02#715’advanced’topics’in’computaonal’...

31
Nucleosome Positioning and Organization 02715 Advanced Topics in Computa8onal Genomics

Upload: hoangkhanh

Post on 16-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Nucleosome Positioning and Organization

02-­‐715  Advanced  Topics  in  Computa8onal  Genomics  

Nucleosome Core

Nucleosome Core and Linker

•  147  bp  DNA  wrapping  around  nucleosome  core  

•  Varying  lengths  of  linkers  between  adjacent  cores  

Linker  

Nucleosome Positions

•  Nucleosome  posi8ons  are  non-­‐random  and  conserved  across  the  similar  cell  types  

•  Nucleosome  posi8oning  affects  gene  regula8on  

•  The  binding  of  other  proteins  affect  the  posi8ons  of  nucleosomes  

•  Dynamic  nature  of  nucleosome  posi8oning  influenced  by  the  dynamic  gene  regula8on  

•  Sta8c  nature  of  nucleosome  posi8oning  influenced  by  DNA  sequence  

Dynamic Nucleosomes

•  Kine8c  measurements  show  the  DNA  in  an  isolated  nucleosome  is  surprisingly  dynamic,  rapidly  uncoiling  and  then  rewrapping  around  its  nucleosome  core.  

•  This  way,  most  of  nucleosome-­‐bound  DNA  sequence  is  accessible  to  other  DNA-­‐binding  proteins  

Dynamic Nucleosomes

•  DNA  in  an  isolated  nucleosome  unwraps  around  four  8mes  per  second,  remaining  exposed  for  10-­‐50  milliseconds  before  the  DNA  re-­‐wraps  around  the  nucleosome  –  Allows  for  other  DNA-­‐binding  proteins  to  access  the  DNA  for  

transcrip8on,  DNA  replica8on,  etc.    

Dynamic Nucleosomes: Chromatin Remodeling Complex

•  Nucleosome  sliding  –  ATP-­‐dependent  chroma8n  remodeling  complexes   bind  to  nucleosome  

core  proteins  and  DNA  that  wraps  around  it,  and  use  the  energy  of  ATP  hydrolysis  to  move  DNA  rela8ve  to  the  core.  

Dynamic Nucleosomes: Chromatin Remodeling Complex

•  Chroma8n  remodeling  complex  replacing  histone  proteins  with  other  variants  

Dynamic Nucleosomes: Chromatin Remodeling Complex

•  Chroma8n  remodeling  complex  (with  histone  chaperones)  replacing/removing  histone  proteins  with  other  variants  

Dynamic Nucleosomes: Chromatin Remodeling Complex

•  As  genes  are  turned  on  and  off,  chroma8n  remodeling  complex  are  brought  to  specific  regions  of  DNA  to  locally  influence  chroma8n  structure  

•  Certain  chroma8n  structure  can  be  inherited  during  cell  division  

Dynamic Nucleosomes: Chromatin Remodeling with Code Reader-Writer

Complex •  Spreading  chroma8n  

changes  – Gene  regulatory  protein  

recruits  a  code-­‐writer  enzyme,  which  modifies  the  histone  code  

–  The  code-­‐writer  recruits  code-­‐reader,  which  then  again  recruits  code-­‐writer.  

–  Reader  and  writer  should  recognize  the  same  code  

•  Barrier  DNA  sequence  for  blocking  the  long-­‐range  spreading    

Dynamic Nucleosomes: Chromatin Remodeling Complex

•  Spreading  wave  of  chroma8n  condensa8on  to  form  a  long  range  heterochroma8n  

Nucleosomes and Chromatin Structure

•  H3  variant  histone,  called  CENP-­‐A  replaces  H3  in  centromeric  DNA  sequences  

Definitions of Terminology

•  Nucleosome  posi8ons:  the  nucleosome  start/center/end  posi8ons  of  the  147bp  sequence  wrapped  around  a  nucleosome  

•  Nucleosome  configura8on  –  a  set  of  non-­‐overlapping  nucleosome  posi8ons  on  a  single  DNA  

molecule  of  defined  length.  

–  if  a  base  pair  is  in  state  1,  then  both  the  preceding  and  following  146  base  pairs  (bp)  must  be  ‘0’  

Definitions of Terminology

•  Nucleosome  organiza8on:  a  probability  distribu8on  over  nucleosome  configura8ons  

–  P:  nucleosome  organiza8on  

–  C:  a  set  of  nucleosome  configura8ons  

–  P(c):  the  probability  of  a  nucleosome  configura8on  c  

Definitions of Terminology

•  Nucleosome  occupancy:  the  sum  of  the  probabili8es  of  the  configura8ons  in  which  the  base  pair  is  covered  by  a  nucleosome  

