«  the incredible progresses of particle physics and cosmology »

50
« The incredible progresses of particle physics and cosmology » P. Binétruy AstroParticule et Cosmologie, Paris International Workshop on « Neutrino Telescopes » zia, Palzzo Franchetti, 9 March 2007 knowledge of the laws of microscopic elp us to understand the universe at l

Upload: allayna

Post on 15-Jan-2016

39 views

Category:

Documents


2 download

DESCRIPTION

«  The incredible progresses of particle physics and cosmology ». Does our knowledge of the laws of microscopic physics help us to understand the universe at large?. P. Binétruy AstroParticule et Cosmologie, Paris. XII International Workshop on « Neutrino Telescopes » - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: «  The incredible progresses of  particle physics and  cosmology »

« The incredible progresses of particle physics and cosmology »

P. Binétruy

AstroParticule et Cosmologie, Paris

XII International Workshop on « Neutrino Telescopes » Venezia, Palzzo Franchetti, 9 March 2007

Does our knowledge of the laws of microscopic physics help us to understand the universe at large?

Page 2: «  The incredible progresses of  particle physics and  cosmology »

A microscopic world almost fully explored (in as much as it is known)

Page 3: «  The incredible progresses of  particle physics and  cosmology »

All ingredients of the Standard Model as we know it have been understood and confirmed except for the Higgs

Page 4: «  The incredible progresses of  particle physics and  cosmology »

All observations on quark mixing are consistent with a single CP-violating phase

Page 5: «  The incredible progresses of  particle physics and  cosmology »

ν e

ν μ

ν τ

cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

×

cosθ13 0 sinθ13

0 1 0

sinθ13 0 cosθ13

×

1 0 0

0 1 0

0 0 e−iδ

1 0 0

0 cosθ23 sinθ23

0 −sinθ23 cosθ23

×

ν 1

ν 2

ν 3

Atmos. neutrinosSolar neutrinos

θ13 ? ; δCP ???

Neutrinos : most of the MNSP mixing matrix is known

Page 6: «  The incredible progresses of  particle physics and  cosmology »

Remaining unexplained :

• mass hierarchies, i.e. a theory of Yukawa couplings

• strong CP-violating phase i.e. θ < 10-9

Horizontal symmetries?

Page 7: «  The incredible progresses of  particle physics and  cosmology »

A universe at large which remains largely unexplained in the context of the Standard Model :

• dark matter• acceleration of the universe• matter-antimatter antisymmetry

Page 8: «  The incredible progresses of  particle physics and  cosmology »

Dark matter

Galaxy rotation curves

Lensing

Page 9: «  The incredible progresses of  particle physics and  cosmology »

h2 ~109 GeV-1 xf

g*1/2 MP < ann v >

25

Number of deg. of freedom at time of decoupling

mass ~ MEW < ann v > ~ EW/MEW 2 h2 ~ 1

to be compared with dark h2 = 0.112 0.009

New particles may be valuable candidates

Weakly Interacting Massive Particles (absent in SM)

Page 10: «  The incredible progresses of  particle physics and  cosmology »

Supernovae (Sn Ia) :

astro-ph/0402512

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Hubble plot : magnitude vs redshift

Recent acceleration of the Universe

Page 11: «  The incredible progresses of  particle physics and  cosmology »

Matter-antimatter asymmetry

No working astrophysical model

From the point of view of fundamental physics, 3 necessary ingredients (Sakharov) :

• CP violation • B violation • out of equilibrium first order phase transition mHiggs > 72 GeV

Page 12: «  The incredible progresses of  particle physics and  cosmology »

Will the theories of the microscopic world allow us to understandbetter the Universe at large?

Page 13: «  The incredible progresses of  particle physics and  cosmology »

NO : the vacuum energy (cosmological constant) problem

Classically, the vacuum energy is not measurable. Only differencesof energy are (e.g. Casimir effect).

Einstein equations: Rν - R gν/2 = 8G Tν

Hence geometry may provide a way to measure absolute energies e.g. vacuum energy:

geometry energy

Page 14: «  The incredible progresses of  particle physics and  cosmology »

-1/2 ~ MW -1

~ 10 -18 m electroweak scale

or -1/2 ~ mP-1 ~ 10 -34 m Planck scale

Rν - R gν/2 = 8G Tν + g ν

~ 0.7 ~ 1 -1/2 ~ H0 -1 =10 26 m

size of the presently visible universe

A very natural value for an astrophysicist !

A high energy theorist would compute the vacuum energy and find

Related questions : why now? why is our Universe so large, so old?

Page 15: «  The incredible progresses of  particle physics and  cosmology »

YES : the example of dark matter

Will the theories of the microscopic world allow us to understandbetter the Universe at large?

