02 เธอร์โมไดนามิกส์-power-point-10

Upload: wetchkrub

Post on 30-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/14/2019 02 -Power-point-10

    1/97

    . 1

    Thermodynamics

    .

  • 8/14/2019 02 -Power-point-10

    2/97

    . 2

    /

    :

    1.

    2. 3.

  • 8/14/2019 02 -Power-point-10

    3/97

    . 3

    m kg( lb) V m3 ( ft3, ) kg/m3 ( lb/ft3) v , m3/kg (ft3/lb) v = 1 /

    = x ( m = V. )oC, K=273+oC

  • 8/14/2019 02 -Power-point-10

    4/97

    . 4

    F (m)

    (a) m/s2

    (ft/s

    2

    )

    F = m.a kg.m/s2 N

    [ lbf (1 lbf=4.448 N ) kg

    f (1 kgf= 9.81 N) ]

    P N/m2 Pa ( psi =lbf/in2)

    :

    = + kPa = kPag + 101.3 ( psia = psig + 14.7 )

  • 8/14/2019 02 -Power-point-10

    5/97. 5

    PVAP =X .L. g + PATM Pa P

    VAP=

    X.L. g

    120 mm.Hg 120

    =13,600x(120/1000)x9.81=16,010 Pa = 16,010 + 101,325 =117,335 Pa

    PVAP

    Y X

    L

    PATM

  • 8/14/2019 02 -Power-point-10

    6/97. 6

    38 Pa 2 m2? F = A.DP = 2 m2 x 38 N/m2 = 76 N 76/9.81 =7.7kg

    P=38 Pa

  • 8/14/2019 02 -Power-point-10

    7/97

    . 7

    101.325 kPa 10.33 m 760 mm

    u SI-> kJ/kg (PI)->Btu/lb

    h(u+Pv) SI-> kJ/kg (PI)->Btu/lb

    s

    SI-> kJ/(kg.K) (PI)->Btu/(lb.F) s s

  • 8/14/2019 02 -Power-point-10

    8/97

    . 8

    (Saturated liquid and Saturated Vapour)(Saturation)

    (Saturation/Saturated

    Point/State) ... (SATURATED....TABLE) 101.3 kPa

    100oC

  • 8/14/2019 02 -Power-point-10

    9/97

    . 9

    PS, kPa T

    S, oC v

    f,m3/kg

    vfg,m

    3/kg -

    vg,m3/kg

    5 32.88 0.001005 28.1900 - 0.001005 28.1900

    1.6729

    0.3749

    0.1944

    101.3 100 0.001044 1.6729 - 0.001044

    500 151.86 0.001093 0.3749 - 0.001093

    1000 179.91 0.001127 0.1944 - 0.001127

  • 8/14/2019 02 -Power-point-10

    10/97

    . 10

    m3/kg

    (oC) (kPa) T P vf vfg vg

    0.01 0.6113 0.001000 206.131 206.132

    5 0.8721 0.001000 147.117 147.118

    10 1.2276 0.001000 106.376 106.377

    15 1.705 0.001001 77.924 77.925

    20 2.339 0.001002 57.7887 57.7897

    25 3.169 0.001003 43.3583 43.3593

    30 4.246 0.001004 32.8922 32.8932

    35 5.628 0.001006 25.2148 25.2158

    40 7.384 0.001008 19.5219 19.5229

  • 8/14/2019 02 -Power-point-10

    11/97

    . 11

    /Compressed/Subcooled Liquid

    30oC

    4.246 kPa 101.3 kPa

    30oC

    30oC

    /

    9.9 m

    0.76 m

    =(101.3-4.246)x1000/(1000x9.81) =9.9 m

  • 8/14/2019 02 -Power-point-10

    12/97

    . 12

    Satured Liquid

    100oC

    101.3 kPa

    101.3 kPa

    100oC

    100oC

    100oC 30

    oC 0.03 kPa ( 101.3 )

  • 8/14/2019 02 -Power-point-10

    13/97

    . 13

    \ 134a 22 290(Propane)

    F C psig kPag psig kPag psig kPag

    26 -3.3 22.9 158 49.9 344 47.3 326

    28 -2.2 24.5 169 52.4 361 49.5 342

    30 -1.1 26.1 180 54.9 379 51.8 357

    32 0.0 27.8 192 57.5 396 54.1 373

    34 1.1 29.5 203 60.1 414 56.5 389

    36 2.2 31.3 216 62.8 433 58.9 406

    38 3.3 33.1 228 65.6 452 61.4 423

    40 4.4 35.0 241 68.5 472 63.9 441

    42 5.6 37.0 255 71.5 493 66.5 459

    44 6.7 39.0 269 74.5 514 69.2 477

    46 7.8 41.1 283 77.6 535 71.9 496

    48 8.9 43.2 298 80.8 557 74.7 515

    50 10.0 45.4 313 84.0 579 77.6 535

  • 8/14/2019 02 -Power-point-10

    14/97

    . 14

    \ 134a 22 290(Propane)

    F C psig kPag psig kPag psig kPag

    100 37.8 124.1 856 195.9 1351 173.9 1199

    102 38.9 128.4 885 201.8 1391 178.8 1233

    104 40.0 132.7 915 207.7 1432 183.9 1268

    106 41.1 137.2 946 213.8 1474 189.0 1303

    108 42.2 141.7 977 220.0 1517 194.2 1339

    110 43.3 146.4 1009 226.4 1561 199.6 1376

    112 44.4 151.1 1042 232.8 1605 205.0 1413114 45.6 155.9 1075 239.4 1651 210.6 1452