–  Occ(x):  the  occupancy  at  basepair  x  –  C:  nucleosome  configura8on  

–  P(c):  nucleosome  organiza8on  

Illustration of Different Terminology

Definitions of Terminology

•  Nucleosome  posi8oning:  the  degree  to  which  the  posi8ons  of  individual  nucleosomes  vary  across  the  different  configura8ons  of  a  nucleosome  organiza8on.    –  a  perfectly  posi8oned  nucleosome  is  one  that  adopts  the  same  

posi8on  across  all  measured  configura8ons  

–  30%  posi8oning?  –  Absolute  vs.  condi8onal  posi8oning    

Definitions of Terminology •  Absolute  nucleosome  posi8oning  at  basepair  x:  the  

probability  of  a  nucleosome  star8ng  at  basepair  x  

–  Absolute  nucleosome  posi8oning  does  not  uniquely  determine  nucleosome  organiza8on    

•  Condi8onal  nucleosome  posi8oning  at  basepair  x:  the  absolute  posi8oning  at  basepair  x  divided  by  the  probability  that  a  nucleosome  starts  anywhere  within  a  larger  region  centered  on  x  

–  the  probability  that  a  nucleosome  starts  at    x  given  that  a  nucleosome  starts  somewhere  between    x  -­‐  73  and    x    +  73  

Illustration of Different Terminology

Experimental Technology for Measuring Nucleosome Organization

•  Diges8on  of  chroma8n  by  micrococcal  nuclease  (MNase),  an  endonuclease  that  preferen8ally  cuts  linker  DNA  rather  than  DNA  wrapped  around  a  nucleosome  –  highly  digested  DNA:  depleted  of  nucleosomes  –  under-­‐digested  DNA:  rela8vely  protected  by  nucleosomes  

•  Measure  the  diges8ng  paeern  with  microarray  or  sequencing  of  the  nucleosome-­‐protected  DNA  segments  

–  Occ(x):  occupancy  at  base  pair  x  –  ri:  read  counts  at  basepair  i  

Experimental Technology for Measuring Nucleosome Organization

•  Challenges  –  Bias  introduced  by  MNase’s  preference  of  TA/AT  dinucleo8de  as  its  

cleavage  site  

•  Cannot  obtain  the  nucleosome  posi8on  at  a  single  nucleo8de  resolu8on  

•  Naked  DNA  as  a  control,  but  linker  DNA  is  TA/AT  rich,  reducing  the  u8lity  of  naked  DNA  as  a  control  

–  Experiment  is  performed  not  on  a  single  cell,  but  on  a  popula8on  of  cells  

•  We  get  to  measure  only  the  average  of  the  dynamically  changing  nucleosome  posi8ons  

Experimental Technology for Measuring Nucleosome Organization

•  Challenges  –  In  vitro  and  in  vivo  nucleosome  posi8ons  are  different  

–  With  low  coverage  in  sequencing,  it  is  difficult  to  obtain  a  reliable  map  of  nucleosome  posi8ons.  Currently,    

•  2  nucleosome  read  starts  per  base  pair  in  a  yeast  in  vivo  map  

•  0.1-­‐2  nucleosome  read  starts  in  yeast  in  vitro  map  

•  0.07  nucleosome  read  starts  in  human  in  vivo  map  

Experimental Technology for Measuring Nucleosome Organization

•  Robustness  of  nucleosome  map:  Are  the  two  independently  generated  nucleosome  maps  highly  correlated?  

Yeast Genome-Scale Nucleosome Map

•  Map  of  posi8ons  of  2278  nucleosomes  over  482  kilobases  of  Saccharomyces  cerevisiae  DNA,  including  almost  all  of  chromosome  III  and  223  addi8onal  regulatory  regions  –  Most  of  the  nucleosome  were  well  posi8oned  

–  A  nucleosome  free  region  of  ~200bp  in  the  Pol  II  promoters  

–  Nucleosome  free  regions  had  evolu8onarily  conserved  sequences  

–  Most  TF  binding  mo8fs  were  nucleosome  free  regions  

Yeast Genome-Scale Nucleosome Map

•  Nucleosome-­‐free  regions  common  in  TF  binding  sites.  

Microarray    data  for  nucleosome  posi8ons  

DNA  Sequence  conserva8on  score  

Inferred  nucleosome  posi8ons  with  boxes  for  a  TF  binding  mo8f  

Yeast Genome-Scale Nucleosome Map

•  Nucleosome-­‐free  regions  common  in  TF  binding  sites.  

Microarray    data  for  nucleosome  posi8ons  

DNA  Sequence  conserva8on  score  

Inferred  nucleosome  posi8ons  with  boxes  for  a  TF  binding  mo8f  

Yeast Genome-Scale Nucleosome Map

•  Func8onal  transcrip8on  factor  binding  mo8fs  are  more  accessible  than  unbound  mo8fs  

Nucleosome Maps

•  DNA  sequence  is  significantly  predic8ve  of  nucleosome  organiza8on  in  vitro  and  in  vivo  –  discussion  on  Wednesday!  

Summary

•  Dynamic  nature  of  nucleosome  posi8oning  

•  Sta8c  nature  of  nucleosome  posi8oning  

•  Challenges  in  measuring  nucleosome  occupancy  

Reference

•  Genome-­‐Scale  Iden8fica8on  of  Nucleosome  Posi8ons  in  S.  cerevisiae.  Science  2005,  309:30.  

•  Contribu8on  of  histone  sequence  preferences  to  nucleosome  organiza8on:  proposed  defini8ons  and  methology.  Genome  Biology  2010.