01-beginning vibration analysis.pdf

Upload: barcsa-rudolf

Post on 07-Aug-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    1/96

    Beginning Vibration

     Analysiswith

    Basic Fundamentals

    By: Jack Peters

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    2/96

    Jack D. Peters

    Beginning Vibration

    2

    Introduction

    Understanding the basics and fundamentals of vibration analysis arevery important in forming a solid background to analyze problems on

    rotating machinery.

    Switching between time and frequency is a common tool used for

    analysis. Because the frequency spectrum is derived from the data inthe time domain, the relationship between time and frequency is very

    important. Units of acceleration, velocity, and displacement are

    typical. Additional terms such as peak-peak, peak, and rms. are often

    used. Switching units correctly, and keeping terms straight is a must.

    As much as possible, this training will follow the criteria as established

     by the Vibration Institute.

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    3/96

    Jack D. Peters

    Mass & Stiffness

    3

    Mass & Stiffness

    All machines can be broken down

    into two specific categories.

    Mass & Stiffness

    Mass is represented by an object

    that wants to move or rotate.

    Stiffness is represented by springs

    or constraints of that movement.

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    4/96

    Jack D. Peters

    Mass & Stiffness

    4

    Mass & Stiffness

    f n = 1 / 2П k/m

    Where:

    f n = natural frequency (Hz)k = stiffness (lb/in)

    m = mass

    mass = weight/gravityweight (lb)

    gravity (386.1 in/sec2)

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    5/96

    Jack D. Peters

    Mass & Stiffness

    5

    Concept !

    f n = 1 / 2П k/m

    If k increasesThen f increases

    If k decreases

    Then f decreases

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    6/96

    Jack D. Peters

    Mass & Stiffness

    6

    Concept !

    f n = 1 / 2П k/m

    If m increases

    Then f decreases

    If m decreases

    Then f increases

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    7/96

    Jack D. Peters

    Spectrum

    7

    What’s This ?

    0.0002

    inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    8/96

    Jack D. Peters

    Spectrum

    8

    FFT, Frequency Spectrum, Power Spectrum

    0.0002

    inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    9/96

    Jack D. Peters

    Spectrum

    9

    Scaling X & Y

    0.0002inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

    X

    Y

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    10/96

    Jack D. Peters

    Spectrum

    10

    Scaling X & Y

    0.0002inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

    FREQUENCY

    AM

    P

    L

    I

    T

    U

    D

    E

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    11/96

    Jack D. Peters

    Spectrum

    11

    Scaling X & Y

    0.0002inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

    What is it

    H

    o

    w

    B

    a

    d

    I

    s

    I

    t

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    12/96

    Jack D. Peters

    Time Waveform

    12

    What’s That ?

    0.0004

    inch

    -0.0004

    Real

     s7.9960940 s

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    13/96

    Jack D. Peters

    Time Waveform

    13

    Time Waveform

    0.0004

    inch

    -0.0004

    Real

     s7.9960940 s

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    14/96

    Jack D. Peters

    Time Waveform

    14

    Scaling X & Y

    X

    Y

    0.0004inch

    -0.0004

    Real

     s7.9960940 s

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    15/96

    Jack D. Peters

    Time Waveform

    15

    Scaling X & Y

    TIME

    A

    M

    P

    L

    I

    T

    U

    D

    E

    0.0004inch

    -0.0004

    Real

     s7.9960940 s

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    16/96

    Jack D. Peters

    Time Waveform

    16

    Scaling X & Y

    What is it

    Ho

    w

    Ba

    d

    I

    s

    I

    t

    0.0004inch

    -0.0004

    Real

     s7.9960940 s

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    17/96

    Jack D. Peters

    Time Waveform

    17

    Scaling X & Y

    What is it

    Ho

    w

    Ba

    d

    I

    s

    I

    t

    0.0004inch

    -0.0004

    Real

     s10 s

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    18/96

    Jack D. Peters

    Time & Frequency

    18

    Double Trouble

    0.0004

    inch

    -0.0004

    Real

     s7.9960940 s

     1

    0.0002

    inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    19/96

    Jack D. Peters

    The X Scale

    19

    The X Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    20/96

    Jack D. Peters

    The X Scale

    20

    Hertz (Hz)

    One Hertz (Hz) is equal to 1 cycle / secondIt is the most common term used in vibration

    analysis to describe the frequency of a disturbance.

