京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, introduction 2, gauge fluctuations in...

36
カラー超伝導におけるゆらぎの効果 北沢正清 京大基研 Fluctuations in Color Superconductivity 基研研究会「熱場の量子論」 1, Introduction 2, Gauge Fluctuations in Type I CSC 3, Pair Fluctuations at lower densities 4, Pseudogap of CSC C O N T E N T S

Upload: nguyenduong

Post on 18-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

カラー超伝導におけるゆらぎの効果

北沢正清

京大基研

Fluctuations in Color Superconductivity

基研研究会「熱場の量子論」

1, Introduction2, Gauge Fluctuations in Type I CSC3, Pair Fluctuations at lower densities4, Pseudogap of CSC

C O N T E N T S

Page 2: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

1, Introduction1,1, Introduction

Color Superconductivity(CSC)Approaches to CSCNature of CSC at low and high densitiesTwo types of superconductor

Page 3: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Color SuperconductivityColor SuperconductivityColor Superconductivity

chiral symm. broken Color Superconductivity(CSC)

with attractive channel in one-gluon exchange interaction.

quark (fermion) systemDense Quark Matter:

Cooper instability at sufficiently low T

SU (3)c gauge symmetry is broken!

[3]c×[3]c=[3]c+[6]c

∆~100MeV at moderate density µq~ 400MeV

T

µ

confinement

Attractive!

Page 4: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Pairing patterns of CSCPairing patterns of CSCPairing patterns of CSC

ρ

u d su d s

ρ

Two Flavor Superconductor(2SC)

u d u d

s

µ<Ms µ>>Ms

Color-Flavor Locked (CFL)

5ij i jCiαβ α βψ γ ψ∆ =for JP=0+ pairing

ij ijk kαβ αβγ γε ε∆ = d

a,b : colori,j : flavor

attractive channel : color anti-symm.flavor anti-symm.

00

⎛ ⎞= ⎜ ⎟⎜ ⎟∆⎝ ⎠

d 12

3

∆⎛ ⎞= ∆⎜ ⎟⎜ ⎟∆⎝ ⎠

d

(3) (2)c cSU SU→ (3) (3) (3)(3)c L R

c L R

SU SU SUSU + +

× ×→

Page 5: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

T

µ0

Approaches to CSCApproaches to CSCApproaches to CSC

first principle calculationeffective theoriesNJL-type 4-fermi model,random matrix model, etc..

observation ???

100MeV∆ ≈Asymptotic forms of

gap ∆,critical temperature Tc, gluon self energy,Ginzburg parameter, etc…

weak couplingstrong coupling

in compact stars and/orheavy ion collisions

due to asymptotic freedom

using one gluon exchange

low density high density

Page 6: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Structural Change of Cooper PairsStructural Change of Cooper PairsStructural Change of Cooper PairsMatsuzaki, PRD62,017501 (‘00) Abuki, Hatsuda, Itakura, PRD 65, 074014 (‘02)

Coherence length of Cooper pairsbecomes short as µ is lowered.

T

µ0

ξ – coherence lengthd – interquark distance

Bosonize?

µ[MeV]

ξ / d

weak coupling =validity of MFA

Page 7: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

“Type” of CSC““TypeType”” of CSCof CSC

Fluctuations of SC pair field:gauge field:

– coherence length– penetration depth

ξλ

Ginzburg parameter: κ=λ/ξ

T

µ0

Matsuura, Iida, Hatsuda, Baym, PRD69,074012 (‘04)Giannakis, Ren, NP B669, 462 (‘03)

- Type I1κGauge fluctuations dominate

- Type II1κPair fluctuations dominate

:Type I CSC1κ:Type II CSC1κ >%

Page 8: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

“Type” of SC““TypeType”” of SCof SC

Giannakis, Ren, NPB669, 462 (‘03)

H ∆

0

λ

ξx

λ ξ

H ∆

0

λ

ξx

– coherence length of ∆ 1/ 2/ 2 | |c aξ ε ε −≡

2 1/ 221/ 8ceλ ε −∆≡

CFL (weak limit)

metal SC and 2SC

22 4 21( , ) ( 2 ) ( )2 2bF a c AeA i Aε∆ ∆= + ∆− +∆ + ∇ ∇×

rr r rGL free energy:

– penetration depth of A

1/ 2 0.707cκ = ≅0.589cκ =

Type I : λ ξType II :

