01 basic functionality

Upload: mirza-ghulam-sarwar

Post on 04-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 01 Basic Functionality

    1/50

    Basic Functionality Siemens

    1

    Contents

    1 What is Frame Relay? 3

    2 Reasons for Frame Relay 7

    3 Virtual Circuits in Frame Relay 11

    4 Frame Relay Frames 15

    5 Service Parameters 21

    6 Error Detection and Handling 27

    7 Congestion Management 318 PVC Status Management 35

    9 Switched Virtual Circuits (SVCs) 43

    9.1 UNI signaling 44

    9.2 NNI Signaling 47

    Basic Functionality

  • 8/13/2019 01 Basic Functionality

    2/50

    Siemens Basic Functionalit

    2

  • 8/13/2019 01 Basic Functionality

    3/50

    Basic Functionality Siemens

    TI2430EU01AL-013

    1 What is Frame Relay?

    FrameRelay?

    Fig. 1

  • 8/13/2019 01 Basic Functionality

    4/50

    Siemens Basic Functionality

    4

    Definition

    Frame Relay is an extremely fast communications technology used globally in

    numerous communications networks. It is principally used for LAN, SNA and Internetconnections as well as for voice applications.

    Information flow

    Fundamentally, in Frame Relay applications the information sent through a wide areanetwork is divided into frames or packets. Each frame is given an address used bythe network to find the path to the frame's destination. The frames are transmittedthrough the switches in the Frame Relay Network to reach their destination.

    Fast packet switching

    Frame Relay uses a simple, but fast, form of packet switching. In this way, it isparticularly suitable for intelligent terminal equipment such as PCs, workstationsand servers, which in turn communicate with each other by means of intelligentprotocols like SNA or TCP/IP. In this way, error correction can be transposed to theterminal equipment.

    The Frame Relay switches themselves only perform error detection and discardfaulty frames. The Frame Relay nodes should be connected to each other with lineswith a high quality of service in order to keep down the error rate.

    Summary

    Viewed overall Frame Relay provides a high rate of data throughput and greatoperational reliability with low delay times, and is therefore particularly suitable for awide variety of contemporary business applications.

  • 8/13/2019 01 Basic Functionality

    5/50

    Basic Functionality Siemens

    TI2430EU01AL-015

    Video

    PBX

    Controller

    PC

    Router

    Bridge

    FRAD

    MUXSwitch

    CPEUNI

    ISDN nailed-up connection

    or

    ISDN dial-up connection

    ordirect connection

    (V.35, E1, RS232)

    Desktop & LAN Network access Frame RelayNetwork

    Formatspackets

    in frames

    Statistical

    multiplexing

    Port

    PVC

    PVC

    PVC

    SVC

    SVC

    UNI User Network InterfaceCPE Customer Premises Equipment

    PVC Permanent Virtual ConnectionSVC Switched Virtual ConnectionFRAD Frame Relay Access DevicePBX Private Branch Exchange

    Fig. 2

  • 8/13/2019 01 Basic Functionality

    6/50

    Siemens Basic Functionality

    6

  • 8/13/2019 01 Basic Functionality

    7/50

    Basic Functionality siemen

    TI2430EU01AL-017

    2 Reasons for Frame Relay

    Frame

    Relay

    ~ 1990

    New trends

    in data networks

    Fig. 3

  • 8/13/2019 01 Basic Functionality

    8/50

    Siemens Basic Functionality

    8

    General

    Frame Relay met with great acceptance from the very beginning because the market

    exhibited a distinct demand for a fast data transmission technology with a high rate ofthroughput. The Frame Relay technology uses powerful end devices and digitalnetworks with high grades of service that were already available relativelyinexpensively at the time of the introduction of the technology. Consequently, FrameRelay was the right technology at the right time.

    At the end of the 1980s there were a number of new trends, which when viewed as awhole led to the increase in demand for fast data transmission across wide areanetworks.

    Transition from pure text applications to graphical applications

    Increase in the number of applications producing bursty traffic

    Intelligent terminal equipment (PCs, workstations, X-Windows terminals) withimproved computing performance are already available at low cost

    More widespread implementation of LAN and client/server applications

    Broad availability of digital networks.

