0131030 kaiyo

Upload: ankiq-maqapagal

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 0131030 Kaiyo

    1/32

    MAPPING OF OCEAN ENERGYIN INDONESIA

    SusilohadiMarine Geological Institute/MGI

    (Pusat Penelitian dan Pengembangan Geologi Kelautan)Jalan Dr. Junjunan 236BANDUNG 40174, INDONESIA

    Ph. +62 22 6032020, Fax. +62 22 6017887E-mail: [email protected]

    Web Site: www.mgi.esdm.go.idWorkshop: Jalan Kalijaga 101 Cirebon

  • 8/13/2019 0131030 Kaiyo

    2/32

    I. Introduction

    II. Legal Status of Ocean Renewable Energy

    Mapping

    III. Highlight of some Ocean Current Mapping

    Results

    IV. Closing Remarks

    00:47:48

  • 8/13/2019 0131030 Kaiyo

    3/32

    INTRODUCTIONPresidential Regulation no. 5/2006: NRE has to

    contribute 17 of national energy mix by 2025. NRErelies mostly on geothermal energy.

    The capacity of ocean energy to contribute the NREenergy mix has been recognized in the National EnergyLaw no. 30/2007.

    Ocean renewable energy is primarily based on waves,(tidal) currents and ocean thermal.

    Since then the national capacity to explore oceanenergy and to develop the suitable technology havebeen enhanced significantly.

    Marine Geological Institute (MGI) has taken place in themapping of national ocean energy, particularly oceancurrent. However, since by rule only MGI that doingroutine exploration, mapping of ocean energy in thecoming years will not be limited only on ocean current.

    00:47:48

    Coal

    2%

    Oil

    20%

    Gas

    30%

    Bio Fuels

    5% Geothermal

    5%

    Hydro

    2,61%

    Coal

    33%

    Other

    5%Wind

    0,0301%

    Fuel Cell

    0,00%

    Biomass

    0,7417%

    Nuclear

    1,4032%

  • 8/13/2019 0131030 Kaiyo

    4/32

    CURRENT STATUSOF OCEAN WAVE ENERGY MAPPING IN INDONESIA

    Field ocean wave mapping has not been in anattention

    Mapping of area where ocean wave issignificant has been based on modeling ofgridded binary satellite data

    Modeling softwares: Windwaves 05(BMKG/ITS); Numerical model resulting Hsand Tp (ITB)

    00:47:48

  • 8/13/2019 0131030 Kaiyo

    5/32

    WAVE HEIGHT MODELING

    Significant wave (wind driven) based on gridded binary satellite data

    Modelling software: Windwaves 05 (Eko Prasetyo, 2011)

  • 8/13/2019 0131030 Kaiyo

    6/32

    WAVE HEIGHT MODELING (Eko Prasetyo, 2011)

  • 8/13/2019 0131030 Kaiyo

    7/32

    Potential Area of Wave Energy

    Area of Hs >2 & Tp = 9.5 sec. in Indonesian waters (Firdaus et al., 2011)

  • 8/13/2019 0131030 Kaiyo

    8/32

    CURRENT STATUSOF OCEAN THERMAL ENERGY MAPPING IN INDONESIA

    CTD measurements mostly carried out byscientific institutes in relation to the IndonesianThroughflow(ITF) and limatic studies, such as: Arlindo-Mixing Cruise (1993-1994) INSTANT Program-Indomix Cruise (2006 &

    2010) INDEX/SATAL 2010 Sonne Cruise SO-217 (2011).

    00:47:48

  • 8/13/2019 0131030 Kaiyo

    9/3200:47:48

    CURRENT STATUSOF OCEAN THERMAL ENERGY MAPPING IN INDONESIA

    Sonne Cruise SO-217 tracklines, stations and CTDresults (Kuhnt, et al., 2011)

  • 8/13/2019 0131030 Kaiyo

    10/32

    CURRENT STATUSOF OCEAN CURRENT ENERGY MAPPING IN INDONESIA Ocean Current Energy Mapping has been conducted

    by MGI since 2006. Field measurements are mostly of short period (15

    days) and concentrated in the narrow strait betweenLesser Sunda islands, Raja Ampat, and SundaStrait.

    The measurements result in the characterization ofthe currents, such as: three dimensional variation ofspeed & direction, duration and its relationship tolocal tides.

    Modeling on those data is now in progress in orderto calculate power density flux.

    00:47:48

    d i h h l ( )

  • 8/13/2019 0131030 Kaiyo

    11/32

    Indonesian Through Flow (ITF)

    Indonesian throughflow pathways and estimates of total volume transport (in Sv = 106m3/sec). ITF is an ocean current with importance for global climate since it provides a low-latitude pathway for warm, fresh water to move from the Pacific to the Indian Ocean throughthe western route of the Makassar Strait to either directly exit through the Lombok Strait orflow eastward into the Banda Sea (Gordon, 2005).

