 19 inhibition – increased post-implantal losses in rats

■  No clear evidence for human fetal loss ◆  Different physiology in humans

■  Little data on mammalian wildlife

Page 22: 09 Arens Ag Chems

◆ 3/10/16

◆ 22

Humans

■  Craniofacial abnormalities? ■  Therapeutic azoles

◆  LIMITED data to suggest prolonged therapeutic use of azoles ✦  100’s of mg doses

■  Epiconazole residues on wheat 0.176 mg/kg ◆  Below the limit of detection (0.05 mg/kg) on edible

portions of spinach, rice, potatoes, cucumbers, oilseed rape, soybeans, turnips, sugar beets, and radishes ✦  Residues in beef or chicken less than 0.1 mg/kg

Therapeutic Resistance

■  Growing resistance of A. fumigatus, the most common aspergillus causing disease in humans

■  Triazole fungicides similar binding to active site at

CYP51a as medicinal azoles

■  Mutations in A. fumigatus (L98H mutation) prevents docking of medical azoles to fungus ◆  Also preventing the docking of triazole fungicides

◆  Does the use of triazole fungicides contribute to medical azole resistance?

Page 23: 09 Arens Ag Chems

◆ 3/10/16

◆ 23

Therapeutic Resistance

■  Soil isolates from US and Latin America FAILED to show any fungicide associated A. fumigatus resistance

BUT….

■  60 Soil samples from Bogata, Colombia ◆  Resistant strains of A. fumigatus

✦  Resistant to voriconazole or itraconazole with varied CYP 51a mutations

■  Triazole class – Inhibition of CYP51 enzyme ◆  Interrupts chitin synthesis in fungi

✦ Essential for cell walls and septa ✦  CYP51 conserved across all species

■  Persistence in sediment ◆  Little evidence of wild mammal or fish toxicity ◆  No evidence of human toxicity ◆  Concern for medical azole resistant A. fumigatus

✦  No clear evidence

■  No reports of acute human toxicity

Summary: Fungicides

Page 24: 09 Arens Ag Chems

◆ 3/10/16

◆ 24

Summary u  Insecticides

u  Systemic insecticides u  Neonicitionoids

u  Potential toxicity to pollinators u  Acute human toxicity: Coma, respiratory depression,

hemodynamic instability, GI symptoms ◆  Herbicide

u  Glyphosate u  IARC 2A designation – March, 2015 u  Human toxicity may be secondary to surfactant

u  refractory shock, hypotension, respiratory depression

u  Fungicide u  Triazoles

u  CYP51 inhibition u  Disrupts chitin synthesis in fungi

u  No evidence of significant acute or chronic human toxicity

Page 25: 09 Arens Ag Chems

◆ 3/10/16

◆ 25

■  QUESTION 1. Neonicitinoids are arthropod specific nicotinic receptor agonists. One of the non-target organisms most affected by widespread use of neonicitinoids is:

■  A. Amphibians ■  B. Mammalian wildlife ■  C. Pollinators ■  D. Fish

Question 1

■  QUESTION 2. In March 2015, glyphosate was given the IARC (International Agency for Research on Cancer) designation:

■  A. Group 1: Carcinogenic to humans ■  B. Group 2A: Probably carcinogenic to humans ■  C. Group 2B: Possibly carcinogenic to humans ■  D. Group 4: Probably not carcinogenic to

humans

Question 2

Page 26: 09 Arens Ag Chems

◆ 3/10/16

◆ 26

■  QUESTION 3. The triazole class of fungicides inhibit an enzyme necessary for chitin synthesis in fungi, but is conserved across all species. This enzyme is best known as:

■  A. CYP 3A4 ■  B. CYP 51 ■  C. CYP 2A1 ■  D. CYP 5A1

Question 3

■  Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EA, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M.Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.Environ  Sci  Pollut  Res  (2015)  22:5–34.  

■  Sánchez-Bayo F (2014). The trouble with neonicotinoids. Science. 346 (6211): 806.