    Greater demand for bandwidth

    Storage and retrieval of graphics for interactive applications is as common today as

    the swapping of entire pages of text was in the 1970s and 1980s. Users used toworking from an early stage with graphical applications in local networks also ofcourse expect similarly fast response times from wide area networks.

    As the bandwidth requirements for transfer of graphics are considerably greater thanfor text transfers, increased bandwidth and data throughput became urgently needed,particularly where fast response times were demanded.

    Dynamic bandwidth requirements

    Applications running via LAN typically require large amounts of bandwidth for veryshort periods. This type of traffic known as bursty traffic is particularly suitable for

    statistical multiplexing on common physical lines, and is also characteristic of FrameRelay.

  • 8/13/2019 01 Basic Functionality

    9/50

    Basic Functionality Siemens

    TI2430EU01AL-019

    Transition from pure text applications to

    graphical applications

    Increase in the number of applications

    producing bursty traffic

    Intelligent terminal equipment (PCs, workstations,

    X-Windows terminals) with improved computing

    performance are already available at low cost

    More widespread implementation of LANand client/server applications

    Broad availability of digital networks

    Fig. 4

    Kb

    T1 T2 T3 T4 T5

    SDLC

    LAN

    Voicet (sec)

    Fig. 9

  • 8/13/2019 01 Basic Functionality

    10/50

    Siemens Basic Functionality

    10

    Intelligent terminal equipment

    The performance of terminal equipment developed along with the changes in network

    requirements. Falling costs of computing performance led to widespread installationof powerful PCs, workstations and servers that in turn were interconnected by LAN.

    These new terminal devices also allowed complex data communication protocols tobe processed. In other words, the resource-consuming processes for error detectionand correction were able to be relocated from data communication networks to theterminal devices. This was a further development in the application of fast packet-switching methods such as Frame Relay.

    By relieving networks of their error handling processes, Frame Relay providesconsiderably greater data throughput rates than with conventional packet-switchingmethods such as X.25.

    Greater performance

    The increased use of local networks and the Internet protocol produced a greaterdemand for the interconnection of the LANs by wide area networks.

    Initially, attempts were made to intermesh LAN bridges and routers directly with eachother with dedicated lines. This could be done provided the networks were small andsimply designed. However, with increasing size and complexity of the networks, thedisadvantages of this connection methods became evident, namely:

    Greater transmission costs

    Low level of operating reliability

    Limited network management options

    Restricted diagnostic options in the event of errors.

    It quickly became clear that the alternative approach of interconnecting LANs in areliable, manageable wide area network offered distinct advantages:

    Less overhead than IP

    Frame relay switching is easy to implement

    IP switching is rarely available in public WANs

    IP routing produces delays and requires additional bandwidth.

    Digital transmission networks

    The conversion of the public telecommunications infrastructure from analog to digitallines meant greater availability of bandwidth and lower error rates. The errorcorrection mechanisms used by X.25 and SNA (which are particularly suited tohandling fault-susceptible analog line) were no longer necessary in wide areanetworks.

  • 8/13/2019 01 Basic Functionality

    11/50

    Basic Functionality Siemens

    TI2430EU01AL-0111

    3 Virtual Circuits in Frame Relay

    Virtual Circuits

    Fig. 5

  • 8/13/2019 01 Basic Functionality

    12/50

    Siemens Basic Functionality

    12

    General

    The Frame Relay technology is based on the concept of virtual circuits (VCs). VCs

    which are usually bi-directional are software-defined paths between two ports andare used as substitutes for nailed-up connections in networks. In contrast to formerapplications in which only so-called Permanent Virtual Circuits (PVCs) were used, theconcept of Switched Virtual Circuits (SVCs) is also used nowadays.

    Permanent Virtual Circuits (PVCs)

    PVCs are configured by the network operator by means of a network managementsystem. The two connection end points and the service parameters for theconnection must be defined for the configuration. If necessary, a network operatorcan modify existing PVCs.