    I d i Th h Fl (ITF)

  • 8/13/2019 0131030 Kaiyo

    12/32

    Indonesian Through Flow (ITF)

    Trajectories of satellite-track drift buoys from the Global Drifter Program (8/1988-6/2007)The trajectories show that a current intrudes into the South China Sea through the LuzonStrait and forms a throughflow branch toward the Karimata Strait. The total number of drifterthrough the Karimata Strait is higher than those that pass through the main ITF path oMakassar Strait. (Drifter Data Assembly Center at NOAA/AOML; Susanto, et al., 2010)

  • 8/13/2019 0131030 Kaiyo

    13/32

    MGI OCEAN CURRENT MAPPING 2006 - 2013

    SELAT SUNDA (2012) RAJA AMPAT (2013)

    SELAT BOLENG(2012)

  • 8/13/2019 0131030 Kaiyo

    14/32

  • 8/13/2019 0131030 Kaiyo

    15/32

    Strait water depth :- Within strait < 90 m- South of strait > 90 m

    Strait width :- Northern 650 750 m- Middle 1250 1300 m- Southern 2400 2500 m

  • 8/13/2019 0131030 Kaiyo

    16/32

  • 8/13/2019 0131030 Kaiyo

    17/32

    428.25 m

    SE NW Vertical profile

  • 8/13/2019 0131030 Kaiyo

    18/32

    Larantuka Strait

    Simulated flux density duringspring-flood tide at depth of 10 m(Juventus in Yuningsih, et al., 2009)

    Simulated flux density duringspring-ebb tide at depth of 10m (Juventus in Yuningsih, et al.,2009)

  • 8/13/2019 0131030 Kaiyo

    19/32

    Lombok Strait

    Simulated flux density duringspring-flood tide at depth of 10 m(Hadi, 2006)

    Simulated flux density duringspring-ebb tide at depth of 10m (Hadi, 2006)

  • 8/13/2019 0131030 Kaiyo

    20/32

    Alas Strait

    Simulated flux density duringspring-flood tide at depth of 10 m(Huda, 2006)

    Simulated flux density duringspring-ebb tide at depth of 10m (Huda, 2006)

    Ocean Current in Sunda Strait

  • 8/13/2019 0131030 Kaiyo

    21/32

    00:47:48

    Ocean Current in Sunda Strait

  • 8/13/2019 0131030 Kaiyo

    22/32

    04:00

    Ocean Current in Sunda Strait

    DURING NEAP TIDE

  • 8/13/2019 0131030 Kaiyo

    23/32

    Current velocity:

    - average = 0.94 m/sec.

    - maximum = 2.52 m/sec

    (occurs 9 hrs prior to flood).

    DURING NEAP TIDE

    DURING NEAP TIDE

  • 8/13/2019 0131030 Kaiyo

    24/32

    Current velocity:

    - average = 1.38 m/sec.

    - maximum = 1.99 m/sec(occurs 2 hrs after lowest

    ebb).

    DURING NEAP TIDE

    DURING SPRING TIDE

  • 8/13/2019 0131030 Kaiyo

    25/32

    DURING SPRING TIDE

    Current velocity:

    - average = 1.38 m/sec.- maximum = 3.97 m/sec

    (occurs 6 hrs after highe

    flood).

    DURING SPRING TIDE

  • 8/13/2019 0131030 Kaiyo

    26/32

    Current velocity:

    - average = 1.36 m/sec.

    - maximum = 4.59 m/sec(occurs 3 hrs prior to lowest

    ebb).

    Ocean Current in Raja Ampat Islands

  • 8/13/2019 0131030 Kaiyo

    27/32

    Bathymetric Mapof Mansuar

    Strait,

    Raja Ampat

    Lokasi penelitian

    131 20' 53"

    Weigeo

    131 20' 53"

    -052'55"

    130 0' 28"

    05'4"

    130 0' 28"

    -052'55"

    PETA INDEKS

    05'4"

    130 41' 19.19

    -0

    30'24"

    130 41' 19.19"

    -0

    36'45"

    130 30' 4"

    -0

    30'24"

    -0

    36'45"

    130 30' 4"