•  http://roundup.ca/en/rounduphistory. Accessed 2/10/016. ■  Dill  GM,  Sammons  RD,  Feng  PC,  Kohn  F,  Kretzmer  K,  Mehrsheikh  A,  Bleeke  M,  Honegger  JL,  

Farmer  D,  Wright  D,  Haupfear  EA  (2010).  "Glyphosate:  Discovery,  Development,  ApplicaYons,  and  ProperYes"  (PDF).  In  Nandula  VK.  Glyphosate  Resistance  in  Crops  and  Weeds:  History,  Development,  and  Management.  Hoboken,  N.J.:  Wiley  

■  Duke,  S.O.,  &  Powles,  S.B.  (2009).  Glyphosate-­‐resistant  crops  and  weeds:  Now  and  in  the  future.  AgBioForum,  12(3&4),  346-­‐357.  

■  hcp://roundup.ca/en/rounduphistory.  Accessed  2/13/2016.  ■  InternaYonal  Agency  for  Research  on  Cancer  Volume  112:  Some  organophosphate  insecYcides  

and  herbicides:  tetrachlorvinphos,  parathion,  malathion,  diazinon  and  glyphosate.  IARC  Working  Group.  Lyon;  3–10  March  2015.  IARC  Monogr  Eval  Carcinog  Risk  Chem  Hum.  Available  at  hcp://www.iarc.fr.  Accessed  2/18/16.  

References .

Page 27: 09 Arens Ag Chems

◆ 3/10/16

◆ 27

■  Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis.Int J Environ Res Public Health. 2014;11(4):4449-527.

✦  http://www.newsweek.com/france-bans-sale-monsantos-roundup-garden-centers-after-un names-it-probable-343311

■  http://www.isis.org.uk Fallout_from_WHO_Classification_of_Glyphosate_as_Probable_Carcinogen.php. Accessed 2/18/16.

■  Seok SJ, Park JS, Hong JR, Gil HW, Yang JO, Lee EY, Song HY, Hong SY. Surfactant volume is an essential element in human toxicity in acute glyphosate herbicide intoxication.Clin Toxicol (Phila). 2011 Dec;49(10):892-9.

■  hcp://www.apsnet.org/publicaYons/apsnefeatures/Pages/Fungicides.aspx.  Accessed  2/19/16.  

■  Morton,  V.  and  Staub,  T.  2008  A  Short  History  of  Fungicides.  Online,  APSnet  Features.  ■  Ghannoum  MA,  Rice  LB.  AnYfungal  agents:  mode  of  acYon,  mechanisms  of  resistance,  and  

correlaYon  of  these  mechanisms  with  bacterial  resistance.  Clin.  Microbiol.  Rev.  1999;12:501-­‐517.  Zarn,  J.  A.,  Bruschweiler,  B.  J.,  and  Schlacer,  J.  R.  (2003).  Azole  fungicides  affect  mammalian  steroidogenesis  by  inhibiYng  sterol  14  alpha-­‐demethylase  and  aromatase.  Environ.  Health  Perspect.  111,  255–261.  

References .

■  Chambers JE, Greim H, Kendall RJ, Segner H, Sharpe RM, Van Der Kraak G. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole. Crit Rev Toxicol. 2014 Feb;44(2):176-210.

■  Goetz AK, Ren H, Schmid JE, Blystone CR, Thillainadarajah I, Best DS, Nichols HP, Strader LF, Wolf DC, Narotsky MG, Rockett JC, Dix DJ. Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat.Toxicol Sci. 2007 Jan;95(1):227-39.

■  European  Centre  for  Disease  PrevenYon  and  Control.  Risk  assessment  on  the  impact  of  environmental  usage  of  triazoles  on  the  development  and  spread  of  resistance  to  medical  triazoles  in  Aspergillus  species.  Stockholm:  ECDC;  2013.  