σ=0at κc

σ<0σ>0

Surface Energy σ C

C

T TT

ε −=

Page 9: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

2, Gauge Fluctuations2,2, Gauge Fluctuations

First order transition in type I SCEstimation by Bailin & LoveRecent progress by Matsuura, et al., et al.

in Type I CSCin Type I CSC

Page 10: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

First Order Transition in Type I SCFirst Order Transition in Type I SCFirst Order Transition in Type I SC

22 43 1( , ) ( 2 )2 4 lm lmbF A d r a c ieA F Fε⎡ ⎤= + + ∇ − +∆ ∆ ∆ ∆⎢ ⎥⎣ ⎦∫

r r r%

GL free energy functional

integrate out A ( ) ( , ) V AF Fd Ae eβ β− ∆ − ∆= ∫%

rr

( )3

2 4 2 2 23

1( ) ln( ) ln2 (2 ) A

k

d kF at b T k m kπ<Λ

∆ ∆ ∆= + + + −∫2 3

2

12 6A AT m mπ πΛ⎛ ⎞= −⎜ ⎟

⎝ ⎠

Negative 3rd order term induces thefirst order transition.

1Am λ−= ∆

T =TcT=Tc

*T >Tc

T <Tc

( )F ∆

( )F ∆

though, too weak to observe..

Halperin, Lubensky, Ma, PRL32,292(’74)

Gauss approx.

Page 11: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

First Order Transition in CSCFirst Order Transition in CSCFirst Order Transition in CSCBailin, Love, Phys. Rep. 107, 325 (‘84)

( )3

2 2 2 2 33 2

1( ) ln( ) ln 8(2 ) 2 6A c A A A

k

d kF T k m k T m mπ π π<Λ

Λ∆ ⎛ ⎞≡ + − = −⎜ ⎟

⎝ ⎠∫

23* 2'' 4

c c

c c

T T gT T

µπ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

renormalize Tc Tc’

leads to 1st order Tc*

232

5

1~ gcT eg

π

µ

* ''

c c

c

T TT−

→ ∞ as g 0

( ') / ( 0) 2.8cT T T∆ = ∆ = = for moderate values of g, Tc, µ

calculation for 2SC pairing

Page 12: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

ReconsiderationsReconsiderationsReconsiderationsMatsuura, Iida, Hatsuda, Baym, PRD 69, 074012 (‘04)

( )3

2 2 23

22 3 4

2 2

( ) ln( ) ln(2 )

4 4 23

c

A c Ak T

c cA A A

d kF T k m k

T Tm m m

π

π π π

<

≡ + −

= − +

∆ ∫

*

0c c

c

T T gT−

→ as

*2~ 0c c

c

T T gT−

− →

as

Giannakis, Hou, Ren, Rischke, hep-ph/0406031

introduced the momentum cutoff Λ = Tc~1/ξ0

0g →

0g →momentum dependence of mA (k)

(assume mA<<Tc)

CJT effective action

Page 13: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

3, Pair Fluctuations3,3, Pair Fluctuations

Precursory phenomena / “sQGP”Response functionSpecific heatTime Dependent GL equation

at Lower Densitiesat Lower Densities

Page 14: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Pair Fluctuation in Type II SCPair Fluctuation in Type II SCPair Fluctuation in Type II SCelectric conductivity

ε

ε ~10-3

enhancementabove Tc

Precursory Phenomena in Alloys•Electric Conductivity•Specific Heat•etc…

Thouless, 1960Aslamasov, Larkin, 1968Maki, 1968, …

High-Tc Superconductor(HTSC)

large fluctuations induced bystrong coupling and quasi-two dimensionality

pseudogap

1986~in quasi-two-dimensional cuprates

Page 15: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

the “sQGP”the the ““sQGPsQGP””

CSC

Hadrons

Success of hydrodynamicsat RHIC energy

J/ψ peak above Tc on lattice

= strongly coupled QGP= = sstrongly coupled trongly coupled QGPQGP

T

ω

jet quenching, etc…

elliptic flow v2

Quark matter is strongly interacting!!“Strongly interacting CSC” is also expected.

