- rainbow international school ugandarainbowinternationalschool.com/wp-content/uploads/2016/... ·...

96
This document consists of 21 printed pages and 3 blank pages. DC (NF/CGW) 12642/7 © UCLES 2009 [Turn over UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. * 09385 24 3 1 5 * PHYSICS 9702/41 Paper 4 A2 Structured Questions October/November 2009 1 hour 45 minutes Candidates answer on the Question Paper. No Additional Materials are required. For Examiner’s Use 1 2 3 4 5 6 7 8 9 10 11 12 Total www.XtremePapers.com

Upload: phamkhuong

Post on 13-Apr-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

This document consists of 21 printed pages and 3 blank pages.

DC (NF/CGW) 12642/7© UCLES 2009 [Turn over

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONSGeneral Certificate of Education Advanced Level

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a soft pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question.

*0938524315*

PHYSICS 9702/41

Paper 4 A2 Structured Questions October/November 2009

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

For Examiner’s Use

1

2

3

4

5

6

7

8

9

10

11

12

Total

www.XtremePapers.com

2

9702/41/O/N/09© UCLES 2009

Data

speed of light in free space, c = 3.00 × 108 m s–1

permeability of free space, μ0 = 4π × 10–7 H m–1

permittivity of free space, ε0 = 8.85 × 10–12 F m–1

elementary charge, e = 1.60 × 10–19 C

the Planck constant, h = 6.63 × 10–34 J s

unified atomic mass constant, u = 1.66 × 10–27 kg

rest mass of electron, me = 9.11 × 10–31 kg

rest mass of proton, mp = 1.67 × 10–27 kg

molar gas constant, R = 8.31 J K–1 mol–1

the Avogadro constant, NA = 6.02 × 1023 mol–1

the Boltzmann constant, k = 1.38 × 10–23 J K–1

gravitational constant, G = 6.67 × 10–11 N m2 kg–2

acceleration of free fall, g = 9.81 m s–2

3

9702/41/O/N/09© UCLES 2009 [Turn over

Formulae

uniformly accelerated motion, s = ut + 12 at 2

v2 = u2 + 2as

work done on/by a gas, W = p�V

gravitational potential, φ = – Gmr

hydrostatic pressure, p = ρgh

pressure of an ideal gas, p = 13

NmV

<c2>

simple harmonic motion, a = – ω2x

velocity of particle in s.h.m., v = v0 cos ωt

v = ± ω √⎯ ⎯ ⎯ ⎯ ⎯ ⎯ (x02 – x 2)

electric potential, V = Q4πε0r

capacitors in series, 1/C = 1/C1 + 1/C2 + . . .

capacitors in parallel, C = C1 + C2 + . . .

energy of charged capacitor, W = 12 QV

resistors in series, R = R1 + R2 + . . .

resistors in parallel, 1/R = 1/R1 + 1/R2 + . . .

alternating current/voltage, x = x0 sin ωt

radioactive decay, x = x0 exp(– λt )

decay constant, λ = 0.693

t 12

4

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

Section A

Answer all the questions in the spaces provided.

1 (a) State Newton’s law of gravitation.

..........................................................................................................................................

..........................................................................................................................................

.................................................................................................................................... [2]

(b) The Earth may be considered to be a uniform sphere of radius R equal to 6.4 × 106 m.

A satellite is in a geostationary orbit.

(i) Describe what is meant by a geostationary orbit.

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [3]

(ii) Show that the radius x of the geostationary orbit is given by the expression

gR2 = x3ω2

where g is the acceleration of free fall at the Earth’s surface and ω is the angular speed of the satellite about the centre of the Earth.

[3]

(iii) Determine the radius x of the geostationary orbit.

radius = ........................................... m [3]

5

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

2 An ideal gas occupies a container of volume 4.5 × 103 cm3 at a pressure of 2.5 × 105 Pa and a temperature of 290 K.

(a) Show that the number of atoms of gas in the container is 2.8 × 1023.

[2]

(b) Atoms of a real gas each have a diameter of 1.2 × 10–10 m.

(i) Estimate the volume occupied by 2.8 × 1023 atoms of this gas.

volume = ......................................... m3 [2]

(ii) By reference to your answer in (i), suggest whether the real gas does approximate to an ideal gas.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [2]

6

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

3 (a) A student states, quite wrongly, that temperature measures the amount of thermal energy (heat) in a body.

State and explain two observations that show why this statement is incorrect.

1. .....................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

2. .....................................................................................................................................

..........................................................................................................................................