    SELAT DAMPIER

    P. MANSUAR

    KEMENTERIAN ENERGI DAN SUMBERDAYAMINERAL

    PUSAT PENELITIAN DAN PENGEMBANGAN GEOLOGI KEL AUTAN

    Digambar oleh

    Disyahkan oleh

    Diperiksa oleh

    Mira Yosi, M. Si

    PETA BATIMETRI

    DI PERAIRAN

    Navigator

    Penyusun

    Pengamat

    : Kontur batimetri interval 5 meter

    : Ibukota Kabupaten/Kecamatan

    : Sungai

    : Jalan

    KETERANGAN : 4 KM0 2

    9090909090909090

    90

    808080808080

    808080

    808080808080808080

    606060606060606060

    5050505050505050

    50

    40404040

    4040

    404040

    404040404040404040

    303030303030303030

    30303030

    3030303030

    303030303030303030

    10

    10

    10101010

    10

    10

    10

    30303030

    303

    03030

    30

    303030303030303030

    404040404040404040

    50505050

    5050505050

    303030303030303030

    202020202020202020

    303030303030303030

    50505050

    5050505050

    20202020

    2020202020

    303030303030303030

    30303030

    3030303030

    505050

    5050

    505050

    50

    606060606060606060

    30303030

    3030303030

    808080808080808080

    606060606060606060

    202020202020202020

    404040404040404040

    505050505050505050

    60

    60

    6060

    6060

    60

    6060

    505050505050505050

    202020202020202020

    202020202020202020

    202020202020202020 1010101

    01010101010

    808080808080808080

    707070707070707070

    202020202020202020

    10101010101010101020

    20

    2020

    2020

    20

    2020

    303030

    3030

    303030

    30

    202020202020202020

    101010101010101010

    303030303030303030

    4040404040404040

    40

    80808080

    80808080

    80

    202020202020202020

    202020202020202020

    2020202020202020

    20

    202020202020202020

    404040404040404040

    404040404040404040

    101010101010101010

    101010101010101010

    101010101010101010

    30

    30

    30

    3030

    30

    30

    30

    30

    707070707070707070

    80808080

    8080808080

    8080808080808080

    80

    303030303030303030

    202020202020202020

    2020202020202020

    20

    30303030

    3030

    303030

    404040404040404040

    505050505050505050

    3030

    3030303030

    3030

    404040404040404040

    4040404040404040408080808080808080

    80

    606060606060606060

    808080808080808080707070707070707070

    30

    30

    30

    3030

    30

    30

    30

    30

    404040404040404040

    303030

    3030

    303030

    30

    303030303030303030

    202020202020202020

    30303030

    3030

    303030

    303030303030303030

    505050505050505050404040404040404040

    404040404040404040

    60

    60

    60

    6060

    60

    60

    60

    60

    505050505050505050

    808080808080808080

    808080808080808080

    808080808080808080

    707070707070707070

    10101010

    1010101010

    1010101

    0

    101

    01010

    10

    202020202020202020

    303030303030303030

    404040404040404040

    505050505050505050

    202020202020202020

    50505050

    5050505050

    20

    20

    20

    2020

    20

    20

    20

    20

    303030303030303030

    202020

    2020

    202020

    20

    2020202020202020

    20

    4040404

    0

    404

    04040

    40

    10

    10

    10101010

    10

    10

    10

    101010101010101010

    101010

    1010

    10101010

    10

    10

    101010101010

    10

    101010101010101010

    303030303030303030

    3030303030303030

    30 303030

    303030303030

    202020202020202020

    60

    60

    6060

    6060

    60

    6060

  • 8/13/2019 0131030 Kaiyo

    28/32

    Ocean current vectors at water depth of 1 24 m from Sawinggrai Village

    Velocity cm/sec

    Reference cm/sec

  • 8/13/2019 0131030 Kaiyo

    29/32

    2014 2019 MGI MAPPING PROGRAMSOcean Thermal Mapping: Collecting CTD data of previous expedition into a single data base Setting up CTD measurements as a routine task within systematicmarine geological and geophysical mapping programs Begin applying of seismic oceanography methodology on already

    acquired multichannel seismic data Setting up paleoclimatic/oceanographic research collaborations

    with Indonesian Agency for Marine & Fisheries and FIO (China),French-Legos

    Ocean Current Mapping: Field mapping focuses Natuna islands and northern Sulawesi. To issue the first edition of Ocean Current Energy Map (December2013).

    00:47:48

  • 8/13/2019 0131030 Kaiyo

    30/32

    SEISMIC OCEANOGRAPHY: A new cross discipline between oceanography andseismology Application of multichannel seismic reflection method to the

    investigation of thermohaline fine structures of the ocean. Since 2010 MGI has acquired significant amounts ofmultichannel seismic reflection data, particularly in eastern

    Indonesia. It is expected that new methodology applied to those

    seismic data will result in comprehensive understanding ofthermohaline structure of Indonesian waters (in addition tothe field measurements of CTD).

    00:47:48

    2014 2019 MGI MAPPING PROGRAMS

  • 8/13/2019 0131030 Kaiyo

    31/32

    00:47:48

    2014 2019 MGI MAPPING PROGRAMS

  • 8/13/2019 0131030 Kaiyo

    32/32

    9/23/2013