    PVCs are permanently connected paths that are not immediately available whenrequired or on a call-by-call basis. However, in the event of faults, paths can beautomatically rerouted in the network; the connection end points remain the same. Inthis regard, a PVC behaves like a permanently configured point-to-point connection.

    PVCs are very popular because they represent an inexpensive alternative to nailed-up connections. The provisioning of PVCs demands careful planning, knowledge ofthe traffic profile and the bandwidth utilization. Startup times are therefore neededbefore the service can be provided and the flexibility is somewhat restricted if only abrief connection duration is required.

    Switched Virtual Circuits (SVCs)Unlike PVCs, SVCs are available on a call-by-call basis. Analogously to a normaltelephone call, an SVC is switched through the network using a signaling protocol.The calling party has to specify a destination address, similar to a telephone number.SVC switching through the network is considerably more complex than is the case forPVCs, but the procedure is transparent for the end user.

    Simultaneous handling of large numbers of call requests in the network

    Fast switching of calls with parallel allocation of necessary bandwidths

    Call monitoring, traffic statistics and billing

    Although SVCs were already specified on the introduction of Frame Relay, the optionwas not implemented and supported in the frame relay networks in their initial years.The situation has changed in the meantime and network operators now offer theservice. Whereas PVCs use the possible statistical multiplex gains obtained byFrame Relay, SVCs offer dynamic connection options for saving costs and providingmore flexibility.

  • 8/13/2019 01 Basic Functionality

    13/50

    Basic Functionality Siemens

    TI2430EU01AL-01 13

    FR end device

    supports PVCs

    FR network

    Frame Relay Switch

    PVC

    PVC

    PVC

    PVC

    PVC

    Fig. 6

    FR end devicesupports PVCs

    and SVCs

    FR network

    Frame Relay Switch

    PVC

    PVC

    SVC

    SVC

    SVC

    E.164 (ISDN/Telephone Numbering Plan)

    or

    X.121 (Data Numbering Plan)

    Fig. 7

  • 8/13/2019 01 Basic Functionality

    14/50

    Siemens Basic Functionality

    14

  • 8/13/2019 01 Basic Functionality

    15/50

    Basic Functionality Siemens

    TI2430EU01AL-01 15

    4 Frame Relay Frames

    Flag

    DLCI CR EA

    FCS

    Flag

    DLCI DE EAFC

    Payload

    BC

    Fig. 8

  • 8/13/2019 01 Basic Functionality

    16/50

    Siemens Basic Functionality

    16

    General

    A Frame Relay frame consists of a header, an information field, and a checksum

    (frame check sequence) field and is enclosed by flags.

    Flags

    All Frame Relay frames must be separated from each other by one or more flags inorder to be able to detect the start of a new frame. The flags are one byte long andare set to the binary value 01111110.

    Frame Relay header

    The standard Frame Relay header comprises a 10-bit DLCI address and six specialfunction bits. The DLCI address field can be optionally extended.

    Data Link Connection Identifier (DLCI)

    In order to distinguish between the frames of different virtual circuits on a link, aconnection identifier is needed in the frames themselves. The DLCI field in eachFrame Relay header is used for this purpose. Different DLCI values must bespecified for different connections for each interface. A DLCI must be provided foreach data link connection, but it is only locally significant.

    DLCI Function (ITU-T and ANSI)

    0 ITU-T Q.933 Annex A and ANSI T1.617 Annex D LinkManagement

    1-15 Reserved

    16-991 User Data Link Connections

    992-1007 Layer 2 Management for Frame Mode Bearer Service

    1008-1022 Reserved

    1023 In Channel Layer 2 Management

    DLCI Function (LMI)

    0 Reserved for Call Control (in-channel)

    1-15 Reserved

    16-1007 User Data Link Connections

    1008-1022 Reserved

    1023 Local Management Interface

  • 8/13/2019 01 Basic Functionality

    17/50

    Basic Functionality Siemens

    TI2430EU01AL-0117

    FLA

    G

    Frame Relayheader Information field FCS FLA

    G

    DLCI (most significant bits) EAC/R

    DLCI (least significant bits) EADEBECNFECN

    Fig. 9

    B

    R

    FRAD

    R

    Virtual circuit

    Router

    Bridge

    Frame Relay network node

    R

    B

    FR-networkDLCI=16

    DLCI=32

    DLCI=16 DLCI=16

    DLCI=21

    DLCI=17

    DLCI=17DLCI=32

    Fig. 10

  • 8/13/2019 01 Basic Functionality

    18/50

    Siemens Basic Functionality

    18

    Command /Response (C/R)

    The Frame Relay protocol does not use the C/R bit. It can be used by end users for

    command/response functionality.