    Never forget the 1 cycle / second relationship !

    Traditional vibration analysis quite often expresses

    frequency in terms of cycle / minute (cpm). This is

    because many pieces of process equipment haverunning speeds related to revolutions / minute (rpm).

    60 cpm = 1 cps = 1 Hz

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    21/96

    Jack D. Peters

    The X Scale

    21

    Relationship with Time

    The frequency domain is an expression of amplitudeand individual frequencies.

    A single frequency can be related to time.

    F(Hz) = 1 / T(s)

    The inverse of this is also true for a single frequency.

    T(s)

    = 1 / F(Hz)

    Keep in mind that the time domain is an expression

    of amplitude and multiple frequencies.

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    22/96

    Jack D. Peters

    The X Scale

    22

    Concept !

    If: F = 1/T and T = 1/F

    Then: FT = 1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    23/96

    Jack D. Peters

    The X Scale

    23

    Concept !

    FT = 1

    If: F increases

    Then: T decreases

    If: T increasesThen: F decreases

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    24/96

    Jack D. Peters

    The X Scale

    24

    Single Frequency

    1

    V

    rms

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    X:55 Hz Y:706.8129 mV

    dX:18.18848 ms dY:2.449082 mV

    X:27.00806 ms Y:3.579427 mV

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    25/96

    Jack D. Peters

    The X Scale

    25

    Multiple Frequencies

    1

     Hz1000 Hz

    Pwr Spec 1

    1 Hz1000 Hz

    Pwr Spec 1

    1

     Hz1000 Hz

    Pwr Spec 1

    1

     Hz1000 Hz

    Pwr Spec 1

    X:55 Hz Y:706.8129 mV

    X:78 Hz Y:706.9236 mV

    X:21 Hz Y:706.7825 mV

    X:42 Hz Y:706.9266 mV

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    26/96

    Jack D. Peters

    The X Scale

    26

    Multiple Time

    1

    V

     ms62.469480 s

    Time 78 1

    1

    V

     ms62.469480 s

    Time 21 1

    1

    V

     ms62.469480 s

    Time 42 1

    1

    V

     ms62.469480 s

    Time 55 1

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    27/96

    Jack D. Peters

    The X Scale

    27

    Real Life Time

    4

    V

    -4

    Real

     ms62.469480 s

    TIME 1

    55 + 78 + 21 + 42 = Trouble !

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    28/96

    Jack D. Peters

    The X Scale

    28

    Frequency Spectrum

    4

    V

    -4

    Real

     ms62.469480 s

    TIME 1

    1

    V

    rms

     Hz1000 Hz

    FREQUENCY 1

    X:78 Hz Y:706.9236 mV

    X:55 Hz Y:706.8129 mV

    X:42 Hz Y:706.9266 mV

    X:21 Hz Y:706.7825 mV

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    29/96

    Jack D. Peters

    The X Scale

    29

    The Most Copied Slide in the History of Vibration Analysis !

         A    m   p

         l     i    t   u     d   e

    I  n  p u t   T  i  m e    F r e q  u e

     n c y

    T  i  m e  W  a v  e f  o r  m    S p

     e c t r u m

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    30/96

    Jack D. Peters

    The X Scale

    30

    Lines of Resolution

    0.0002inch

    Peak 

    0

    Magnitude

     Hz1000 Hz

     1

    The FFT alwayshas a defined

    number of lines

    of resolution.

    100, 200, 400,

    800, 1600, and

    3200 lines are

    commonchoices.

    This spectrum

    has 800 lines, or

    the X scale is

     broken down into

    800 points.

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    31/96

    Jack D. Peters

    The X Scale

    31

    Filter Windows

    • Window filters are applied to the timewaveform data to simulate data that

    starts and stops at zero.

    • They will cause errors in the time

    waveform and frequency spectrum.

    • We still like window filters !

