0 mecânica aplicada 1 - movimento plano – método da...

1
Departamento de Engenharia Mecânica Área Científica de Mecânica dos Meios Sólidos RMM – 2015/16 Mecânica Aplicada Cap. 17 1 - Movimento plano – método da energia e quantidade mov. Problema 17.15 Uma barra delgada de 6 pode girar num plano vertical em torno de um pivot em . Uma mola de constante = 600/ e comprimento indeformado de 225 é presa à barra do modo mostrado na figura. Sabendo que a barra é libertada do repouso na posição mostrada, determine a sua velocidade angular após ela ter girado 90°. Problema 17.26 a 17.28 O estrado de 81 está apoiado, do modo mostrado na figura, por dois discos uniformes que rolam sem deslizar em todas as superfícies de contacto. O peso de cada disco é = 54 e o raio de cada disco é = 10 . Sabendo que o sistema está inicialmente em repouso, determine a velocidade do estrado após ele ter-se deslocado 37,5 . Problema 17.32 O movimento da barra delgada uniforme de 2,4 é guiado em e por colares de massa desprezável. O sistema é libertado do repouso na posição = 30°. Sabendo que a intensidade da força aplicada ao colar é de 10 , determine a velocidade angular da barra quando = 45°. Problema 17.44 Um volante de 1,815 com um raio de giração de 686 é deixado livre a partir de uma velocidade angular de 450 . Sabendo que o atrito cinético produz um binário de intensidade de 14,1 . , determine o tempo necessário para o volante chegar ao repouso. Problema 17.72 Duas bolas de 0,36 kg cada são inseridas sucessivamente no centro C do tudo AB oco de 1,8 kg. Sabendo que quando a 1ª bola é inserida no tudo a velocidade angular é de 8 rad/s. Desprezando os efeitos do atrito, determine a velocidade angular do tubo, após (a) A primeira bola sair do tubo; (b) A segunda bola sair do tubo. 1 Os problemas apresentados referem-se ao livro “Mecânica Vetorial para Engenheiros – Dinâmica, Ferdinand P. Beer, E. Russell Johnston Jr., William E. Clausen, 7ªEd McGraw-Hill” C A D B Fig. P17.17 A B A B A B 900 525 180 36 36 36

Upload: lynhan

Post on 23-Dec-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 0 Mecânica Aplicada 1 - Movimento plano – método da ...ltodi.est.ips.pt/rmendes/resources/MA/Exercicios_MA_Cap_17-1.pdf · aplicada ao colar ! é de 10 !, determine a velocidade

DepartamentodeEngenhariaMecânicaÁreaCientíficadeMecânicadosMeiosSólidos

RMM–2015/16

MecânicaAplicada

Cap.171-Movimentoplano–métododaenergiaequantidademov.

Problema17.15

Uma barra delgada𝐴𝐵𝐶de6 𝑘𝑔pode girar num plano vertical emtorno de um pivot em𝐵. Uma mola de constante𝑘 = 600𝑁/𝑚ecomprimento indeformado de225 𝑚𝑚é presa à barra do modomostradonafigura.Sabendoqueabarraélibertadadorepousonaposiçãomostrada,determineasuavelocidadeangularapósela tergirado90°.

Problema17.26a17.28

Oestradode81 𝑁estáapoiado,domodomostradonafigura,pordoisdiscosuniformesquerolamsemdeslizaremtodasas superfíciesdecontacto.Opesodecadadiscoé𝑊 = 54 𝑁eo raiodecadadiscoé𝑟 = 10 𝑐𝑚.Sabendoqueosistemaestáinicialmenteemrepouso,determineavelocidadedoestradoapóseleter-sedeslocado37,5 𝑐𝑚.

Problema17.32

Omovimentodabarradelgadauniforme𝐴𝐵de2,4 𝑘𝑔éguiadoem𝐴e𝐶 por colares de massa desprezável. O sistema é libertado dorepouso na posição𝜃 = 30°. Sabendo que a intensidade da força𝑷aplicada ao colar𝐴é de10 𝑁 , determine a velocidade angular dabarra𝐴𝐵quando𝜃 = 45°.

Problema17.44

Umvolantede1,815 𝑀𝑔comumraiodegiraçãode686 𝑚𝑚édeixado livreapartirdeumavelocidadeangular de450 𝑟𝑝𝑚. Sabendo que o atrito cinético produz um binário de intensidade de14,1 𝑁.𝑚,determineotemponecessárioparaovolantechegaraorepouso.

Problema17.72

Duasbolasde0,36kgcadasãoinseridassucessivamentenocentroCdotudoABocode1,8kg.Sabendoquequandoa1ªbolaéinseridanotudoavelocidade angular é de 8 rad/s. Desprezando os efeitos do atrito,determineavelocidadeangulardotubo,após

(a) Aprimeirabolasairdotubo;(b) Asegundabolasairdotubo.