.......................................................................................................................................... [4]

(b) A thermometer and an electrical heater are inserted into holes in an aluminium block of mass 960 g, as shown in Fig. 3.1.

thermometerconnections toelectrical circuit

aluminiumblock

Fig. 3.1

7

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

The power rating of the heater is 54 W.

The heater is switched on and readings of the temperature of the block are taken at regular time intervals. When the block reaches a constant temperature, the heater is switched off and then further temperature readings are taken. The variation with time t of the temperature θ of the block is shown in Fig. 3.2.

0 t

θ

Fig. 3.2

(i) Suggest why the rate of rise of temperature of the block decreases to zero.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [2]

(ii) After the heater has been switched off, the maximum rate of fall of temperature is 3.7 K per minute.

Estimate the specific heat capacity of aluminium.

specific heat capacity = .............................. J kg–1 K–1 [3]

8

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

4 The variation with time t of the displacement x of the cone of a loudspeaker is shown in Fig. 4.1.

0

0.2

0.3x / mm

0.1

– 0.2

– 0.1

– 0.3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60t / ms

Fig. 4.1

(a) Use Fig. 4.1 to determine, for these oscillations,

(i) the amplitude,

amplitude = ........................................ mm [1]

(ii) the frequency.

frequency = .......................................... Hz [2]

(b) State two times at which

(i) the speed of the cone is maximum,

time ............................... ms and time ............................... ms [1]

(ii) the acceleration of the cone is maximum.

time ............................... ms and time ............................... ms [1]

9

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

(c) The effective mass of the cone is 2.5 g.

Use your answers in (a) to determine the maximum kinetic energy of the cone.

kinetic energy = ............................................ J [3]

(d) The loudspeaker must be designed so that resonance of the cone is avoided.

(i) State what is meant by resonance.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [2]

(ii) State and briefly explain one other situation in which resonance should be avoided.

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

................................................................................................................. [2]

10

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

5 (a) Define electric potential at a point.

..........................................................................................................................................

..........................................................................................................................................

.................................................................................................................................... [2]

(b) An α-particle is emitted from a radioactive source with kinetic energy of 4.8 MeV.

The α-particle travels in a vacuum directly towards a gold (19779Au) nucleus, as illustrated

in Fig. 5.1.

path ofα - particle

goldnucleus

Fig. 5.1

The α-particle and the gold nucleus may be considered to be point charges in an isolated system.

(i) Explain why, as the α-particle approaches the gold nucleus, it comes to rest.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [2]

(ii) For the closest approach of the α-particle to the gold nucleus determine

1. their separation,

separation = ........................................... m [3]

11

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

2. the magnitude of the force on the α-particle.

force = .......................................... N [2]

12

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

6 The current in a long, straight vertical wire is in the direction XY, as shown in Fig. 6.1.

X

Y

D C

A B

Fig. 6.1

(a) On Fig. 6.1, sketch the pattern of the magnetic flux in the horizontal plane ABCD due to the current-carrying wire. Draw at least four flux lines. [3]

(b) The current-carrying wire is within the Earth’s magnetic field. As a result, the pattern drawn in Fig. 6.1 is superposed with the horizontal component of the Earth’s magnetic field.

Fig. 6.2 shows a plan view of the plane ABCD with the current in the wire coming out of the plane.

D C

A

magnetic fieldof Earth

current out ofplane ABCD

B

Fig. 6.2

The horizontal component of the Earth’s magnetic field is also shown.

13

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

(i) On Fig. 6.2, mark with the letter P a point where the magnetic field due to the current-carrying wire could be equal and opposite to that of the Earth. [1]

(ii) For a long, straight wire carrying current I, the magnetic flux density B at distance r from the centre of the wire is given by the expression

B = μ0 I2πr

where μ0 is the permeability of free space.

The point P in (i) is found to be 1.9 cm from the centre of the wire for a current of 1.7 A.

Calculate a value for the horizontal component of the Earth’s magnetic flux density.

flux density = ............................................ T [2]

(c) The current in the wire in (b)(ii) is increased. The point P is now found to be 2.8 cm from the wire.

Determine the new current in the wire.

current = ............................................ A [2]

14

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

7 A sinusoidal alternating voltage is to be rectified.

(a) Suggest one advantage of full-wave rectification as compared with half-wave rectification.

..........................................................................................................................................

.................................................................................................................................... [1]

(b) The rectification is produced using the circuit of Fig. 7.1.

A

B R

Fig. 7.1

All the diodes may be considered to be ideal.