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    32/96

    Jack D. Peters

    The X Scale

    32

    Window Comparisons

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    33/96

    Jack D. Peters

    The X Scale

    33

    Filter Windows

    • Hanning (Frequency)• Flat Top (Amplitude)

    • Uniform (No Window)

    • Force Exponential

    • Force/Expo Set-up

    (Frequency Response)

    Hanning 16% Amplitude Error 

    Flat Top 1% Amplitude Error 

    Window functions courtesy of Agilent “The Fundamentals of Signal Analysis”

     Application Note #AN 243

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    34/96

    Jack D. Peters

    The X Scale

    34

    Filter Windows

    • Use the Hanning Window for normalvibration monitoring (Frequency)

    • Use the Flat Top Window for calibration

    and accuracy (Amplitude)

    • Use the Uniform Window for bump

    testing and resonance checks (NoWindow)

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    35/96

    Jack D. Peters

    The X Scale

    35

    Minimum Derived Hz

    The minimum derived frequency is determined by:Frequency Span / Number of Analyzer Lines (data points)

    The frequency span is calculated as the ending

    frequency minus the starting frequency.

    The number of analyzer lines depends on the analyzer

    and how the operator has set it up.

     Example: 0 - 400 Hz using 800 lines

     Answer = (400 - 0) / 800 = 0.5 Hz / Line

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    36/96

    Jack D. Peters

    The X Scale

    36

    Bandwidth

    The Bandwidth can be defined by:

    (Frequency Span / Analyzer Lines) Window Function

    Uniform Window Function = 1.0

    Hanning Window Function = 1.5

    Flat Top Window Function = 3.5

     Example: 0 - 400 Hz using 800 Lines & Hanning Window

     Answer = (400 / 800) 1.5 = 0.75 Hz / Line

     Note: More discussion

    later on window functions for the analyzer !

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    37/96

    Jack D. Peters

    The X Scale

    37

    Resolution

    The frequency resolution is defined in the following

    manner:

    2 (Frequency Span / Analyzer Lines) Window Function

    or

    Resolution = 2 (Bandwidth)

     Example: 0 - 400 Hz using 800 Lines & Hanning Window

     Answer = 2 (400 / 800) 1.5 = 1.5 Hz / Line

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    38/96

    Jack D. Peters

    The X Scale

    38

    Using Resolution

    The student wishes to measure two frequency

    disturbances that are very close together.

    Frequency #1 = 29.5 Hz.

    Frequency #2 = 30 Hz.

    The instructor suggests a hanning window and 800 lines.

    What frequency span is required to accurately measure these two frequency disturbances ?

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    39/96

    Jack D. Peters

    The X Scale

    39

    Using Resolution

    Resolution = 30 - 29.5 = 0.5 Hz / Line

    Resolution = 2 (Bandwidth)

    BW = (Frequency Span / Analyzer Lines) Window Function

    Resolution = 2 (Frequency Span / 800) 1.5

    0.5 = 2 (Frequency Span / 800) 1.5

    0.5 = 3 (Frequency Span) / 800

    400 = 3 (Frequency Span)

    133 Hz = Frequency Span

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    40/96

    Jack D. Peters

    The X Scale

    40

    Data Sampling Time

    Data sampling time is the amount of time required to takeone record or sample of data. It is dependent on the

    frequency span and the number of analyzer lines being used.

    TSample = Nlines / Fspan

    Using 400 lines with a 800 Hz frequency span will require:

    400 / 800 = 0.5 seconds

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    41/96

    Jack D. Peters

    The X Scale

    41

     Average & Overlap

    •  Average - On• Overlap Percent - 50%

    TR#1 TR#2 TR#3

    FFT#1 FFT#2 FFT#3

    TR#1

    TR#2

    TR#3

    FFT#1

    FFT#2

    FFT#3

    0% Overlap

    50% Overlap

    How long will it take for 10

    averages at 75% overlap

    using a 800 line analyzer anda 200 Hz frequency span?

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    42/96

    Jack D. Peters

    The X Scale

    42

    75% Overlap ?

    • 10 Averages• 75% Overlap

    • 800 Lines• 200 Hz

    Average #1 = 800 / 200

    Average #1 = 4 seconds

    Average #2 - #10 = (4 x 0.25)

    Average #2 - #10 = 1 second

    each

    Total time = 4 + (1 x 9)

    Total time = 13 seconds

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    43/96

    Jack D. Peters

    The Y Scale

    43

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    44/96

    Jack D. Peters

    The Y Scale

    44

     Amplitude

    The “Y” scale provides the amplitude value for each

    signal or frequency.

    Default units for the “Y” scale are volts RMS.