■  van der Linden JW, Arendrup MC, Warris A, Lagrou K, Pelloux H, Hauser PM, Chryssanthou E, Mellado E, Kidd SE, Tortorano AM, Dannaoui E, Gaustad P, Baddley JW, Uekötter A, Lass-Flörl C, Klimko N, Moore CB, Denning DW, Pasqualotto AC, Kibbler C, Arikan-Akdagli S, Andes D, Meletiadis J, Naumiuk L, Nucci M, Melchers WJ, Verweij PE. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis. 2015 Jun;21(6):1041-4.

■  Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SAAzole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother. 2011 Sep;55(9):4465-8.

References .

Page 28: 09 Arens Ag Chems

◆ 3/10/16

◆ 28

■  Jeschke P, Nauen R, SchindlerM, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59; 2897–2908.

■  Zhu Y, Loso MR, Watson GB, Sparks TC, Rogers RB et al (2010). Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J Agric Food Chem 59:2950–2957. Shao X, Swenson TL, Casida JE (2013b) Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism. J Agric Food Chem 61:7883–7888.

■  DoW Agro Sciences (2013) DoW AgroSciences receives US EPA Registration for Sulfoxaflor. US Environmental Protection Agency (USEPA) (2013) Registration of the new active ingredient sulfoxaflor for use on multiple commodities, turgrass and ornamentals. United States Environmental Protection Agency.

■  Tomizawa M, Casida JE (2011) Neonicotinoid insecticides: highlights of a symposium on strategic molecular designs. J Agric Food Chem 59:2883–2886. Maienfisch P, Huerlimann H, Rindlisbacher A, Gsell L, Dettwiler H, Haettenschwiler J, Sieger E, Walti M (2001b) The discovery of thiamethoxam: a second-generation neonicotinoid. Pest Manag Sci 57:165–176.

Additional References

■  Meredith RH, Heatherington PJ,Morris DB (2002) Clothianidin—a new chloronicotinyl seed treatment for use on sugar beet and cereals: field trial experiences from Northern Europe. The BCPC Conference: Pests and diseases, Volumes 1 and 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 18–21 November 2002. British Crop ProtectionCrop Protection Council. pp. 691–696.

■  Jeschke P, Nauen R, Beck ME (2013) Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed 52:9464–9485. Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117.

■  Georghiou GP, Mellon RB (1983) Pesticide resistance in time and space. Pest resistance to pesticides. Springer. pp. 1–46.

■  Denholm I, CahillM, Dennehy TJ, Horowitz AR (1998) Challenges with managing insecticide resistance in agricultural pests, exemplified by the whitefly Bemisia tabaci. Philos Trans R Soc B 353(1376):1757–1767.

■  Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E (2008) Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395–413.

■  Nauen R, Ebbinghaus U, Tietjen K (1999) Ligands of the nicotinic acetylcholine receptor as insecticides. J Pest Sci 55:608–610

■  Lansdell SJ,Millar NS (2000) The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology 39:671–679

Additional References

Page 29: 09 Arens Ag Chems

◆ 3/10/16

◆ 29

■  Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580.

■  Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

■  Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45: 247–268. Thany SH (2010) Neonicotinoid insecticides. Historical evolution and resistance mechanisms. In: Thany SH (Ed.) Insect nicotinic acetylcholine receptors. Adv Exp Med Biol 683:75–84.

■  J.  Y.  Wu,  M.  D.  Smart,  C.  M.  Anelli,  W.  S.  Sheppard,  Honey  bees  (Apis  mellifera)  reared  in  brood  combs  containing  high  levels  of  pesYcide  residues  exhibit  increased  suscepYbility  to  Nosema  (Microsporidia)  infecYon.  J.  Invertebr.  Pathol.109,  326–329  (2012).  

■  C.  Alaux  et  al.,  InteracYons  between  Nosema  microspores  and  a  neonicoYnoid  weaken  honeybees  (Apis  mellifera).  Environ.  Microbiol.  12,  774–782  (2010).  