Page 16: «  The incredible progresses of  particle physics and  cosmology »

Connecting the naturalness of the electroweak scale with the existence of WIMPs

naturalness

mh2 = t

2 - g2 - h

23mt

2

22v2

6MW2 + 3MZ

2

8 2v2

3mh2

8 2v2

Naturalness condition : |mh2 | < mh

2

v = 250 GeV

Introduce new physics at t (supersymmetry, extra dimensions,…) or raise mh to 400 GeV range

Page 17: «  The incredible progresses of  particle physics and  cosmology »

stable particles in the MEW mass range

E

New local symmetry

Standard Modelfermions

New fields

Page 18: «  The incredible progresses of  particle physics and  cosmology »

stable particles in the MEW mass range

E

New local symmetry

New discrete symmetry

Standard Modelfermions

New fields

Lightest odd-parityparticle is stable

Page 19: «  The incredible progresses of  particle physics and  cosmology »

Example : low energy SUSY

E

R symmetry

R parity

Standard Modelfermions

Supersymmetricpartners

Stable LSP

Page 20: «  The incredible progresses of  particle physics and  cosmology »

Bullet proof

Dark matterGravitational lensing

Ordinary matterX-rays (Chandra)

astro-ph/0611496

Clowe, Randall, Markevitch

Page 21: «  The incredible progresses of  particle physics and  cosmology »

QuickTime™ et undécompresseur Sorenson Video 3

sont requis pour visionner cette image.

Page 22: «  The incredible progresses of  particle physics and  cosmology »

Going beyond : what might the infinitely small tell us in the future about the infinitely large?

• discovery of scalar particles• discovery of WIMPs• (discovery of extra dimensions)

Page 23: «  The incredible progresses of  particle physics and  cosmology »

Fundamental scalar fields

The discovery of the Higgs would provide the first fundamental scalar particle.

Scalars are the best remedy to cure cosmological problems:

Inflation, dark energy, compactification radius stabilization…

Scalars tend to resist gravitational clustering and thus may provide a diffuse background

Speed of sound cs2 = p/ ~ c2

Page 24: «  The incredible progresses of  particle physics and  cosmology »

Can we hope to test the dark energy idea at colliders?

Most popular models based on scalar fields (quintessence) :

V

has to be very light : m ~ H0

~ 10-33 eV

exchange would provide a long range force : has to be extremely weakly coupled to matter

HOPELESS FOR COLLIDERS

Page 25: «  The incredible progresses of  particle physics and  cosmology »

Dark matter: search of WIMPs at LHC

missing energy signal

Produced in pair : difficult to reconstruct, in the absence of a specific model

Page 26: «  The incredible progresses of  particle physics and  cosmology »

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

search through direct detection

e.g. minimal sugra model

Page 27: «  The incredible progresses of  particle physics and  cosmology »

Going beyond : what might the infinitely large tell us in the future about the infinitely small?

• cosmological data and neutrino masses• gravitational waves and the electroweak phase transition• high energy cosmic rays and extra dimensions

Page 28: «  The incredible progresses of  particle physics and  cosmology »

Testing the scale of (lepton) flavour violations

Neutrino masses Baryon asymmetry

Flavour violations

Flavor physicsMF ~ 1010 GeV ?

Cosmology

Colliders

ν =mν /(92.5eV)

mν = MEW2 / MF

Page 29: «  The incredible progresses of  particle physics and  cosmology »

Data ∑mνi

(95%CL)

WMAP 1.8 eV -

WMAP+SDSS 1.3 eV 7.1+4.1

WMAP+2dFGRS 0.88 eV 2.7 1.4

CMB+LSS+SN 0.66 eV 3.3 1.7

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

fraction of ν in dark matter

mνi

darkh2

baryonh2

WMAPSDSS

astro-ph/0310723

WMAP 3 yr: astro-ph/0603449

Page 30: «  The incredible progresses of  particle physics and  cosmology »

Electroweak phase transition and gravitational waves

If the transition is first order,nucleation of true vacuum bubblesinside the false vacuum

Collision of bubbles production of gravitational waves

Page 31: «  The incredible progresses of  particle physics and  cosmology »

• in the Standard Model, requires mh < 72 GeV (ruled out)• MSSM requires too light a stop but generic in NMSSM• possible to recover a strong 1st order transition by including H6 terms in SM potential• other symmetries than SU(2)xU(1) at the Terascale ( baryogenesis)

Pros and cons for a 1st order phase transition at the Terascale:

Page 32: «  The incredible progresses of  particle physics and  cosmology »

.