    Volts is an Engineering Unit (EU).

    RMS is one of three suffixes meant to confuse you !

    The other two are:

    (Peak ) and (Peak - Peak)

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    45/96

    Jack D. Peters

    The Y Scale

    45

    Pk-Pk (Peak - Peak)

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    2

    V

    Pk-Pk 

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    dX:9.094238 ms dY:1.994871 V

    X:22.43042 ms Y:-993.8563 mV

    X:55 Hz Y:1.999169 V

    The Peak - Peak value

    is expressed from the

     peak to peak amplitude.

    The spectrum value

    uses the suffix “Pk-Pk”

    to denote this.

    Th Y S l

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    46/96

    Jack D. Peters

    The Y Scale

    46

    Pk (Peak)

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    1

    V

    Peak 

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    dX:4.516602 ms dY:997.4356 mV

    X:27.00806 ms Y:3.579427 mV

    X:55 Hz Y:999.5843 mVThe time wave has notchanged. The Peak

    value is expressed

    from zero to the peak

    amplitude.

    The spectrum value

    uses the suffix “Peak”

    to denote this.

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    47/96

    Jack D. Peters

    The Y Scale

    47

    RMS (Root Mean Square)

    1

    V

    rms

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    X:55 Hz Y:706.8129 mV

    dX:2.288818 ms dY:709.1976 mV

    X:27.00806 ms Y:3.579427 mV

    The time wave has

    not changed. The

    RMS value is

    expressed from zeroto 70.7% of the peak

    amplitude.

    The spectrum value

    uses the suffix

    “RMS” to denote this.

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    48/96

    Jack D. Peters

    The Y Scale

    48

    Suffix Comparison

    2

    V

    rms

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    2V

    Peak 

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    2V

    Pk-Pk 

    0

    Magnitude

     Hz1000 Hz

    Pwr Spec 1

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    1

    V

    -1

    Real

     ms62.469480 s

    Time 1

    X:55 Hz Y:706.8129 mV

    X:55 Hz Y:999.5843 mV

    X:55 Hz Y:1.999169 V

    dX:2.288818 ms dY:709.1976 m

    X:27.00806 ms Y:3.579427 mV

    dX:4.516602 ms dY:997.4356 m

    X:27.00806 ms Y:3.579427 mV

    dX:9.094238 ms dY:1.994871 V

    X:22.43042 ms Y:-993.8563 mV

    RMS

    Peak 

    Peak - Peak 

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    49/96

    Jack D. Peters

    The Y Scale

    49

    Changing Suffixes

    Many times it is necessary to change between suffixes.

    Pk-Pk / 2 = Peak

    Peak x 0.707 = RMS

    RMS x 1.414 = Peak

    Peak x 2 = Pk-Pk

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    50/96

    Jack D. Peters

    The Y Scale

    50

    Standard Suffixes

     Now that we have learned all about the threestandard suffixes that might possibly confuse the

    “Y” scale values, what is the standard ?

    Vibration Institute:

    Displacement = mils Peak - Peak

    Velocity = in/s Peak or rms..

    Acceleration = g’s Peak or rms..

     Note: 1 mil = 0.001 inches

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    51/96

    Jack D. Peters

    The Y Scale

    51

    Engineering Units (EU)

    Engineering units are used to give meaning to the

    amplitude of the measurement.

    Instead of the default “volts”, it is possible to incorporate

    a unit proportional to volts that will have greater

    meaning to the user.

    Examples: 100 mV / g 20 mV / Pa

    1 V / in/s 200 mV / mil

    50 mV / psi 10 mV / fpm

    33 mV / % 10 mV / V

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    52/96

    Jack D. Peters 52

    EU’s the Hard Way

    Sometimes we forget to use EU’s, or just don’t understand howto set up the analyzer.

    There is no immediate need to panic if ????

    You know what the EU is for the sensor you are using.Example: An accelerometer outputs 100 mV / g and there is a

    10 mV peak in the frequency spectrum.

    What is the amplitude in g’s ?

    Answer = 10 mV / 100 mV = 0.1 g

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    53/96

    Jack D. Peters 53

    The Big Three EU’s

    Acceleration

    Velocity

    Displacement

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    54/96

    Jack D. Peters 54

    Converting the Big 3

    In many cases we are confronted with Acceleration,Velocity, or Displacement, but are not happy with it.