1Osproblemasapresentadosreferem-seaolivro“MecânicaVetorialparaEngenheiros–Dinâmica,FerdinandP.Beer,E.RussellJohnstonJr.,WilliamE.Clausen,7ªEdMcGraw-Hill”

1097Problems 17.13 Solve Prob. 17.12, assuming that the initial angular velocity of the flywheel is 360 rpm clockwise.

17.14 The gear train shown consists of four gears of the same thickness and of the same material; two gears are of radius r, and the other two are of radius nr. The system is at rest when the couple M0 is applied to shaft C. Denoting by I0 the moment of inertia of a gear of radius r, determine the angular velocity of shaft A if the couple M0 is applied for one revolution of shaft C.

nrr

AB

C

nr

M0

r

Fig. P17.14

17.15 The three friction disks shown are made of the same material and have the same thickness. It is known that disk A weighs 12 lb and that the radii of the disks are rA 5 8 in., rB 5 6 in., and rC 5 4 in. The system is at rest when a couple M0 of constant magni-tude 60 lb ? in. is applied to disk A. Assuming that no slipping occurs between disks, determine the number of revolutions required for disk A to reach an angular velocity of 150 rpm.

17.16 and 17.17 A slender 4-kg rod can rotate in a vertical plane about a pivot at B. A spring of constant k 5 400 N/m and of unstretched length 150 mm is attached to the rod as shown. Know-ing that the rod is released from rest in the position shown, deter-mine its angular velocity after it has rotated through 90°.

AB

CrA rB rC

M0

Fig. P17.15

D

A

B

C

120 mm

600 mm

350 mm

Fig. P17.16

C

A

D

B

120 mm

600 mm

350 mm

Fig. P17.17

bee29400_ch17_1080-1143.indd Page 1097 12/16/08 10:21:17 AM user-s172bee29400_ch17_1080-1143.indd Page 1097 12/16/08 10:21:17 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0

1100 Plane Motion of Rigid Bodies: Energy and Momentum Methods

17.32 The 5-kg rod BC is attached by pins to two uniform disks as shown. The mass of the 150-mm-radius disk is 6 kg and that of the 75-mm-radius disk is 1.5 kg. Knowing that the system is released from rest in the position shown, determine the velocity of the rod after disk A has rotated through 90°.

17.33 through 17.35 The 9-kg cradle is supported as shown by two uniform disks that roll without sliding at all surfaces of contact. The mass of each disk is m 5 6 kg and the radius of each disk is r 5 80 mm. Knowing that the system is initially at rest, determine the velocity of the cradle after it has moved 250 mm.

75 mm

75 mm

150 mm

AB C

Fig. P17.32

A B

30 N

Fig. P17.33

A B

30 N

Fig. P17.34

A B

30 N

Fig. P17.35

17.36 The motion of the slender 10-kg rod AB is guided by collars of negligible mass that slide freely on the vertical and horizontal rods shown. Knowing that the bar is released from rest when u 5 30°, determine the velocity of collars A and B when u 5 60°.

17.37 The motion of the slender 10-kg rod AB is guided by collars of negligible mass that slide freely on the vertical and horizontal rods shown. Knowing that the bar is released from rest when u 5 20°, determine the velocity of collars A and B when u 5 90°.

17.38 The ends of a 9-lb rod AB are constrained to move along slots cut in a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached to end A in such a way that its tension is zero when u 5 0. If the rod is released from rest when u 5 0, determine the angular velocity of the rod and the velocity of end B when u 5 30°.

17.39 The ends of a 9-lb rod AB are constrained to move along slots cut in a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached to end A in such a way that its tension is zero when u 5 0. If the rod is released from rest when u 5 50°, determine the angular velocity of the rod and the velocity of end B when u 5 0.

17.40 The motion of the uniform rod AB is guided by small wheels of negligible mass that roll on the surface shown. If the rod is released from rest when u 5 0, determine the velocities of A and B when u 5 30°.

A

B

q

l = 1.2 m

Fig. P17.36 and P17.37

A

B

q

l = 25 in.

Fig. P17.38 and P17.39

60° q

L

B

A

Fig. P17.40

bee29400_ch17_1080-1143.indd Page 1100 12/16/08 10:21:19 AM user-s172bee29400_ch17_1080-1143.indd Page 1100 12/16/08 10:21:19 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0

1100 Plane Motion of Rigid Bodies: Energy and Momentum Methods

17.32 The 5-kg rod BC is attached by pins to two uniform disks as shown. The mass of the 150-mm-radius disk is 6 kg and that of the 75-mm-radius disk is 1.5 kg. Knowing that the system is released from rest in the position shown, determine the velocity of the rod after disk A has rotated through 90°.