■  J.  S.  Pejs,  D.  vanEngelsdorp,  J.  Johnson,  G.  Dively,  PesYcide  exposure  in  honey  bees  results  in  increased  levels  of  the  gut  pathogen  Nosema.  Naturwissenschaken  99,  153–158  (2012).  

Additional References

■  Goulson D, Nicholls E, Botias C, Rotheray E. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 347(6229): 1435 -44.

■  Research and Markets . 2008 . Glyphosate Competitiveness Analysis in China. CCM International Limited.

■  Franz, J. E. , M. K. Mao , and J. A. Sikorski . (1997). Glyphosate: A Unique Global Pesticide. Washington, DC : American Chemical Society.

■  Halter , S. 2007 . A brief history of Roundup. Proceedings of the First International Symposium on Glyphosate . Agronomical Sciences College of the University of the State of Sao Paulo, Sao Paulo, Brazil, October 15 – 19.

■  Baird , D. D. , R. P. Upchurch , W. B. Homesley , and J. E. Franz . 1971 . Introduction of a new broad spectrum post emergence herbicide class with utility for herbaceous perennial weed control . Proceedings of the North Central Weed Science Society. 26 : 64 – 68 .

■  Amrhein  ,  N.  ,  B.  Deus  ,  P.  Gehrke  ,  and  H.  C.  Steinrucken  .  1980  .  The  site  of  the  inhibiYon  of  the  shikimate  pathway  by  glyphosate.  II.  Interference  of  glyphosate  with  chorismate  formaYon  in  vivo  and  in  vitro  .  Plant  Physiology  66  :  830  –  834  .  

■  Kishore  ,  G.  M.  and  D.  M.  Shah  .  1988  .  Amino  acid  biosynthesis  inhibitors  as  herbicides  .  Annual  Review  of  Biochemistry  57  :  627  –  663  .

Additional References .

Page 30: 09 Arens Ag Chems

◆ 3/10/16

◆ 30

■  Ji H, Zhang W, Zhou Y, et al. (2000). A three-dimensional model of lanosterol 14a-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem, 43, 2493–505.

■  Sheehan TP, Cirrito J, Numan MJ, Numan M. (2000). Using c-Fos immunocytochemistry to identify forebrain regions that may inhibit maternal behavior in rats. Behav Neurosci, 114, 337–52.

■  Georgopapadakou NH, Walsh TJ. (1996). Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother, 40, 279–91.

■  Berenzen N, Hu¨mmer S, Liess M, Schulz R. (2003). Pesticide peak discharge from wastewater treatment plants into streams during the main period of insecticide application: ecotoxicological evaluation in comparison to runoff. Bull Environ Contam Toxicol, 70, 891–7.

■  EFSA (2009). Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health1. EFSA Report. European Food Safety Commission.

Additional References .

■  Vinggaard AM, Hnida C, Breinholt V, Larsen JC. (2000). Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol In Vitro, 14, 227–34.

■  Czeizel A, Rockenbauer M. (1998). A population based case-control teratologic study of oral metronidazole treatment during pregnancy. Brit J Obstet Gynaec, 105, 322.

■  Kazy Z, Puho E, Czeizel AE. (2005b). The possible association between the combination of vaginal metronidazole and miconazole treatment and poly-syndactyly Population-based case-control teratologic study.

■  Reprod Toxicol, 20, 89–94. Kazy Z, Puho E, Czeizel AE. (2005c). Teratogenic potential of vaginal metronidazole treatment during pregnancy. Eur J Obstet Gynecol sReprod Biol, 123, 174–8.

■  Pursley TJ, Blomquist IK, Abraham J, et al. (1996). Fluconazole-induced congenital anomalies in three infants. Clin Infect Dis, 22, 336–40.

■  Poulsen ME, Christensen HB, Herrmann SS. (2009). Proficiency test on incurred and spiked pesticide residues in cereals. Accreditation and Quality Assurance, 14, 477–85.

■  EFSA (2008). Conclusion regarding the peer review of the pesticide risk assessment of the active substance epoxiconazole. EFSA Journal, 80, 1–442

Additional References .