    Discard Eligibility (DE)

    If this bit is set, the frame is first discarded on occurrence of congestion in thenetwork.

    Backward Explicit Congestion Notification (BECN)

    If this bit is set by a network node, congestion is indicated in the backward directionto the transmitting user.

    Forward Explicit Congestion Notification (FECN)

    If this bit is set by a network node, congestion is indicated in the forward direction tothe receiving user.

    Extended Address (EA)

    This bit is used to limit the address field. In the standard frame format, the EA bit isset to 0 in the first octet and to 1 in the second octet.

    DLCI/Control Indicator (D/C)

    The D/C bit indicates whether the remaining 6 bits in the octet are to be interpretedas the least significant DLCI bits (D/C = 0) or as DL-CORE (D/C = 1) control bits.

    Information field

    The length of the information field is variable. The field has an integral number ofoctets. The Frame Relay protocol itself does not interpret the field. The maximumlength of the frame is limited.

    Frame Check Sequence (FCS)

    The FCS field has two octets. The frame check sequence includes the Frame Relay

    header and the information field.

    Transparency

    To prevent accidental occurrence of a flag or frame abort bit sequence, a zero (0) isinserted after 5 successive "1" bits during transmission. The zero is automaticallyfiltered out by the receiver.

    Frame Abort

    A frame can be aborted by transferring at least 7 consecutive "1" bits. The receiverinterprets this bit sequence as "frame abort" and ignores the frame currentlyreceived.

  • 8/13/2019 01 Basic Functionality

    19/50

    Basic Functionality Siemens

    TI2430EU01AL-0119

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    DLCI (most significant bits) EA=0C/R

    DLCI EA=0DEBECNFECN

    DLCI (least significant bits) EA=1D/C

    DLCI (most significant bits) EA=0C/R

    DLCI EA=0DEBECNFECN

    DLCI EA=0

    DLCI (least significant bits) EA=1D/C

    Fig. 11

  • 8/13/2019 01 Basic Functionality

    20/50

    Siemens Basic Functionality

    20

  • 8/13/2019 01 Basic Functionality

    21/50

    Basic Functionality Siemens

    TI2430EU01AL-0121

    5 Service Parameters

    Fig. 12

  • 8/13/2019 01 Basic Functionality

    22/50

    Siemens Basic Functionality

    22

    Committed information rates and burstiness

    Bandwidth guarantees (committed information rates) can be given to users for their

    connections in Frame Relay networks. Moreover, users may be allowed to exceedthe guaranteed bandwidth to a certain extent for example, if strongly bursty trafficoccurs.

    Service parameters

    There are three configurable parameters for defining the guaranteed bandwidth andpossible excess bandwidth. The parameters can be set for each Data LinkConnection (DLC):

    CIR(Committed Information Rate)

    Bc(Committed Burst Size)

    Be(Excess Burst Size).

    Two further variables are derived from CIR, Bc and Be:

    EIR(Excess Information Rate)

    Tc(Committed Measurement Interval).

    These service parameters apply to incoming frames in a Frame Relay switch.

    Consequently, a check can be made for each incoming frame to determine if itcomplies with the traffic agreement or not.

    There are two additional service parameters:

    AR(Access Rate)

    N203(Maximum Octet Length of the Frame Relay Information Field).

  • 8/13/2019 01 Basic Functionality

    23/50

    Basic Functionality Siemens

    TI2430EU01AL-01 23

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    CIR Bc Be

    AR N203

    Tc EIR

    Fig. 13

  • 8/13/2019 01 Basic Functionality

    24/50

    Siemens Basic Functionality

    24

    Committed Information Rate (CIR)

    The CIR is the guaranteed data rate in a virtual circuit. The maximum value of the

    CIR can be the same as the rate available at the access channel (i.e., the accessrate). However, the committed rate is usually much less. The CIR is generally set tothe average required rate.