5 10 [GeV]Asakawa, Hatsuda (‘04)

Page 16: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

( )5 2 2† h.c.ex

CexH d iψ γ τ λ ψ= +∆∫ x

5 2 22 ( )( ( ))indC

C exG x i xx ψ γ τ λ ψ= −∆

Apply an external pair field ∆ex

( , )R ωΞ =k + + ⋅⋅⋅

Q =

RPA approx.: ( ) 11 ( , )C nG Q ω−−= − + k

Response Function of Pair FieldResponse Function of Pair FieldResponse Function of Pair Field

Pair field ∆ind is dynamically induced

Linear Response

total pair field: ( , ) (( , ) , )tot ind ex exRω ωω∆ = ∆ + ∆Ξ∆ = kk k

1+

Thouless Criterion

2

2

( 0)∂ Ω ∆ ==

∂∆1 1 ( ,0)CG Q−Ξ = + 0

ThermodynamicPotential

CT T=

∆Ω(∆

)

2

2

( 0)∂ Ω ∆ =∂∆

ΞR(0,0) diverges at Tc - for any second order transitions

D.J. Thouless, AoP 10,553(‘60)

Page 17: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

11( ) Im ( )ρ ω ωπ

−= − Ξk k

Spectral FunctionSpectral FunctionSpectral Function M.K., T.Koide, T.Kunihiro, Y.Nemoto, PRD 65, 091504 (2002)

int 5 2 5 2( )( )CC

C A AL G i iψ γ τ λ ψ ψ γ τ λ ψ=Nambu-Jona-Lasinio model:

ε→0(T→TC)

for k=0

As T Tc, the peak becomes sharp.The peak diverges at Tcowing to the Thouless criterion.

C

C

T TT

ε −=

The peak survives up to ~ 0.2 electric SC: ~ 10-3

Page 18: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

summation of connected diagrams

:free fermionsfreeΩ =

:collective modescol.Ω =

3

3 ln ( , )(2 ) n

n

d kT G k iωπ

= ∑∫

+L+ + +L

free col.Ω Ω Ω= +

3 3

3 32 2( , ) ( , )13

(2 ) 2 (2 )C n Cn n

nd k d kG Q k i G Q kT T iω ωπ π

⎛ ⎞= − − +⎜ ⎟

⎝ ⎠∑ ∑∫ ∫ L

( )3

31 1

3

33 ln 3 ln(2 ) (2 )

( , ) ( , )n

C nn

nGd k d kQ Ti iT k kπ

ωπ

ω− −= − =+ Ξ∑ ∑∫ ∫

# of possible collective excitation in color space.

Thermodynamic PotentialThermodynamic PotentialThermodynamic Potential2

2VdC TdT

−Ω

=

Specific Heat

We use an approximation.

Page 19: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

CV

/107

anomalous enhancement of cV above Tc.The enhancement is clearly seen from ε~0.1 (T~1.1Tc).

Cfree

Ccol

Tc ε

ε

CV

/107

free col.C C+

Tc

free (BCS approx.)from collecitve mode

Specific HeatSpecific HeatSpecific Heat2

2VdC TdT

Ω= −

2 2

2 2. .

/

/free free

col col

C Td dT

C Td dT

= − Ω

= − Ω

D.N. Voskresensky, PRC69,065209(‘04)

Cfree~ Ccol. at ε~1

M.K., et al., hep-ph/0403019

Inconsistency:

Page 20: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

2110( ,, ) )( CG C CQ Aωω ω ε−− = + ≅ +Ξ +k kk

Approximation for ΞApproximation for Approximation for ΞΞ

( , ) ( ,( ), )tot exω ωωΞ∆ = ∆kk k

1 ( 0( ), ,) totω ω− ∆ =Ξ kk effective equation to describethe pair field without external field

with (0,0) /cT T

T QA T=

= ∂ ∂ 2(0,0) /cT T

QC=

= ∂ ∂ k

0 (0,0) /cT T

QC ω=

= ∂ ∂

C

C

T TT

ε −=

( )20 / ( ) 0i t xtC C Aε∂ ∂ − ∇ + ∆ =

3

col. 313 ln (

(2,

))n

n

d kT k iωπ

−ΞΩ = ∑∫Thermodynamic pot. :

M.K., Kunihiro, in preparation

Linear response:

Notice: C0 takes a complex (not pure imaginary) value.

linear part of time dependentGL equation

Page 21: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Time-Dependent GL equationTimeTime--Dependent GL equationDependent GL equation

( )2 2 32 1/ ( / ) 0i t i t c a bκ κ ε∂ ∂ ∆ + ∂ ∂ ∆ − ∇ ∆ + ∆ + ∆ =

diffusion equationκ2 ~ 0

wave equationκ1 ~ 0

Abrahams, Tsuneto, Phys.Rev.152,416(‘66)