Gravitons of frequency f produced at temperature T are observed at a redshifted frequency

f = 1.65 10-7 Hz --- ( ----- ) ( ---- )1 T

1GeV

g

100

1/6

At production = H-1

Horizon lengthWavelength

g is the number of degrees of freedom

Page 33: «  The incredible progresses of  particle physics and  cosmology »

LF band0.1 mHz - 1 Hz

VIRGO

Gravitational wave detection

Gravitational wave amplitude

Page 34: «  The incredible progresses of  particle physics and  cosmology »

LF band0.1 mHz - 1 Hz

VIRGO

T in GeV10 3 10 6 10 9

Gravitational wave amplitude

Page 35: «  The incredible progresses of  particle physics and  cosmology »

LF band0.1 mHz - 1 Hz

VIRGO

T in GeV10 3 10 6 10 9

Electroweak breaking scale

Page 36: «  The incredible progresses of  particle physics and  cosmology »

LISAlaunch > 2015

ESA/NASA mission

Three satellites forming a triangle of 5 million km sides

QuickTime™ et undécompresseur Cinepak

sont requis pour visionner cette image.

Page 37: «  The incredible progresses of  particle physics and  cosmology »
Page 38: «  The incredible progresses of  particle physics and  cosmology »

QuickTime™ et undécompresseur Codec YUV420

sont requis pour visionner cette image.

Page 39: «  The incredible progresses of  particle physics and  cosmology »

High energy cosmic rays and extra dimensions

Extra dimensions

Black holes

Page 40: «  The incredible progresses of  particle physics and  cosmology »

More than 3 dimensions to our space?

Why ask?

Unification of gravity with the other interactions seems to require it :• unification electromagnetism-gravity (Kaluza 1921-Klein 1926)• unification of string theory (>1970)

For a theory in D=4+n dimensions with n dimensions compactifiedon a circle of radius R :

mPl2 = MD

2+n Rn

MD fundamental scale of gravity in D dimensions

Page 41: «  The incredible progresses of  particle physics and  cosmology »

If MD ~ 1 TeV, possible to produce black holes

Relevant scale for a black hole of mass MH is Schwarzschild radius:

rS ~ ----- --------1

MD

MBH

MD( )

1/1+n

Thorne: a black hole forms in a 2-particle collision if the impact parameteris smaller than rS.

~ rS2

gauge inter.gravity

matter

Page 42: «  The incredible progresses of  particle physics and  cosmology »

Hawking evaporation of the BH caracterized by the temperature

TH = _______n+1

4 rS

dE / dt TH4+n gives BH ~ ----- --------

MBH

)MD MD(3+n/1+n

1

BH decays visibly to SM particles:• large multiplicity N ~ MBH / (2TH)• large total transverse energy• characterisitic ratio of hadronic to leptonic activity of 5:1

Page 43: «  The incredible progresses of  particle physics and  cosmology »

Search for BH formation in high energy cosmic ray events

Look for BH production by neutrinos in order to overcome the QCD background:

horizontal showers

Page 44: «  The incredible progresses of  particle physics and  cosmology »

(ν N BH) for n=1 to 7 and MD = 1 TeV

SM (ν N l X)Anchordoqui, Feng, Goldberg, Shapere hep-th/0307228

n=1

ν N BH MD-2(2+n)/(1+n)

Page 45: «  The incredible progresses of  particle physics and  cosmology »

hep-ph/0206072

Page 46: «  The incredible progresses of  particle physics and  cosmology »

xmin = MBHmin/MD

MBHmin smallest BH mass for which we

trust the semi-classical approximation.

Includes inelasticity :

MBH ≠ s

hep-ph/0311365

Auger : bkgd of 2SM ν + 10 hadronic evts

n=6

Page 47: «  The incredible progresses of  particle physics and  cosmology »

Does our knowledge of the laws of microscopic physics help us to understand the universe at large?

Page 48: «  The incredible progresses of  particle physics and  cosmology »

Three and a half scenarios :

• The orthodox scenario : discovery of supersymmetry at LHC Pros : light HiggsCons : too orthodoxThis would confirm the general features of the « fundamental » universe as we understand it : role of scalars, nature of dark matter, string theory probable quantum theory of gravity…

• The standard scenario : discovery only of the HiggsPros : minimalCons : too standard, mass hierachies not addressedThis might be the end of large colliders. Only way of doing high energy physics might be through neutrinos and astroparticles

Page 49: «  The incredible progresses of  particle physics and  cosmology »

• The favourite scenario: discovery of something unexpected

• The radical scenario : discovery of large extra dimensionsPros : new ways of breaking symmetriesCons : why large? Revolutionize our perspectives on the Universe. String theory probable quantum theory of gravity. BH production may overcome any future collider signatures.

Page 50: «  The incredible progresses of  particle physics and  cosmology »

In any case, particles will provide a new way of studying the Universe

Ideally, one would like to study the same source (*) by detecting the gravitational waves, neutrinos, hadrons and photons emitted :

(*) Applies also to the primordial universe!

• gravitational waves give information on the bulk motion of matter in energetic processes (e.g. coalescence of black holes)

• neutrinos give information on the deepest zones, opaque to photons (e.g. on the origin --hadronic or electromagnetic-- of ).

• protons provide information on the cosmic accelerators that have produced them

• high energy photons trace populations of accelerated particules, as well as dark matter annihilation