    Committed Burst Size (Bc)

    Bc is defined as the maximum quantity of data that the network can switch undernormal conditions. These frames are not marked with the DE bit.

    Excess Burst Size (Be)

    Be is defined as the quantity of data additional to the committed burst size that the

    network can attempt to switch under normal conditions. The excess burst frames areeither marked with the DE bit from the user or at the user interface.

    Committed Rate Measurement Interval (Tc)

    The system monitors the number of bits received in a data link connection and cantherefore ensure that the CIR is not exceeded. Tc is the duration in which the bitstream is monitored in the DLC.

    If CIR>0: Tc = Bc (kb)/CIR (kb/s)or

    if CIR=0: Tcis administratively defined for a specified interval

    Excess Information Rate (EIR)

    The EIR is the non-guaranteed rate additional to the CIR that can be used in a virtualcircuit. The availability of this rate depends mainly on the usage of the accesschannel by other virtual circuits. If no excess information rate (additional bandwidth)is currently available, the frames marked with the DE bit are discarded. The excessinformation rate is calculated as follows:

    EIR = Be/Tc

    Access Rate (AR)

    The access rate is the maximum data rate at which an end device can send orreceive in the access channel.

    Maximum frame length (N203)

    The length of the Frame Relay information field (N203) is defined by the number ofoctets between the address field and the frame check sequence field. All networksshould support a maximum frame length of at least 1600 bytes.

  • 8/13/2019 01 Basic Functionality

    25/50

    Basic Functionality Siemens

    25

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • 8/13/2019 01 Basic Functionality

    26/50

    Siemens Basic Functionality

    26

  • 8/13/2019 01 Basic Functionality

    27/50

    Basic Functionality Siemens

    TI2430EU01AL-0127

    6 Error Detection and Handling

    Flag

    DLCI CR EA

    FCS

    Flag

    DLCI DE EAFC

    Payload

    BC

    Fig. 14

  • 8/13/2019 01 Basic Functionality

    28/50

    Siemens Basic Functionality

    28

    Discarding frames

    There is a simple rule for keeping Frame Relay as uncomplicated as possible:

    If there is a problem with a frame, discard it

    There are two basic causes for discarding a frame:

    Invalid frame

    Congestion

    Invalid frame

    An invalid frame is a frame that

    a) is not correctly positioned between two flags

    b) has less than three octets between the address field and end flag

    c) does not consist of an integral quantity of octets before insertion of the zero(0) bit or after the zero bit has been filtered out

    d) indicates a checksum error

    e) only has a single octet in the frame header

    f) has a DLCI value that is not supported by the receiver

    g) has 7 or more consecutive bits set to 1 after insertion of the zero bit or afterthe zero bit has been filtered out (violation of the transparency or frame

    abort)h) has an information field that is too long.

    Invalid frames are discarded without notifying the sender. The end devices areresponsible for the error correction.

    Congestion

    There are two causes of congestion in a network:

    Receiver congestion: A network node receives more frames than it can handle.

    Line congestion: A network node wants to send more frames in a transmission

    channel than the allocated bandwidth allows.

    In both cases the buffer areas in the network node are overloaded and frames needto be discarded until sufficient space becomes available in the receive or sendbuffers again.

    Since LAN traffic is extremely bursty, the probability of congestion occurring isrelatively great. A superior congestion management function is particularly importantto minimize the occurrence and effects of congestion.

    The end devices are again responsible for error correction in these cases.

  • 8/13/2019 01 Basic Functionality

    29/50

    Basic Functionality Siemens

    TI2430EU01AL-0129

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    PVC

    PVC

    PVC

    SVC

    SVC

    FR-Knoten

    Invalid frame?

    Congestion ?