    116 46.7 160.9 1109 246.1 1697 216.2 1491

    118 47.8 166.0 1145 252.9 1744 221.9 1530120 48.9 171.1 1180 259.9 1792 227.8 1570

    122 50.0 176.4 1216 267.0 1841 233.3 1611

    124 51.1 181.8 1254 274.3 1891 239.8 1653

    126 52.2 187.3 1291 281.6 1942 245.9 1695

    128 53.3 192.9 1330 289.1 1993 252.2 1739

  • 8/14/2019 02 -Power-point-10

    15/97

    . 15

    101.3 kPa 30oC

    10%

  • 8/14/2019 02 -Power-point-10

    16/97

    . 16

    ( SUBCOOLED /COMPRESSED LIQUID )

    :-1 (T

    S)

    2 (PS)

    3

    (vf)

  • 8/14/2019 02 -Power-point-10

    17/97

    . 17

  • 8/14/2019 02 -Power-point-10

    18/97

    . 18

    / (SUPERHEATED VAPOUR)1 (TS)

    2 (PS)

    3

    R22 (Saturated R 22)

  • 8/14/2019 02 -Power-point-10

    19/97

    . 19

    R22 (Saturated R-22)

    m3/kg

    kJ/kg

    o

    C kPa T P v v v u u u-10 354.3 0.000759 0.06458 0.06534 32.74 190.25 222.99-5 421.3 0.000768 0.05457 0.05534 38.44 186.33 224.77

    0 497.6 0.000778 0.04636 0.04714 44.20 182.30 226.505 583.8 0.000789 0.03957 0.04036 50.03 178.15 228.1710 680.7 0.000800 0.03391 0.03471 55.92 173.87 ?29.7915 789.1 0.000812 0.02918 0.02999 61.88 169.47 231.3520 909.9 0.000824 0.02518 0.02590 67.92 164.92 232.85

    25 1043.9 0.000838 0.02179 0.02262 74.04 160.22 234.2630 1191.9 0.000852 0.01889 0.01974 80.23 155.35 235.5935 1354.8 0.000867 0.01640 0.01727 86.53 150.30 236.8240 1533.5 0.000884 0.01425 0.01514 92.92 145.02 237.94

    45 1729.0 0.000902 0.01238 0.01328 99.42 139.50 238.9350 1942.3 0.000922 0.01075 0.01167 106.06 133.70 239.7655 2174.4 0.000944 0.00931 0.01025 112.85 127.56 240.4160 2426.6 0.000969 0.00803 0.00900 119.83 121.01 240.8465 2699.9 0.000997 0.00689 0.00789 127.04 113.94 240.98

    70 2995.9 0.00103 0.00586 0.00689 134.54 106.22 240.7675 3316.1 0.001069 0.00491 0.00598 142.44 97.61 240.05

    R22 (Saturated R-22) ()

  • 8/14/2019 02 -Power-point-10

    20/97

    . 20

    R22 (Saturated R-22) ()

    ,kJ/kg kJ/kg.K

    o

    C kPa T P hf hfg hg sf sfg sg-10 354.3 33.01 213.13 246.14 0.1324 0.8099 0.9422-5 421.3 38.76 209.32 248.09 0.1538 0.7806 0.93440 497.6 44.59 205.36 249.95 0.1751 0.7518 0.92695 583.8 50.49 201.25 251.73 0.1963 0.7235 0.919710 680.7 56.46 196.96 253.42 0.2173 0.6956 0.912915 789.1 62.52 192.49 255.02 0.2382 0.6680 0.906220 909.9 68.67 187.84 256.51 0.2590 0.6407 0.8997

    25 1043.9 74.91 182.97 257.88 0.2797 0.6137 0.893430 1191.9 81.25 177.87 259.12 0.3004 0.5867 0.887135 1354.8 87.70 172.52 260.22 0.3210 0.5598 0.880940 1533.5 94.27 166.8s 261.15 0.3417 0.5329 0.874645 1729.0 100.98 160.91 261.9 0.3624 0.5058 0.8682

    50 1942.3 107.85 154.58 262.43 0.3832 0.4783 0.861555 2174.4 114.91 147.80 262.71 0.4042 0.4504 0.854660 2426.6 122.18 140.50 262.68 0.4255 0.4217 0.847265 2699.9 129.73 132.55 262.28 0.4472 0.3920 0.8391

    70 2995.9 137.63 123.77 261.40 0.4695 0.3607 0.830275 3316.1 145.99 113.90 259.89 0.4927 0.3272 0.8198

  • 8/14/2019 02 -Power-point-10

    21/97

    . 21

    R22(Superheated R-22)

    oC m

    3/kg kJ/kg kJ/kg.K m

    3/kg kJ/kg kJ/kg.K m

    3/kg kJ/kg kJ/kg.K

    T v h s v h s v h s

    Pressure 1000 kPa Pressure 1200 kPa Pressure 1400 kPaSat. 0.0236 257.46 0.8954 0.0196 259.18 0.8868 0.0167 260.48 0.879230 0.0246 262.91 0.9136 40 0.0260 271.04 0.9400 0.0209 267.60 0.9141 0.0171 263.86 0.8901