The variation with time t of the alternating voltage applied to the circuit is shown in Fig. 7.2 and in Fig. 7.3.

voltage

00 t

Fig. 7.2

voltage

00 t

Fig. 7.3

15

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

(i) On the axes of Fig. 7.2, draw a graph to show the variation with time t of the potential difference across diode A. [1]

(ii) On the axes of Fig. 7.3, draw a graph to show the variation with time t of the potential difference across diode B. [1]

(c) (i) On Fig. 7.1, draw the symbol for a capacitor, connected into the circuit so as to provide smoothing. [1]

(ii) Fig. 7.4 shows the variation with time t of the smoothed potential difference across the resistor R in Fig. 7.1.

potentialdifference

t

Fig. 7.4

1. State how the amount of smoothing may be increased.

..................................................................................................................................

............................................................................................................................ [1]

2. On Fig. 7.4, draw the variation with time t of the potential difference across resistor R for increased smoothing. [2]

16

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

8 The controlled reaction between deuterium (21 H) and tritium (3

1 H) has involved ongoing research for many years. The reaction may be summarised as

21 H + 3

1 H 42He + 1

0 n + Q

where Q = 17.7 MeV.

Binding energies per nucleon are shown in Fig. 8.1.

binding energy per nucleon/ MeV

21 H

10 n

42He

1.12

7.07

Fig. 8.1

(a) Suggest why binding energy per nucleon for the neutron is not quoted.

..........................................................................................................................................

.................................................................................................................................... [1]

(b) Calculate the mass defect, in kg, of a helium 42He nucleus.

mass defect = .......................................... kg [3]

(c) (i) State the name of the type of reaction illustrated by this nuclear equation.

............................................................................................................................ [1]

(ii) Determine the binding energy per nucleon, in MeV, of tritium (31 H).

binding energy per nucleon = ....................................... MeV [3]

17

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

Section B

Answer all the questions in the spaces provided.

9 A metal wire strain gauge is firmly fixed across a crack in a wall, as shown in Fig. 9.1, so that the growth of the crack may be monitored.

straingauge

crack

Fig. 9.1

(a) Explain why, as the crack becomes wider, the resistance of the strain gauge increases.

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

.................................................................................................................................... [3]

(b) The strain gauge has an initial resistance of 143.0 Ω and, after being fixed in position across the crack for several weeks, the resistance is found to be 146.2 Ω.

The change in the area of cross-section of the strain gauge wire is negligible.

Calculate the percentage increase in the width of the crack. Explain your working.

increase = ........................................... % [3]

18

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

10 The circuit of Fig. 10.1 may be used to indicate temperature change.

P P R–5V

+5V

G

T

+2 V

P

+

Fig. 10.1

The resistance of the thermistor T at 16 °C is 2100 Ω and at 18 °C, the resistance is 1900 Ω. Each resistor P has a resistance of 2000 Ω.

Determine the change in the states of the light-emitting diodes R and G as the temperature of the thermistor changes from 16 °C to 18 °C.

.................................................................................................................................................

........................................................................................................................................... [4]

19

9702/41/O/N/09© UCLES 2009 [Turn over

ForExaminer’s

Use

11 Outline briefly the main principles of the use of magnetic resonance to obtain diagnostic information about internal body structures.

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

.................................................................................................................................................

........................................................................................................................................... [6]

20

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

12 (a) State and explain two advantages of the transmission of information in digital, rather than analogue, form.

1. .....................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

2. ......................................................................................................................................

..........................................................................................................................................

.......................................................................................................................................... [4]

(b) Convert

(i) the decimal number 13 to a four-bit digital number,

............................................................................................................................ [1]

(ii) the digital number 0101 to a decimal number.

............................................................................................................................ [1]

(c) An analogue signal is to be transmitted digitally. A block diagram for part of the transmission system is shown in Fig. 12.1.

ADCanalogue

signalrecoveredanalogue

signal

parallelto

serialconverter

block X

transmission

block Y

Fig. 12.1

(i) Complete Fig. 12.1 by labelling block X and block Y. [2]

(ii) State the purpose of the parallel-to-serial converter.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [2]

21

9702/41/O/N/09© UCLES 2009

ForExaminer’s

Use

(d) The original analogue signal is shown in Fig. 12.2. The recovered signal after transmission is shown in Fig. 12.3.

signal

00 time

recoveredsignal

00 time

Fig. 12.2 Fig. 12.3

Suggest and explain two ways in which the reproduction of the input signal may be improved.

1. ......................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

2. ......................................................................................................................................

..........................................................................................................................................

.......................................................................................................................................... [4]

22

9702/41/O/N/09

BLANK PAGE

23

9702/41/O/N/09

BLANK PAGE

24

9702/41/O/N/09

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

This document consists of 23 printed pages and 1 blank page.