( )20 / ( ) 0i t xtC C Aε∂ ∂ − ∇ + ∆ =

( )2 20 ( / ) ( ) 0i t xtc c aε∂ ∂ − ∇ + ∆ =

Our result

Voskresenskysecond time derivative

cT T>%

cT T

complex C0 owing to the particle hole asymmetryleads to a damped oscillation of pair field

Page 22: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

4, Pseudogap of CSC4,4, Pseudogap of CSCM.K., T.Koide, T.Kunihiro, Y.Nemoto,hep-ph/0309026, to appear in PRD

Page 23: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

µ

ω

k

2 2sgn( ) ( )k kω µ µ= − − + ∆

2 2( )d kdk k

ε µµ−

=− + ∆

Quasi-particle energy:

2( ) dkN kd

ωω

( )N ω

ωµ

2∆

∆∆

Density of State:

The gap on the Fermi surface becomes smalleras T is increased, and it closes at Tc.

Density of State in BCS theoryDensity of State in BCS theoryDensity of State in BCS theory

Page 24: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

The origin of the pseudogap in HTSC is still controversial.

:Anomalous depression of the density of state near the Fermi surface in the normal phase.

Pseudogap

Conceptual phase diagram of HTSC cuprates

Renner et al.(‘96)

Page 25: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Yanase,Yamada(‘01), …

x: doping

T-matrix approximation

Approaches for the pseudogap in HTSC.

Analogy in BKT transition

It is, however, widely believed thatlarge fluctuation of pair-field causes the pseudogap.

Loktev et al.(‘01), …Different Origin??

Pseudogap in low density nuclear matterA.Schnell G.Roepke, P.SchuckPRL83 1926(1999)

013

ρ ρ= TC=4.34MeV

4.35 1.00254.34C

TT

= ≈

Pseudogap manifests itself!

Page 26: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

30

3( ) ( , )(2 )dN ω ρ ωπ

= ∫k k 0 01( , ) Tr Im ( , )

4RGρ ω γ ω⎡ ⎤= ⎣ ⎦k k

Density of State N(ω) 3 0N d x ψγ ψ= ∫

0

1( , )( , ) ( , )n

n n

GG i iω ω

ω =− Σ k

kk

( , )nωΣ =k + + + ⋅⋅⋅3

03

q ( , ) ( , )(2 ) n m m

m

dT Gω ω ωπ

= Ξ + +∑∫ k q q≡, n mi iω ω+ +k q

, miωq

10 0( , ) ( )n nG i iω ω µ γ γ−

⎡ ⎤= + − ⋅ =⎣ ⎦k k v:free progagator

T-matrix Approximation

Page 27: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

The pseudogap survives up to ε =0.05~0.1 ( 5~10% above TC ).

Numerical Result : Density of StateNumerical Result : Density of StateNumerical Result : Density of State

( )( )free

NN

ωω

Page 28: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Dispersion RelationDispersion RelationDispersion Relation µ= 400 MeV, ε=0.01

pω∂

∂:increases ( ) pN ω

ω∂∂

:decrease

ω

p

∂∂

ω [MeV]

kF=400MeV

affects the dispersion relation ω =ω−(p).

Rapid increase around ω =0

Re ( , ) 0ω µ ω−− + − Σ =p psolution

Re Σ−

Page 29: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

quasi-particle peak of anti-particle, ω = −k−µ

quasi-particle peak,ω =ω−(k)~ k−µ

Fermi energy

Quasi-particle peak has a depression around the Fermi energy.

µ= 400 MeVε=0.01

ω−µ =−400MeV 0

kF=400MeVk

position of peaks

quasi-particle peaksat ω =ω−(k)~ k−µ and ω =−k−µ.

1-Particle Spectral Function11--Particle Spectral FunctionParticle Spectral Function

,00

,k µ− −k

: collective mode

: on-shell

Page 30: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

SummarySummarySummaryFluctuations of Color Superconductivity

high density type Igauge field fluctuations dominatemake the phase transition first order

More observables !?

See You Again in KOCHI !

low density type IIpair fluctuations dominatecause various precursory phenomena above Tc

recently reexamined

They can be experimental observables!

Page 31: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

TDGL eq. for metallic SC

2 3 0'c

c

T Tit T

c b a a−∂Ψ − ∇ Ψ + Ψ + Ψ =

2c

c

T TT

A BC C

ω −= − − k

2c

c

T TT

a bc c

ω −= − − k

Particle-hole asymmetry in CSC caused finite real part of ω.