    50 0.0273 279.05 0.9651 0.0221 276.01 0.9405 0.0183 272.77 0.918160 0.0286 286.97 0.9893 0.0232 284.26 0.9657 0.0193 281.40 0.944470 0.0298 294.86 1.0126 0.0243 292.42 0.9898 0.0203 289.86 0.969480 0.0310 302.73 1.0352 0.0253 300.51 1.0131 0.0213 298.20 0.9934

    90 0.0322 310.6 1.0572 0.0264 308.57 1.0356 0.0222 306.47 1.0165100 0.0334 318.49 1.0786 0.0274 316.62 1.0574 0.0231 314.70 1.0388

    R22 (Superheated R-22)

  • 8/14/2019 02 -Power-point-10

    22/97

    . 22

    R22(Superheated R-22)

    o

    C m3

    /kg kJ/kg kJ/kg.K m3

    /kg kJ/kg kJ/kg.K m3

    /kg kJ/kg kJ/kg.K

    T v h s v h s v h s

    Pressure 1600 kPa Pressure1800 kPa Pressure 2000 kPa

    Sat. 0.0145 261.43 0.8724 0.0127 262.10 0.8659 0.0113 262.53 0.8598

    50 0.0154 269.26 0.8969 0.0131 265.42 0.8763

    60 0.0164 278.36 0.9246 0.0140 275.10 0.9057 0.0121 271.56 0.8873

    70 0.0173 287.17 0.9507 0.0149 284.33 0.933 0.0130 281.31 0.9161

    80 0.0182 295.80 0.9755 0.0158 293.28 0.9588 0.0138 290.64 0.9429

    90 0.0190 304.30 0.9992 0.0166 302.05 0.9832 0.0146 299.7 0.9682100 0.0198 312.73 1.0221 0.0173 310.68 1.0067 0.0153 308.57 0.9923

    110 0.0206 321.10 1.0442 0.0180 319.24 1.0293 0.0160 317.32 1.0155

    120 0.0214 329.46 1.0658 0.0187 327.75 1.0512 0.0166 325.99 1.0378

    170 0.0250 371.39 1.1661 0.022 370.19 1.1528 0.0197 368.97 1.1407

    180 0.0257 379.87 1.1851 0.0227 378.74 1.1719 0.0203 377.60 1.1600

    190 0.0264 388.40 1.2037 0.0233 387.33 1.1907 0.0208 386.25 1.1788

    200 0.0271 396.97 1.222 0.0239 395.96 1.2091 0.0214 394.94 1.1974

    P T 3

  • 8/14/2019 02 -Power-point-10

    23/97

    P-v-Tsurface of a substancethat contractson freezing. P-v-Tsurface of a substance thatexpandson freezing (like water).

    P-v-T 3

    2 P-v T-v

    - (P-h Diagram)

  • 8/14/2019 02 -Power-point-10

    24/97

    . 24

    -(P-h Diagram)

    T4T3T2T1P

    (Critical Point)

    T=5oC

    h

    -40oC 5oC 50oC

    3

    2

    1

    50oC

    -40oC

    s1s2

    s3

  • 8/14/2019 02 -Power-point-10

    25/97

    . 25

    oC

    MPa

    m3/kg

    kg/ m3

    374.14 22.09 0.003155 317CO

    231.05 7.39 0.002143 467

    O2

    118.35 5.08 0.002438 410

    N2

    146.95 3.39 0.003215 311

    H2

    239.85 1.3 0.032192 31

    CH4=NGV 82.75 4.6 0.00615 163

  • 8/14/2019 02 -Power-point-10

    26/97

  • 8/14/2019 02 -Power-point-10

    27/97

    . 27

    100 kPa 100 m3

    101 kPa m3?

    (V)(T)P

    1/m

    1=P

    2/m

    2

    m2=(P

    2/P1)m

    1

    m2=(101/100)m

    1=1.01m

    1

    () 1% 1 m3

  • 8/14/2019 02 -Power-point-10

    28/97

    . 28

    N-m J J/s W 2

    (Heat),Q (Work), W (Power)

    (Q)(W)

    (Heat) Q

  • 8/14/2019 02 -Power-point-10

    29/97

    . 29

    (Heat),Q

    25OC 500

    OC 25

    OC

    273OC

    (Work),W (E)(I) W = E.I W=E.I cos

    3 W = 1.732E.I cos

    (U)(KE)

  • 8/14/2019 02 -Power-point-10

    30/97

    . 30

    (U)(KE) (PE)(U) uf= 0 kJ/kg 0.01 oC

    Propane (R-290)

    (H)

  • 8/14/2019 02 -Power-point-10

    31/97

    . 31

    (H)(U) PV()(Flow work) H = U + PV h = u + Pv

    m kg

  • 8/14/2019 02 -Power-point-10

    32/97

    . 32

    m kg V m/s

    KE =mV2/2000 .(1.8)

    ke = V2/2000 .(1.8a)

    KE kJ ke kJ/kg

    m kg g m/s2

    PE = mgZ/1000.(1.9)

    pe = gZ /1000 .(1.9a)

    KE kJ pe kJ/kg

  • 8/14/2019 02 -Power-point-10

    33/97

    . 33

    E = mc2 E (J)m c 3x10

    8E = mx(3x108)2=9x1016m (J)

    1 .