    Maybe we have taken the measurement in

    acceleration, but the model calls for displacement.Maybe we have taken the data in displacement, but

    the manufacturer quoted the equipment

    specifications in velocity.

    How do we change between these EU’s ?

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    55/96

    Jack D. Peters 55

    386.1 What ?

    1g = 32.2 feet/second2

    32.2 feet 12 inches

    second2 X foot

    386.1 inches/second2

    g

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    56/96

    Jack D. Peters 56

    Go With The Flow I

    Acceleration (g’s)

    Velocity (inch/s)

    Displacement (inch)

    x 386.1

    ÷ 2(Pi)f 

    ÷ 2(Pi)f x 2(Pi)f 

    x 2(Pi)f 

    ÷ 386.1

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    57/96

    Jack D. Peters 57

    Metric Go With The Flow I

    Acceleration (g’s)

    Velocity (mm/s)

    Displacement (mm)

    x 9807

    ÷ 2(Pi)f 

    ÷ 2(Pi)f x 2(Pi)f 

    x 2(Pi)f 

    ÷ 9807

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    58/96

    Jack D. Peters 58

    Go With The Flow II

    Peak - Peak

    Peak

    RMS

    ÷ 2

    x .707x 1.414

    x 2

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    59/96

    Jack D. Peters 59

    Doing the Math Units

    0.5g x 386.1 inches

    second2

    g

    2π x 25 cyclessecond

    0.5g x 386.1 inches x 1 second

    g second2

    2π x 25 cycles

    0.5 x 386.1 inches

    2π x 25 cycles second

    cycle

    1.23 inches/second

    There is a 0.5 g

    vibration at 25 Hz.

    What is the velocity ?

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    60/96

    Jack D. Peters 60

     Acceleration - Velocity

    Example: Find the equivalent peak velocity for a 25 Hzvibration at 7 mg RMS ?

    = (g x 386.1) / (2 Pi x F)

    = (0.007 x 386.1) / (6.28 x 25)

    = 0.017 inches / second RMS

    Answer = 0.017 x 1.414 = 0.024 inches / second Pk

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    61/96

    Jack D. Peters 61

    Velocity - Displacement

    Example: Find the equivalent pk-pk displacement for a25 Hz vibration at 0.024 in/s Pk ?

    = Velocity / (2 Pi x F)

    = 0.024 / (6.28 x 25)

    = 0.000153 inches Pk

    Answer = 0.000153 x 2 = 0.000306 inches Pk-Pk

    The Y Scale

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    62/96

    Jack D. Peters 62

     Acceleration - Displacement

    Example: Find the equivalent Pk-Pk displacement for a52 Hz vibration at 15 mg RMS ?

    = (g x 386.1) / (2 Pi x F)2

    = (0.015 x 386.1) / (6.28 x 52)2

    = 0.000054 inches RMS

    Answer = (0.000054 x 1.414) 2 = 0.000154 inches Pk-Pk

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    63/96

    Jack D. Peters 63

    Sensors

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    64/96

    Jack D. Peters 64

     Accelerometers

    • Integrated CircuitElectronics inside

    Industrial

    • Charge ModeCharge Amplifier 

    Test & Measurement

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    65/96

    Jack D. Peters 65

     Accelerometer Advantages

    • Measures casing vibration• Measures absolute motion

    • Can integrate to Velocity output

    • Easy to mount

    • Large range of frequency response

    • Available in many configurations

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    66/96

    Jack D. Peters 66

     Accelerometer Disadvantages

    • Does not measure shaft vibration• Sensitive to mounting techniques and

    surface conditions

    • Difficult to perform calibration check• Double integration to displacement often

    causes low frequency noise

    • One accelerometer does not fit allapplications

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    67/96

    Jack D. Peters 67

    Mass & Charge

    Mass

    Ceramic/QuartzPost

    Relative movement

    between post &

    mass creates shear

    in ceramic

    producing charge.

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    68/96

    Jack D. Peters 68

     Accelerometer Parameters

    Performance Suited for ApplicationSensitivity (mV/g)Frequency Response of target (f span)

    Dynamic Range of target (g level)

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    69/96

    Jack D. Peters 69

    Mounting the Accelerometer 

    500 2000 6,500 10,000 15,000 15,000

    Hz.