    CPE

    Fig. 15

  • 8/13/2019 01 Basic Functionality

    30/50

    Siemens Basic Functionality

    30

  • 8/13/2019 01 Basic Functionality

    31/50

    Basic Functionality Siemens

    TI2430EU01AL-0131

    7 Congestion Management

    Fig. 16

  • 8/13/2019 01 Basic Functionality

    32/50

    Siemens Basic Functionality

    32

    General

    The chief objective of Congestion Management is to maintain the specified grade of

    service (e.g., throughput, delay, frame loss) in the virtual circuits.Congestion Management contains functions for avoiding congestion (CongestionAvoidance). In other words, congestion should be prevented from ever occurring.There are also functions for recovering from existing congestion situations(Congestion Recovery) and for detecting congestion.

    The congestion functions have the following objectives:

    To minimize the number of frames discarded

    To keep the degradation in service quality during congestion to a minimum

    To be easy to implement and to produce only a minor amount of additional load

    To equally distribute the resources (memory, bandwidth, processing capacity)between the virtual circuits

    To prevent congestion from spreading to other network elements

    To optimize the utilization of the existing network resources

    To effectively function regardless of the direction the traffic is flowing.

    The effects of congestion on the service quality is defined by two points. If the trafficexceeds the point A (see diagrams), the delay increases overproportionally. The

    network element is in a so-called mild congestion state; the quality of the servicedecreases with increasing traffic volume. From point B the network begins to managethe congestion by discarding frames in order to prevent further degradation in servicequality. The network element is in the severe congestion state.

    Points A and B can usually be defined for specific networks or network elements bysetting threshold values. In this way the service quality can be manipulated.

  • 8/13/2019 01 Basic Functionality

    33/50

    Basic Functionality Siemens

    TI2430EU01AL-0133

    Offered load

    Network

    Throughput

    A

    B

    No congestion

    within network

    Region 1

    Mild

    congestion

    Region 2 Region 3

    Severe

    congestion

    Congestion

    Avoidance

    Congestion

    Recovery

    Fig. 17

    Offered load

    Delay

    B

    No congestionwithin network

    Region 1

    Mildcongestion

    Region 2 Region 3

    Severecongestion

    A

    Congestion

    Avoidance

    Congestion

    Recovery

    Fig. 3

  • 8/13/2019 01 Basic Functionality

    34/50

    Siemens Basic Functionality

    34

  • 8/13/2019 01 Basic Functionality

    35/50

    Basic Functionality Siemens

    TI2430EU01AL-0135

    8 PVC Status Management

    Annex D

    Annex A

    LMI

    Fig. 18

  • 8/13/2019 01 Basic Functionality

    36/50

    Siemens Basic Functionality

    36

    General

    The procedures of the PVC Status Management at the user-to-network interface

    (UNI) and network-to-network interface (NNI) enable the following: Link integrity verification between the user and network or between networks

    Notification of the user or network node if a new PVC has been switched

    Detection by the user or network node that an existing PVC has been canceled

    Transmission of status information on existing PVCs to users or network nodes

    There are three slightly different standards for the PVC Status Management:

    ITU-T: Q.933 Annex A (uses DLCI 0; can be used at the UNI or NNI)

    ANSI: T1.617 Annex D (uses DLCI 0; can be used at the UNI or NNI)

    Industrial standard: LMI (uses DLCI 1023; can only be used at the UNI)

    The procedures for all three standards of the PVC Status Management are based onthe replacement of the following message types between the user and network:

    Status enquiry

    Status

    Single PVC asynchronous status

    Status enquiry and status messages

    "Status Enquiry" and "Status" messages are synchronous handshaking messages forensuring the connection between the two interfaces of the access channel. At theUNI, a Status Enquiry message is sent in the direction of the network from the userside. The network side replies with a Status message.

    At the interfaces between networks (NNI), a Status Enquiry message is sent fromboth sides and the two sides reply with a Status message (bi-directional procedurescan also be optionally used at the UNI for example, when connecting a private FRnetwork to a public FR network).

    Status Enquiry messages always have the same format.

    Status messages can have two different formats:A "Keep Alive" signal that verifies the connection at the access channel

    A "Full Status" signal that indicates the status of all virtual circuits in the accesschannel.

    The Status Enquiry signal indicates whether a "Keep Alive" or a "Full Status" signal isrequested.