  • 8/14/2019 02 -Power-point-10

    34/97

    .

    34

    9x1016

    J

    1 J 1/(9x1016) = 1.1x10-17

    (1)

    mi1

    mi -me =mCV2- mCV1 =mCV

    mi2

    mi3

    me1

    me2

    mCV1 mCV2

    (2)

    1 Thermodynamics

  • 8/14/2019 02 -Power-point-10

    35/97

    .35

    1

    ()

  • 8/14/2019 02 -Power-point-10

    36/97

    . 36

    () (Q)(W) :

    Q =W (Q+W)in=(Q+W)out (Q

    L) 10

    kW(WC) 2 kW

    QH= QL+WC= 10+2 = 12 kW

    QH

    QL

    WC

    1

    23

    4

    QH+ QL= WC QL+WC = QH

  • 8/14/2019 02 -Power-point-10

    37/97

    1 (PROCESS)

  • 8/14/2019 02 -Power-point-10

    38/97

    . 38

    1Q

    2= (E

    2-E

    1) +

    1W

    2

    1Q

    2=E +

    1W

    2

    1Q2= (U2-U1) + (mV2

    2/2 - mV2

    1/2) + (mgZ2-mgZ1)+ 1W2(1.12b)Q =U+KE+PE+W (1.12c)

    1q

    2=(u

    2-u

    1) + (V

    2

    2-V

    2

    1)/2+(Z

    2-Z

    1)g +

    1w

    2(1.12d)

    u1+V21/2+Z1g

    m

    u2+V22/2+Z2g

    m

    1Q

    2 1W2/

    1Q

    2-1W

    2=E

    1Q

    2- 1W2 = (U2-U1) + (mV

    22/2 - mV2

    1/2) + (mgZ

    2-mgZ

    1)

    Q - W =U+KE+PE1

    q2

    -1

    w2

    =(u2

    -u1

    ) + (V2

    2

    -V2

    1

    )/2+(Z2

    -Z1

    )g

    1 2

    1 (PROCESS) ( )

  • 8/14/2019 02 -Power-point-10

    39/97

    . 39

    1 (PROCESS)()

    U = 0

    Q = WE

    WE

    Q

    Q =U+KE+PE+W Q-W =U+KE+PE

  • 8/14/2019 02 -Power-point-10

    40/97

  • 8/14/2019 02 -Power-point-10

    41/97

    . 41

    W= dPV

    dV

    Q

    Q = d(U+PV) = dH q = dhQ = H

    2-H

    1= m (h

    2-h

    1)

    q = h2- h1

    Q = dU+ W =dU+PdV

    W d(PV)

  • 8/14/2019 02 -Power-point-10

    42/97

    . 42

    W=d(PV)

    dV

    WE

    -WE = d(U+PV) = dH -wE = dh-W

    E= H

    2-H

    1= m (h

    2-h

    1)

    -wE = h2- h1

    -WE

    = dU+ W =dU+PdV

    W d(PV)

  • 8/14/2019 02 -Power-point-10

    43/97

    . 43

    W =d(PV)

    dV

    WE

    Q - WE = d(U+PV) = dH q - wE = dhQ -W

    E= H

    2-H

    1= m (h

    2-h

    1)

    q-wE = h2- h1

    Q

    Q-WE

    = dU+ W =dU+PdV

  • 8/14/2019 02 -Power-point-10

    44/97

    . 44

    20O

    C 21O

    C1kg 1kg

    qV

    20OC

    1kg

    qP

    21OC

    1kg

    qV= q

    P?

  • 8/14/2019 02 -Power-point-10

    45/97

    . 45

    20OC 21OC

    1kg 1kg

    q q = u2- u1

    20OC

    1kg

    q

    q = h2- h

    1

    21OC

    1kg

    q = dh

    q = du

    CV

    =

    CP=

    CV= 0.717 kJ/(kg.K)

    CP

    = 1.004 kJ/(kg.K)

    u2- u

    1= C

    V(T

    2-T

    1)

    h2- h1= CP(T2-T1)

    25OC, 100 kPa

  • 8/14/2019 02 -Power-point-10

    46/97

    . 46

    ,

    Cpo Cvo k kg/m3 kJ/kg-K kJ/kg-K

    0.0231 1.872 1.410 1.327

    1.05 1.699 1.380 1.231

    1.169 1.004 0.717 1.400

    0.694 2.130 1.642 1.297 1.613 0.520 0.312 1.667 C

    P= C

    V= C

    Dh =D

    u = CD

    T

    1 (PROCESS)

  • 8/14/2019 02 -Power-point-10

    47/97

    .47

    (1)

    mi1

    mi2

    mi3

    me1

    me2

    mCV1 mCV2

    (2)

    mi -me =mCV2- mCV1 =mCV

    1 (PROCESS)

  • 8/14/2019 02 -Power-point-10

    48/97

    . 48

    (Steady Flow Process)

    (mCV = 0)

    kg/s5

    im =

    kg/s5em =

    (1.26a)......emim

    =

    )(1.26......emim =

    m3/s-

    1 (PROCESS)

  • 8/14/2019 02 -Power-point-10

    49/97

    .49

    (Uniform Flow Process)