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    70/96

    Jack D. Peters 70

    Realistic Mounting

    Stud

    Bees Wax

    Adhesive

    Magnet

    Hand Held

    100 1,000 10,000Frequency, Hz

    In the real world,mounting might

    not be as good as

    the manufacturer

    had in the lab !

    What happened

    to the high

    frequency ?

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    71/96

    Jack D. Peters 71

    Mounting Location

    Axial

    Horizontal

    Vertical

    Load Zone

    Radial

    Vertical

    Horizontal

    Axial

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    72/96

    Jack D. Peters 72

    Mounting Location

    Load Zone

    Radial

    Vertical

    Horizontal

    Axial

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    73/96

    Jack D. Peters 73

     Accelerometer Alarms

    Machine Condition

    rms peak

     Acceptance of new or repaired equipment < 0.08 < 0.16

    Unrestricted operation (normal) < 0.12 < 0.24

    Surveillance 0.12 - 0.28 0.24 - 0.7

    Unsuitable for Operation > 0.28 > 0.7

    Velocity Limit

     Note #1: The rms velocity (in/sec) is the band power or

     band energy calculated in the frequency spectrum.

     Note #2: The peak velocity (in/sec) is the largest positive

     or negative peak measured in the time waveform.

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    74/96

    Jack D. Peters 74

    Proximity Probes

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    75/96

    Jack D. Peters 75

    Proximity Probe Theory

    Driver 

    Target

    Cable

    Probe

    The tip of the probe broadcasts a radio frequency signal

    into the surrounding area as a magnetic field.If a conductive target intercepts the magnetic field, eddy

    currents are generated on the surface of the target, and

    power is drained from the radio frequency signal.

    As the power varies with target movement in the radio

    frequency field, the output voltage of the driver alsovaries.

    A small dc voltage indicates that the target is close to the

    probe tip.

    A large dc voltage indicates that the target is far away

    from the probe tip.

    The variation of dc voltage is the dynamic signal

    indicating the vibration or displacement.

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    76/96

    Jack D. Peters 76

    Output Values

    • Typical – 100 mv/mil – 200 mv/mil

    • Depends onprobe, cable(length), anddriver.

    • Target materialvaries output.

    Calibration Examples

    • Copper 380 mV/mil

    • Aluminum 370 mV/mil

    • Brass 330 mV/mil• Tungsten Carbide 290 mV/mil

    • Stainless Steel 250 mV/mil

    • Steel 4140, 4340 200 mV/mil

    Based on typical output sensitivity

    of 200 mV/mil.

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    77/96

    Jack D. Peters 77

    Proximity Probes - Advantages

    • Non-contact• Measure shaft dynamic motion

    • Measure shaft static position (gap)

    • Flat frequency response dc – 1KHz

    • Simple calibration

    • Suitable for harsh environments

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    78/96

    Jack D. Peters 78

    Proximity Probes - Disadvantages

    • Probe can move (vibrate)• Doesn’t work on all metals

    • Plated shafts may give false measurement

    • Measures nicks & tool marks in shaft• Must be replaced as a unit (probe, cable &

    driver)

    • Must have relief at sensing tip fromsurrounding metal

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    79/96

    Jack D. Peters 79

    Typical Mounting

    vertical probe horizontal probeH

    V

    time

    Facing Driver to Driven(independent of rotation)

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    80/96

    Jack D. Peters 80

    Looking at Orbits

    Vertical for

    AmplitudeHorizontal for

    Time Base

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    81/96

    Jack D. Peters 81

    The Orbit Display

         i l   s 

        M     i     l

        s 

    Mils

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    82/96

    Jack D. Peters 82

    Unbalance

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    83/96

    Jack D. Peters 83

    Unbalance with Orbit

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    84/96

    Jack D. Peters 84

    Misalignment

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    85/96

    Jack D. Peters 85

    Misalignment with Orbit

    Sensors

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    86/96

    Jack D. Peters 86

     And the problem is ?

    Sensors

    P i it P b Al

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    87/96

    Jack D. Peters 87

    Proximity Probe Alarms

    Machine Condition

    < 3,600 RPM < 10,000 RPM

    Normal 0.3 0.2

    Surveillance 0.3 - 0.5 0.2 - 0.4

    Planned Shutdown 0.5 0.4

    Unsuitable for Operation 0.7 0.6

     Al lowable R/C

     Note #1: R is the relative displacement of the shaft

     measured by either probe in mils peak-peak.