  • 8/13/2019 01 Basic Functionality

    37/50

    Basic Functionality Siemens

    CPE

    FR network access node

    or

    FR customer premises equipment

    UNI

    Frame Relay

    network

    FR network node

    Port

    Q.933 Annex A

    T1.617 Annex D

    LMI

    User Network

    Status

    Status Enquiry

    Fig. 19

    Frame Relay

    network

    FR network node

    NNI

    Frame Relay

    network

    FR network node

    Port Port

    Status

    Status Enquiry

    Status Enquiry

    Status

    User+

    Network

    User+

    Network

    Q.933 Annex A bidirectional

    T1.617 Annex D bidirectional

    Fig. 20

  • 8/13/2019 01 Basic Functionality

    38/50

    Siemens Basic Functionality

    38

    Single PVC Asynchronous Status message

    This message type is automatically sent without solicitation by the network side at the

    UNI and NNI whenever the status of a PVC changes (active to inactive or vice versa)or whenever a PVC is canceled. If the status of more than one PVC changes, themessage is sent separately for each relevant PVC.

    Single PVC Asynchronous Status messages have no effect on Status Enquiry andStatus messages.

    TIP:The use and implementation of this message type are optional in the case of theAnnex A and Annex D protocols. Network nodes using the LMI protocol in the accesschannel at the UNI have to be set to "LMI Extended" in order to support Single PVCAsynchronous messages. This message type is known in the LMI protocol as an

    Update Status message.

    System parameters

    The accepted value ranges for the configurable parameters are shown in the tablesbelow. The parameters themselves are explained later.

    Counter Description Range Default

    N391 Full Status Polling Counter 1-255 6

    N392 Error Threshold 1-10 3

    N393 Monitored Events Count 1-10 4

    N392 must be less than or equal to N393

    N391 is always assigned to the user side. N391 is assigned to the user and networksides if the bi-directional procedures are used.

    Timer Description Range Default

    T391 Link Integrity Verification Polling Timer 5-30 10

    T392 Polling Verification Timer 5-30 15

    T392 should be longer than T391

    T391 is always assigned to the user side. T391 is assigned to the user and networksides if the bi-directional procedures are used.

    T392 is always assigned to the network side. T392 is assigned to the user andnetwork sides if the bi-directional procedures are used.

  • 8/13/2019 01 Basic Functionality

    39/50

    Basic Functionality Siemens

    TI2430EU01AL-0139

    Status Enquiry Message

    Control Field 03 Unnumbered Information Frame /P=0Protocol Discriminator 08 Annex A (09 bei LMI)

    Call Reference 00

    Message Type 75 Status Enquiry

    Locking Shift * Nur bei Annex D untersttzt

    Identifier

    Length

    Report Type

    51 Report (01 bei LMI)

    01

    00=Full Status/01=Link Integrity Verification

    Identifier

    Length

    Current Sequence Nr.

    Last Received Seq. Nr.

    53 Sequence Numbers (03 bei LMI)

    02

    01-FF

    01-FF

    Status Message

    Control Field 03 Unnumbered Information Frame /P=0

    Protocol Discriminator 08 Annex A (09 bei LMI)

    Call Reference 00

    Message Type 7D Status Enquiry

    Locking Shift * Nur bei Annex D untersttzt

    Identifier

    Length

    Report Type

    51 Report (01 bei LMI)

    01

    01 Link Integrity Verification only

    Identifier

    Length

    Current Sequence Nr.

    Last Received Seq. Nr.

    53 Sequence Numbers (03 bei LMI)

    02

    01-FF

    01-FF

  • 8/13/2019 01 Basic Functionality

    40/50

    Siemens Basic Functionality

    40

    Full Status Message

    Control Field 03 Unnumbered Information Frame /P=0Protocol Discriminator 08 Annex A (09 bei LMI)

    Call Reference 00

    Message Type 7D Status Enquiry

    Locking Shift * Nur bei Annex D untersttzt

    Identifier

    Length

    Report Type

    51 Report (01 bei LMI)

    01

    00 Full Status (fr alle PVC)

    Identifier

    Length

    Current Sequence Nr.