    () ()

    (1) (2)

    mi1

    (h+V2/2+Zg)i1

    W [(1)(2)]

    Q [(1)(2)]Q W = m

    e(h + V

    2/2+Zg )

    e- m

    i(h + V

    2/2+Zg )

    i+ E

    CV2- E

    CV1

    Q W = me (h + V2/2+Zg )e - mi (h + V2/2+Zg )i +(ECV2- ECV1)/t

    mi2(h+V2/2+Zg)i2

    mi3

    (h+V2/2+Zg)i3

    me1

    (h+V2/2+Zg)e1

    me2

    (h+V2/2+Zg)e2

    ECV1

    ECV2

    1 (PROCESS)(Steady Flow Process)

  • 8/14/2019 02 -Power-point-10

    50/97

    . 50

    (Steady Flow Process)

    () ()

    mi1

    (h+V2/2+Zg)i1

    W [(1)(2)]

    Q W = me

    (h + V2/2+Zg )

    e- m

    i(h + V

    2/2+Zg )

    i

    Q W = me (h + V2/2+Zg )e - mi (h + V2/2+Zg )i(1) (2)Q [(1)(2)]

    mi2(h+V2/2+Zg)i2

    mi3

    (h+V2/2+Zg)i3

    me1

    (h+V2/2+Zg)e1

    me2

    (h+V2/2+Zg)e2

    mCV

    = 0 ECV

    = 0

    (Steady Flow Process)()

  • 8/14/2019 02 -Power-point-10

    51/97

    . 51

    Q = me(h + V2

    /2+Zg )e mi(h + V2

    /2+Zg )i + W kJ.(1.27)

    Q =

    me(h + V2

    /2+Zg )e

    mi (h + V2

    /2+Zg )i +

    W kW .(1.27

    Q = mehe mi h i +W kJ ...(1.27Q =

    mehe

    mi h i +

    W kW .(1.27

    (Steady Flow Process)

  • 8/14/2019 02 -Power-point-10

    52/97

    . 52

    1 1

    Q =

    m h + W kW (1.27j)

    Q = h + W kJ (1.27k)q = h +w kJ/kg (1.27l)

    WQ

    hi he

    m m

    Cengel-Boles

  • 8/14/2019 02 -Power-point-10

    53/97

    Q = 0 (q=0), W = We+WshW

    eW

    sh

    when kinetic and potential energychanges are negligible

    1000 kJ

  • 8/14/2019 02 -Power-point-10

    54/97

    . 54

    -P

    e>>P

    i

    W = m h+ Q w = h+q

    W =

    m (Pv +u)+ Q w = (Pv+u)+q

    v u= CT W =

    m (vP + CT)+ Q

    w = ( vP+ CT)+q ..(1.28)

    () Q q 0 u= CT = 0 (

  • 8/14/2019 02 -Power-point-10

    55/97

    . 55

    Q q (

    ) W =

    m vP = V P w = vP ..(1.29)

    1.23 0.1 m3/s101 kPa 303 kPa

    () W =

    V P

    m .v =V m

    3/s 0.1 m3/s , Pi = 101 kPa

    Pe

    = 303 kPa

    W = 0.1 ( 303 101 ) = 20. 2kW

  • 8/14/2019 02 -Power-point-10

    56/97

    . 56

    DZ

    Q =

    m [(he-hi) + (V

    2

    e/2 -V2

    i/2) + g (Ze-Zi)] +W

    ++++= W)g]Z-(Z/2)V-/2(V)vPv(P)u[(umQ ie2

    i

    2

    eiieeie

    W =

    m (Zi Ze)g

    W

    ()

  • 8/14/2019 02 -Power-point-10

    57/97

    . 57

    DZ

    W=

    m (Z

    i

    Ze

    )g Watt, W = m (Zi

    -Ze

    )g Joul

    W

    100 m 1 m3 kW.h

    W = (1m3

    *1000kg/m

    3

    )*100m*9.81m/s

    2

    =981000 N.mW = 981000 J = 981000/3,600,000 kW.h =0.2725 kW.h

    1 = 1 kW.h = 3.6 MJ = 3,600 kJ = 3,600,000 J

  • 8/14/2019 02 -Power-point-10

    58/97

    . 58

    Q = mh = m ( h h )m =

    kg/s

    h = kJ/kgQH

    23

    QL

    14

    m m

    QH

    = m ( h3 h

    2) Q

    L= m ( h

    1 h

    4)

    hb- ha= CP(Tb-Ta)

  • 8/14/2019 02 -Power-point-10

    59/97

    . 59

    W = Q mh =Q m ( h h )

    W = mh(-)

    W = mh (QLoss

    )

    W = mh + QLoss W

    1

    2

    m

    QLoss

    R-22

  • 8/14/2019 02 -Power-point-10

    60/97

    . 60

    1942.3 kPa, 50OC 101.3 kPa,40.8OC

    1942.3 kPa 101.3 kPa

    40.8OC

    -40.8o

    C

    hi = he

    -(P-h Diagram)

    ( )

  • 8/14/2019 02 -Power-point-10

    61/97

    . 61

    T4T

    3T2T1P

    (Critical Point)

    T=5oC

    h

    h

    -40oC 5oC 50oC

    3

    2

    1

    50oC

    -40o

    C

    (Bernoulli Equation)