     Note #2: C is the diametrical clearance (difference between shaft OD and journal ID) measured in mils.

    Sensors

    A l I t F t E d

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    88/96

    Jack D. Peters 88

     Analyzer Input - Front End

    • Coupling - AC, DC

    •  Antialias Filter - On, Off 

    AC coupling will block the DC voltage.

    It creates an amplitude error below 1

    Hz. DC coupling has no error below 1

    Hz, but the analyzer must range on the

    total signal amplitude.

    Prevents frequencies that are greater

    than span from wrapping around inthe spectrum.

    Analyzer Input Capacitor

    Blocks DC

    AC Coupling Capacitor in DSA

    If the antialias filter is turned off, at what

    frequency will 175 Hz. appear using a 0 -

    100 Hz span, and 800 lines ?

    1024/800 = 1.28

    100 x 1.28 = 128 Hz175 Hz - 128 Hz = 47 Hz.

    128 Hz - 47 Hz = 81 Hz

    Sensors

    L E d F R

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    89/96

    Jack D. Peters 89

    Low End Frequency Response

    0.01

    V

    rms

    0.002

    Magnitude

     Hz250 Hz

    Input 1

    0.01

    V

    rms

    0

    Magnitude

     Hz250 Hz

    Output 2

    2

    0

    Magnitude

     Hz250 Hz

    Freq Resp 2:1

    1.1

    0.9

    Magnitude

     Hz250 Hz

    Coherence 2:1

    X:2.8125 Hz Y:984.7542 m

    X:500 mHz Y:720.0918 m

    X:5.34375 Hz Y:1.000001

    To the right is a typical

    problem with frequencyresponse at the low end of

    the frequency spectrum.

    This low end roll off was aresult of AC coupling on

    CH #2 of the analyzer.

    Values below 2.8 Hz are inerror, and values less than

    0.5 Hz should not be used.

    Data Collection

    D t C ll ti

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    90/96

    Jack D. Peters 90

    Data Collection

    Data Collection

    T R d “I P li ”

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    91/96

    Jack D. Peters 91

    Tape Recorders “Insurance Policy”

    Multi-channel

    digital audio tape

    recorders.

     For the

     Measurement that can’t get away !

    Data Collection

    Dynamic Signal Analyzers “Test & Measurement”

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    92/96

    Jack D. Peters 92

    Dynamic Signal Analyzers Test & Measurement

    Large PC driven solutions

    with multiple channels and

    windows based software.

    Smaller portable units

    with 2 – 4 channel

    inputs and firmware

    operating systems.

    Data Collection

    Data Collectors “Rotating Equipment”

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    93/96

    Jack D. Peters 93

    Data Collectors Rotating Equipment

    Data Collection

    Data Collectors “Rotating Equipment”

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    94/96

    Jack D. Peters 94

    Data Collectors Rotating Equipment

    • Route Based• Frequency

    Spectrum

    • Time Waveform

    • Orbits

    • Balancing

    •  Alignment

    • Data Analysis• History

    • Trending

    • Download to PC

    •  Alarms

    • “ Smart” algorithms

    Beginning Vibration

    Bibliography

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    95/96

    Jack D. Peters 95

    Bibliography

    • Eisenmann, Robert Sr. & Eisenmann, Robert Jr., Machinery

    Malfunction Diagnosis and Correction, ISBN 0-13-240946-1

    • Eshleman, Ronald L., Basic Machinery Vibrations, ISBN 0-

    9669500-0-3

    • LaRocque, Thomas, Vibration Analysis Design, Selection,

    Mounting, and Installation, Application Note, ConnectionTechnology Center 

    • Agilent Technologies, The Fundamentals of Signal Analysis,

     Application note 243

    • Agilent Technologies, Effective Machinery Measurements usingDynamic Signal Analyzers, Application note 243-1

    Beginning Vibration

    Thank You !

  • 8/20/2019 01-Beginning Vibration Analysis.pdf

    96/96

    Jack D. Peters 96

    Thank You !

    You can find technical papers on

    this and other subjects at

    www.ctconline.comin the “Technical Resources” section