    Last Received Seq. Nr.

    53 Sequence Numbers (03 bei LMI)

    02

    01-FF

    01-FF

    Identifier

    Length

    DLCI (msb)

    DLCI (Isb)

    Status

    CIR (msb)

    CIR

    CIR (Isb)

    57 PVC Status (7 bei LMI)

    03-06

    00XXXXXX Most 6 significant bits

    1XXXX000 Least 4 significant bits

    1000NDAR New/Delete/Active/RNR

    RNR (Receive Not Ready) und CIR Felder werden bei

    Annex A und Annex D nicht untersttzt

  • 8/13/2019 01 Basic Functionality

    41/50

    Basic Functionality Siemens

    TI2430EU01AL-0141

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Single PVC Asynchronous Status Message

    Control Field 03 Unnumbered Information Frame /P=0Protocol Discriminator 08 Annex A (09 bei LMI)

    Call Reference 00

    Message Type 7D Status

    Locking Shift Nur bei Annex D untersttzt

    Identifier

    Length *

    Report Type *

    51 Report (7B Update Status bei LMI ext.)

    01 * nur bei Annex A und Annex D

    02 Single PVC Asynchronous Status

    Identifier

    Length

    DLCI (msb)

    DLCI (Isb)

    Status

    CIR (msb)

    CIR

    CIR (Isb)

    57 PVC Status (7 bei LMI ext.)

    03-06

    00XXXXXX Most 6 significant bits

    1XXXX000 Least 4 significant bits

    1000NDAR New/Delete/Active/RNR

    RNR (Receive Not Ready) und CIR Felder werden bei

    Annex A und Annex D nicht untersttzt

  • 8/13/2019 01 Basic Functionality

    42/50

  • 8/13/2019 01 Basic Functionality

    43/50

    Basic Functionality Siemens

    TI2430EU01AL-0143

    9 Switched Virtual Circuits (SVCs)

    CPE

    CPE

    CPE

    FRF.4/

    X.36

    FRF.4/

    X.36

    FRF.4/

    X.36

    FRF.10/

    X.76

    Fig. 21

  • 8/13/2019 01 Basic Functionality

    44/50

  • 8/13/2019 01 Basic Functionality

    45/50

  • 8/13/2019 01 Basic Functionality

    46/50

    Siemens Basic Functionality

    46

    RELEAS

    E

    Frame Relay

    NetzCPE CPE

    UNI UNI

    ITU-T X.36FRF.4

    ITU-T X.36FRF.4

    Calling

    DTE

    Called

    DTEDCE DCE

    Active

    Disconnect

    Indication

    Active

    Disconnect

    Request

    Null

    Null

    Null

    Disconnect

    Indication

    Disconnect

    Request

    Active

    Active

    Null

    DISCONNECT

    RELEAS

    E

    RELEASECOMPLETE

    RELEASECOMPLETE

    DISCONNECT

    Fig. 23

  • 8/13/2019 01 Basic Functionality

    47/50

  • 8/13/2019 01 Basic Functionality

    48/50

    Siemens Basic Functionality

    48

    Originating

    NetworkTerminating

    NetworkCPE CPE

    UNI NNI UNI

    ITU-T X.76

    FRF.10

    Calling User Called User

    Calling

    STE

    Called

    STE

    Null

    Call

    Proceeding

    Received

    Call

    Initiated

    Null

    Call

    Present

    Call

    Proceeding

    Sent

    Active

    Active

    SETUP

    CALLPR

    OCEDING

    CONNECT

    Fig. 24

  • 8/13/2019 01 Basic Functionality

    49/50

    Basic Functionality Siemens

    TI2430EU01AL-0149

    Originating

    NetworkTerminating

    NetworkCPE CPE

    UNI NNI UNI

    ITU-T X.76

    FRF.10

    Calling User Called User

    Calling

    STE

    Called

    STE

    Null

    Release

    indication

    Null

    Release

    Request

    Active

    Active

    RELEASE

    RELEASE

    COMPLET

    E

    Fig. 25

  • 8/13/2019 01 Basic Functionality

    50/50

    Siemens Basic Functionality