  • 8/14/2019 02 -Power-point-10

    62/97

    . 62

    (Bernoulli Equation)i e

    q = he hi + (2

    2

    eV

    2

    2

    iV

    )+(zegzig) + w ( w = 0 )

    q = ue+ Peve (ui+ Pivi )+ ( 2

    2

    eV

    2

    2

    iV

    )+(zegzig)

    Pi Pe+(

    PF Z

    F

    v

    Vi

    2

    2

    v

    Ve

    2

    2

    )+ (zig/v zeg/v ) = [(ueui) q]/v = PF Pa

    Pivi/g Peve/g +(g

    Vi

    2

    2

    g

    Ve

    2

    2

    )+ (zi ze ) = [(ueui) q]/g = ZF m

    (Bernoulli Equation)()

  • 8/14/2019 02 -Power-point-10

    63/97

    . 63

    ( q )( )i e

    Pi- Pe+( v

    Vi

    2

    2

    - v

    Ve

    2

    2

    )+ (zig/v - zeg/v ) = 0

    Pivi/g - Peve/g +(g

    Vi

    2

    2

    -g

    Ve

    2

    2

    )+ (zi - ze ) = 0

    P1+V12

    /(2v1)+Z1g/v1=P2+V22

    /(2v2)+Z2g/v2

    2

  • 8/14/2019 02 -Power-point-10

    64/97

    TH

    QH

    WT

    (Boiler)

    (Condenser)Q

    L

    TL

    WP

    (Heat Engine Cycle)

    Turbine

    Pump

    TH

    QH

    WC

    (Evaporator)

    QL

    TL

    (Refrigeration Cycle)

    Compressor

    Expansion Valve

  • 8/14/2019 02 -Power-point-10

    65/97

    . 65

    =

    =

    =

    =

    1 (100%)

    T (Heat Engine Cycle)

  • 8/14/2019 02 -Power-point-10

    66/97

    TH

    QH

    WT

    (Boiler)

    (Condenser)QL

    TL

    W

    P

    Turbine Generator

    WE,T

    Pump W

    E,P

    Motor

    WPS W

    TS

    th

    =(WT- W

    P) / Q

    H

    th,S

    =(WTS

    - WPS

    ) / QH

    th,O

    =(WE,T

    - WE,P

    ) / QH

    T= WT / WTS

    G= W

    E,T/ W

    T

    P= W

    PS/ W

    P

    M

    = WP

    / WE,P

    S WPS WTS .

    T (Heat Engine Cycle)

  • 8/14/2019 02 -Power-point-10

    67/97

    TH

    QH

    WT

    (Boiler)

    (Condenser)QL

    TL

    W

    P

    TurbinePump

    (WT- WP) = QH- QL

    th

    =(QH- Q

    L) / Q

    H

    th 1 (100%)

    th

    =(WT- W

    P) / Q

    H

    .

    ()

  • 8/14/2019 02 -Power-point-10

    68/97

    ()() 10 km/

    .

    T (Refrigeration Cycle)

    = W / W

  • 8/14/2019 02 -Power-point-10

    69/97

    TH

    QH

    (Evaporator)QL

    WC

    TL

    Comp. Motor

    WE,M

    Expansion Valve WCS

    COP= QL/W

    CS

    C

    = WCS

    / WC

    M

    = WC

    / WE,M

    COP= QL/W

    C

    COP= QL/W

    E,M

    S WCS .

    T (Refrigeration Cycle)

  • 8/14/2019 02 -Power-point-10

    70/97

    TH

    QH

    WC

    (Evaporator)QL

    TL

    Compressor

    Expansion Valve

    COP = QL

    /WC

    WC= Q

    H- Q

    L

    COP= QL/(Q

    H- Q

    L)

    COP 1 (100%).

    ()

  • 8/14/2019 02 -Power-point-10

    71/97

    10 kW 10 kW 20 kW

    COP (kW.h kJ)()

    .

    T (Heat Pump Cycle)

  • 8/14/2019 02 -Power-point-10

    72/97

    TH

    QH

    WC

    (Evaporator)

    QL

    TL

    Comp.

    Expansion Valve

    COP = QH

    /WC

    WC= Q

    H- Q

    L

    COP= QH/(Q

    H- Q

    L)

    COP 1 (100%).

    T

    = W / W

    (Internally Reversible Refrigeration Cycle)

  • 8/14/2019 02 -Power-point-10

    73/97

    TH

    QH

    (Evaporator)

    QL

    WC

    TL

    W

    T

    Comp. Motor

    WE,M

    Turbine

    WTS W

    CS

    COP= QL/(W

    CS- W

    TS)

    C

    WCS

    / WC

    M

    = WC

    / WE,M

    T= W

    T

    / WTS COP= Q

    L/(W

    C- W

    T)

    COP= QL/(W

    E,M- W

    T)

    S WCS WTS .

    2- (2nd Law of Thermo.)

    KELVIN-PLANCK STATEMENT

  • 8/14/2019 02 -Power-point-10

    74/97

    THQ

    H

    WT

    (Boiler)

    WP

    Turbine

    Pump

    th=(WT- WP) / QH(W

    T- W

    P) = Q

    H

    th= 1

    .

    2- (2nd Law of Thermo.)