Damping Behavior of Collective ModeColor Superconductivity

2 0c

c

T TC B AT

ω −+ + =k

C :complex c :pure imaginary

is NOT pure imaginary.

Damped Oscillation

is pure imaginary.

Overdampingmode

ω0 ω0

Page 32: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

( )5 2 2† h.c.ex

CexH d iψ γ τ λ ψ= +∆∫ x

expectation value of induced pair field:external field:

[ ]0

5 2 2( ) ( ) ( ), ( , )tC

exex tx i x i ds H s O tψ γ τ λ ψ = ∫ x

5 2 22 ( )( ) ( '( ,( )) ' )'indC

C x

Rexe

G x i x Dd x x xtx dψ γ τ λ ψ∆ ∆= − = ∫ ∫ x

Linear Response

5 2 2 5 2 22 ( ) ( ), (0) (0) (, ) )( CR CCG x i xD t i tψ γ τ λ ψ ψ γ τ λ ψ θ⎡ ⎤= − ⎣ ⎦x

Retarded Green function

† †(( ) , ) ( )ind n ex nnDω ωω∆ ∆= kk kFourier transformationwith Matsubara formalism

( , )nD ω =k + + ⋅⋅⋅( , )nQ ω =k

RPA approx.:

=( , )

1 ( , )C n

C n

G QG Q

ωω

−+

kk

with

Response Function of Pair Field

Page 33: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Model

2 25

5 2 5 2

( ) ( )

( )( )

S

CCC A A

L i G i

G i i

ψ γ ψ ψψ ψ γ ψ

ψ γ τ λ ψ ψ γ τ λ ψ

⎡ ⎤= ⋅∂ + +⎣ ⎦

+

τ

Nambu-Jona-Lasinio model (2-flavor,chiral limit):

τ:SU(2)F Pauli matricesλ:SU(3)C Gell-Mann matricesC :charge conjugation operator

Aλ AλIH =

3( 250MeV) , 93MeVfπψψ = − =so as to reproduce

25.01GeV650MeV

/ 0.62

S

C S

G

G G

−=Λ =

=

Parameters:

Klevansky(1992), T.M.Schwarz et al.(1999)

M.K. et al., (2002)

2SC (not CFL) is expected at low µ and near Tc.We neglect the gluon degree of freedom.

Notice:

Page 34: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Numerical Check for µ=400MeV (Tc=40.04MeV)

Our effective equation well reproduces the full calculation1.3 , 100MeVcT T k≈ ≈up to

covers the region where clear collective mode appears.

Re ω(k) Im ω(k)

2A BC C

εω = − − k

1 ( , ) 0CG Q ω− + =k C

C

T TT

ε −=

ω

effective equationfull calculation :ω

Page 35: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

0 0 0 0 0 0ˆ( , ) ( , ) ( , ) ( , )V Sp p p pγ γΣ = Σ − Σ ⋅ + Σp p p p prΣ has spinor indices:

0 00

0 0 0

1( , )G pp p p

γ γµγ µ µ

− +

− +

= = ++ − Σ + − − Σ + Σ

Λ Λ+ −

pp p

012

pγ γΛ

± ⋅=m

v v

0 VΣ = Σ Σm m

Decomposition of G

:projection op.

=0 in chiral limit

where,

( )

( )

030 0

3 0

( , )1( , ) tanh coth2 (2 ) 2 2

Rni qd dp

p i T Tµωω ωγ γ

π π ω µ η⎡ − ⎤Ξ + +

Σ = − − ⋅ −⎢ ⎥− − + − ⎣ ⎦+ → −

∫ ∫qk qqp q q

q

q q

r

( )0 0 0( , ) ( , )p pγ −− ++Λ + Σ Λ= Σ p p

:self-energy for the positve and negative energy particles.

positive energy part

Page 36: 京大基研 北沢正清 - riise.hiroshima-u.ac.jp · 1, Introduction 2, Gauge Fluctuations in Type I CSC ... gauge field: – coherence length ... zEstimation by Bailin & Love zRecent

Im Σ− (ω,k)

quasi-particle peak = –kpeak of Im =k–

,00

,k µ− −k

: collective mode

: on-shell

ω

|Im Σ−| has peaks around ω =µ−k, which is found to be the hole energy.

|Im Σ-|

k

coincide at fermi surface. R

e Σ −

(ω,k

)

= –k

µ

-µ0

ω

kPeak of |Im Σ− |

kF

C

C

T TT

ε −=