17.33 through 17.35 The 9-kg cradle is supported as shown by two uniform disks that roll without sliding at all surfaces of contact. The mass of each disk is m 5 6 kg and the radius of each disk is r 5 80 mm. Knowing that the system is initially at rest, determine the velocity of the cradle after it has moved 250 mm.

75 mm

75 mm

150 mm

AB C

Fig. P17.32

A B

30 N

Fig. P17.33

A B

30 N

Fig. P17.34

A B

30 N

Fig. P17.35

17.36 The motion of the slender 10-kg rod AB is guided by collars of negligible mass that slide freely on the vertical and horizontal rods shown. Knowing that the bar is released from rest when u 5 30°, determine the velocity of collars A and B when u 5 60°.

17.37 The motion of the slender 10-kg rod AB is guided by collars of negligible mass that slide freely on the vertical and horizontal rods shown. Knowing that the bar is released from rest when u 5 20°, determine the velocity of collars A and B when u 5 90°.

17.38 The ends of a 9-lb rod AB are constrained to move along slots cut in a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached to end A in such a way that its tension is zero when u 5 0. If the rod is released from rest when u 5 0, determine the angular velocity of the rod and the velocity of end B when u 5 30°.

17.39 The ends of a 9-lb rod AB are constrained to move along slots cut in a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached to end A in such a way that its tension is zero when u 5 0. If the rod is released from rest when u 5 50°, determine the angular velocity of the rod and the velocity of end B when u 5 0.

17.40 The motion of the uniform rod AB is guided by small wheels of negligible mass that roll on the surface shown. If the rod is released from rest when u 5 0, determine the velocities of A and B when u 5 30°.

A

B

q

l = 1.2 m

Fig. P17.36 and P17.37

A

B

q

l = 25 in.

Fig. P17.38 and P17.39

60° q

L

B

A

Fig. P17.40

bee29400_ch17_1080-1143.indd Page 1100 12/16/08 10:21:19 AM user-s172bee29400_ch17_1080-1143.indd Page 1100 12/16/08 10:21:19 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0

1100 Plane Motion of Rigid Bodies: Energy and Momentum Methods

17.32 The 5-kg rod BC is attached by pins to two uniform disks as shown. The mass of the 150-mm-radius disk is 6 kg and that of the 75-mm-radius disk is 1.5 kg. Knowing that the system is released from rest in the position shown, determine the velocity of the rod after disk A has rotated through 90°.

17.33 through 17.35 The 9-kg cradle is supported as shown by two uniform disks that roll without sliding at all surfaces of contact. The mass of each disk is m 5 6 kg and the radius of each disk is r 5 80 mm. Knowing that the system is initially at rest, determine the velocity of the cradle after it has moved 250 mm.

75 mm

75 mm

150 mm

AB C

Fig. P17.32

A B

30 N

Fig. P17.33

A B

30 N

Fig. P17.34

A B

30 N

Fig. P17.35

17.36 The motion of the slender 10-kg rod AB is guided by collars of negligible mass that slide freely on the vertical and horizontal rods shown. Knowing that the bar is released from rest when u 5 30°, determine the velocity of collars A and B when u 5 60°.

17.37 The motion of the slender 10-kg rod AB is guided by collars of negligible mass that slide freely on the vertical and horizontal rods shown. Knowing that the bar is released from rest when u 5 20°, determine the velocity of collars A and B when u 5 90°.

17.38 The ends of a 9-lb rod AB are constrained to move along slots cut in a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached to end A in such a way that its tension is zero when u 5 0. If the rod is released from rest when u 5 0, determine the angular velocity of the rod and the velocity of end B when u 5 30°.

17.39 The ends of a 9-lb rod AB are constrained to move along slots cut in a vertical plate as shown. A spring of constant k 5 3 lb/in. is attached to end A in such a way that its tension is zero when u 5 0. If the rod is released from rest when u 5 50°, determine the angular velocity of the rod and the velocity of end B when u 5 0.

17.40 The motion of the uniform rod AB is guided by small wheels of negligible mass that roll on the surface shown. If the rod is released from rest when u 5 0, determine the velocities of A and B when u 5 30°.

A

B

q

l = 1.2 m

Fig. P17.36 and P17.37

A

B

q

l = 25 in.

Fig. P17.38 and P17.39

60° q

L

B

A

Fig. P17.40

bee29400_ch17_1080-1143.indd Page 1100 12/16/08 10:21:19 AM user-s172bee29400_ch17_1080-1143.indd Page 1100 12/16/08 10:21:19 AM user-s172 /Volumes/204/MHDQ077/work%0/indd%0/Volumes/204/MHDQ077/work%0/indd%0

900 𝑚𝑚

525 𝑚𝑚

180 𝑚𝑚

36 𝑁 36 𝑁36 𝑁