    KELVIN-PLANCK STATEMENT

  • 8/14/2019 02 -Power-point-10

    75/97

    THQ

    H

    WT

    WT= QH

    th

    = 1 .

    2- (2nd Law of Thermo.)

    CLAUSIUS STATEMENT

  • 8/14/2019 02 -Power-point-10

    76/97

    THQ

    H

    (Evaporator)QL T

    L

    Expansion Valve

    COP = QL/W

    C

    WC= 0

    COP= .

    2- (2nd Law of Thermo.)

    CLAUSIUS STATEMENT

  • 8/14/2019 02 -Power-point-10

    77/97

    THQ

    H

    QL

    TL

    QL= Q

    H

    .

    T/ (Carnot/Reversible Cycle)

  • 8/14/2019 02 -Power-point-10

    78/97

    H

    QH

    WT

    QL

    TL

    W

    P

    TurbinePump

    QH/T

    H= Q

    L/ T

    L

    Comp

    Turbine

    QH/TH- QL/ TL= 0

    =0TQ

    QL/QH= TL/ TH

    100% .

    T =500oC (Carnot Heat Engine Cycle)

  • 8/14/2019 02 -Power-point-10

    79/97

    H

    QH

    WT

    499.9oC

    32.1oC

    QL

    TL= 32oC

    W

    P

    TurbinePump

    th=(WT- WP) / QH(W

    T- W

    P) = Q

    H- Q

    L

    th=(QH- QL) / QH

    th= [(500+273) (32+273)] / (500+273) = 0.6054=60.54%

    th

    = (TH-T

    L)/T

    H

    .

    T =500oC (Carnot Heat Engine Cycle)

  • 8/14/2019 02 -Power-point-10

    80/97

    H

    QH

    WT

    QL

    TL= 32oC

    W

    P

    TurbinePump

    / 100%0.6054 60.54%.

    TH

    =35O

    C

    ( CARNOT REFRIGERATOR )

  • 8/14/2019 02 -Power-point-10

    81/97

    . 81

    TE=24.99OC

    TC=35.01OC

    QL

    QH

    WC

    COPCARNOT

    =QL/W

    C=T

    L/(T

    H-T

    L)

    EERCARNOT

    =3.412TL/(T

    H-T

    L) = 102

    EVAPORATOR

    CONDENSER

    TC=

    Condenser

    TE=

    Evaporator

    COPCARNOT

    = (25+273)/[(35+273)-(25+273)]= 30

    TL=25

    O

    C QH= QL+WC W

    C= QH - QL

    1

    23

    4

    TH

    =35O

    C

    ( CARNOT REFRIGERATOR )

  • 8/14/2019 02 -Power-point-10

    82/97

    . 82

    QL

    QH

    WC

    EVAPORATOR

    CONDENSER

    TL=25

    O

    C

    1

    23

    4

    / 100%

    COP 30 EER102

    (Carnot Cycle)HEAT ENGINE/ REFRIGERATOR/

  • 8/14/2019 02 -Power-point-10

    83/97

    THQ

    H

    Wnet

    QL T

    L

    th= (TH-TL)/TH

    THQ

    H

    Wnet

    QL T

    L

    COP = TL/ (TH-TL)

    HEAT ENGINE/T

    H

    TL 30OC(303K)

    .

    (Entropy) T

    H

  • 8/14/2019 02 -Power-point-10

    84/97

    QH

    WT

    Q

    L

    TL

    WP

    Turbine

    Pump

    Comp

    Turbine

    QH

    /TH

    - QL/ T

    L= 0

    = 0TQ

    T

    QdS =

    (Carnot)

    0T

    QO =dS

    T

    Q

    T DS = Q/T.

    (Entropy)()

    2 (Reversible Process)

  • 8/14/2019 02 -Power-point-10

    85/97

    T

    QdS =

    =1

    TdSQTdS=Q

    (Internally reversible).

    (Entropy in Carnot Cycle)

    T

  • 8/14/2019 02 -Power-point-10

    86/97

    HQ

    H

    WT

    Q

    L

    TL

    WP

    TurbinePump

    Comp

    Turbine

    1 2

    34

    1 2

    34

    s

    T

    .

    (Entropy in Carnot Cycle)() T

    H

    QH

  • 8/14/2019 02 -Power-point-10

    87/97

    WT

    QL

    TL

    WP

    TurbinePump

    Comp

    Turbine

    1 2

    34

    1 2

    34

    T TH

    s

    TL

    1-2 QH= TH(S2-S1) = 1-2 TH 2-3 Q =0 , S

    2=S

    3 (Isentropic)

    3-4 QL= TL(S4-S3) = 3-4 T

    L

    2-3 Q =0 , S4=S

    1 (Isentropic)

    QH- Q

    L= Q

    NET= W

    T-W

    P=W

    NET= 1-2-3-4-1

    .

    (Clausius Inequality)

  • 8/14/2019 02 -Power-point-10

    88/97

    0TQ

    0T

    QO

    = 0TQ

    0TQO =

    < 0T

    Q 0

    T

    QO

    0 .(1)

    .(2)

    .

    =

    e

    i

    vdPmW

    = e

    idPVW

    KE &PE

  • 8/14/2019 02 -Power-point-10

    89/97

    W= m = v= dP =

    W =

    kW

    V= -m3/s

    P =kPa H kg/m3:

    P = 9.81 H/1000

    - v V

    PvmW = PVW =

    .

    =e

    i

    vdPmW

    = e

    idPVW

    KE &PE

    ()

  • 8/14/2019 02 -Power-point-10

    90/97

    W = kWV= -m3/s

    P =kPa(a)-

    (b)-

    P.....(a)vmW =

    .(b)P.........VW

    =

    .

    (Air Compressor)

  • 8/14/2019 02 -Power-point-10

    91/97

    h

    W = V =P1

    = P2

    =

    P2

    P1

    P2

    P1

    P2

    P1

    dW = VdP

    W = V(P2-P1) = VP V

    P1

    P2

    P2- FrictionFriction 0.5

    Air Compressor

    PumpPump Fan

    = e

    idPVW V

    .

    P2-P1 = h + F

    F V2( 3)

    W = V*(h+F)

  • 8/14/2019 02 -Power-point-10

    92/97

    W (h*V+k*V3)(F =0) W = V*h

    W V W2/W1=V2/V1

    () W = V * F W V3 W2/W1=[V2/V]3

    V

    h

    ( h

    )

    100 / 100 kW 50 / 50 kW

    100 / 100 kW 50 / 12.5 kW

    hP

    2

    P1

    Pump

    P2P1

    Pump FanP

    2

    P1

    .

    P

    1P

    2P

    2- Friction

    Air Compressor

  • 8/14/2019 02 -Power-point-10

    93/97

    =

    e

    i

    vdPmWW = (

    V /0.286)*P1 [ (P2/P1)

    0.286-1]

    W = (

    m R/0.286)*T1 [ (P2/P1)

    0.286

    -1]W = kWV = m3/s

    P1 = kPa 101 kPaP2 = kPaR = 0.287 kJ/(kg.K)

    T1 = KOC+273

    =

    e

    idPVW

    dW = VdP V (Isentropic) PV1.4=

    Air Compressor

    .

    ()

    W / W = [ (P /P )0.286 1] / [ (P /P )0.286 1]

  • 8/14/2019 02 -Power-point-10

    94/97

    (dP )

    = 1122 W)V/V(W

    Wb/ W a= [ (Pb/P1)0.286-1] / [ (Pa/P1)

    0.286-1]

    c 75%

    =

    W

    =

    ACTW

    1 8 100 kW 7 100*(70.286-1)/*(80.286-1) = 91.6 kW

    100 / 10 kW VSD 50 / 5 kW

    c ACTW/W

    =

    .

    P-hP

    3

    223

    T1

    T3 T3

  • 8/14/2019 02 -Power-point-10

    95/97

    h

    1

    2

    1

    23

    4

    12 (s2 =s1 = constant) 34 (h4= h

    3= Constant )

    23 41 (P2=P3 P4 = P1)

    1 3 T3

    T1

    T1

    T3

    COP = (h1-h

    4) / (h

    2-h

    1) = (h

    1-h

    3) / (h

    2-h

    1) .

    TH=35OC

    TC=50oC,T

    E=5oC

    R-22

  • 8/14/2019 02 -Power-point-10

    96/97

    96

    TE=5OC (70 psig)

    TC

    =50OC (267psig)

    QL

    QH

    WC

    COP=Q /W =Q /(Q -Q ) = (h -h ) / (h -h )= 4.78

    P=267-70= 197psi

    TL=25OC

    TH=35OC

    TC=

    Condenser

    TE=

    Evaporator

    1 psi=6.9kPa

    kPa =kPag+101.325

    QH= QL+WC W

    C= QH - QL

    1

    23

    4

    L C L H L 1 4 2 1

    EER=3.412QL/(Q

    H-Q

    L) =3.412 (h

    1-h

    4) / (h

    2-h

    1) =16.3

    T

    1=5oC P

    1=P

    S= 583.8kPa

    h1= h

    g= 251.73 kJ/kg

    s1

    = sg

    = 0.9197 kJ/kg.K

    T2=50oC P

    2=P

    S=1942.3kPa

    s2=s

    1=0.9197 h

    2= 281.8kJ/kg

    h3= 107.85 kJ/kg h

    4=h

    3

    qL= h

    1-h

    4= 251.73 - 107.85

    = 143.88 kJ/kg

    wC=h2-h1=281.8-251.73

    =30.07 kJ/kg

    COP=qL/w

    C=143.88/30.07

    =4.78

    m = 10kg/s QL=1438.8kW

    .

    TH=32OC

    TC=40

    oC,T

    E=5

    oC

    ()

  • 8/14/2019 02 -Power-point-10

    97/97

    . 97

    TE=5OC (70 psig)

    TC

    =40OC (208psig)

    QL

    QH

    WC

    P=208-70= 138psi1 psi=6.9kPa

    kPa =kPag+101.325

    TL=25OC

    TH 32 C

    TC=

    Condenser

    TE=

    Evaporator

    QH= QL+WC W

    C= QH - QL

    1

    23

    4

    COP=QL/WC=QL/(QH-QL) = (h1-h4) / (h2-h1)= 6.58 (TC=50

    o

    C 4.78)EER=3.412QL/(Q

    H-Q

    L) =3.412 (h1-h4) / (h2-h1) =22.45 (T

    C=50oC 16.3)