DC (AC/SW) 23675/6© UCLES 2010 [Turn over

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONSGeneral Certificate of Education Advanced Level

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a soft pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question.

*8365187983*

PHYSICS 9702/43

Paper 4 A2 Structured Questions October/November 2010

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

For Examiner’s Use

1

2

3

4

5

6

7

8

9

10

11

12

Total

2

9702/43/O/N/10© UCLES 2010

Data

speed of light in free space, c = 3.00 × 108 m s–1

permeability of free space, μ0 = 4π × 10–7 H m–1

permittivity of free space, ε0 = 8.85 × 10–12 F m–1

elementary charge, e = 1.60 × 10–19 C

the Planck constant, h = 6.63 × 10–34 J s

unified atomic mass constant, u = 1.66 × 10–27 kg

rest mass of electron, me = 9.11 × 10–31 kg

rest mass of proton, mp = 1.67 × 10–27 kg

molar gas constant, R = 8.31 J K–1 mol–1

the Avogadro constant, NA = 6.02 × 1023 mol–1

the Boltzmann constant, k = 1.38 × 10–23 J K–1

gravitational constant, G = 6.67 × 10–11 N m2 kg–2

acceleration of free fall, g = 9.81 m s–2

3

9702/43/O/N/10© UCLES 2010 [Turn over

Formulae

uniformly accelerated motion, s = ut + 12 at 2

v2 = u2 + 2as

work done on/by a gas, W = p�V

gravitational potential, φ = – Gmr

hydrostatic pressure, p = ρgh

pressure of an ideal gas, p = 13

NmV

<c2>

simple harmonic motion, a = – ω2x

velocity of particle in s.h.m., v = v0 cos ωt

v = ± ω √⎯ ⎯ ⎯ ⎯ ⎯ ⎯ (x02 – x 2)

electric potential, V = Q4πε0r

capacitors in series, 1/C = 1/C1 + 1/C2 + . . .

capacitors in parallel, C = C1 + C2 + . . .

energy of charged capacitor, W = 12 QV

resistors in series, R = R1 + R2 + . . .

resistors in parallel, 1/R = 1/R1 + 1/R2 + . . .

alternating current/voltage, x = x0 sin ωt

radioactive decay, x = x0 exp(– λt )

decay constant, λ = 0.693

t 12

4

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

Section A

Answer all the questions in the spaces provided.

1 A planet of mass m is in a circular orbit of radius r about the Sun of mass M, as illustrated in Fig. 1.1.

Sunmass M

planet

r

mass m

Fig. 1.1

The magnitude of the angular velocity and the period of revolution of the planet about the Sun are x and T respectively.

(a) State

(i) what is meant by angular velocity,

..................................................................................................................................

.................................................................................................................................. .............................................................................................................................. [2]

(ii) the relation between x and T.

.............................................................................................................................. [1]

(b) Show that, for a planet in a circular orbit of radius r, the period T of the orbit is given by the expression

T 2 = cr 3

where c is a constant. Explain your working.

[4]

5

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

(c) Data for the planets Venus and Neptune are given in Fig. 1.2.

planet r / 108 km T / years

VenusNeptune

1.0845.0

0.615

Fig. 1.2

Assume that the orbits of both planets are circular.

(i) Use the expression in (b) to calculate the value of T for Neptune.

T = ....................................... years [2]

(ii) Determine the linear speed of Venus in its orbit.

speed = ..................................... km s–1 [2]

6

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

2 (a) State the basic assumptions of the kinetic theory of gases.

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

.......................................................................................................................................... ...................................................................................................................................... [4]

(b) Use equations for the pressure of an ideal gas to deduce that the average translational kinetic energy <EK> of a molecule of an ideal gas is given by the expression

<EK> = T

where R is the molar gas constant, NA is the Avogadro constant and T is the thermodynamic temperature of the gas.

[3]

(c) A deuterium nucleus 21H and a proton collide. A nuclear reaction occurs, represented by the equation

21H + 11p 32He + c.

(i) State and explain whether the reaction represents nuclear fission or nuclear fusion.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................. [2]

32

R NA

7

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

(ii) For the reaction to occur, the minimum total kinetic energy of the deuterium nucleus and the proton is 2.4 × 10–14 J.

Assuming that a sample of a mixture of deuterium nuclei and protons behaves as an ideal gas, calculate the temperature of the sample for this reaction to occur.

temperature = ............................................. K [3]

(iii) Suggest why the assumption made in (ii) may not be valid.

..................................................................................................................................

.............................................................................................................................. [1]

8

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

3 A cylinder and piston, used in a car engine, are illustrated in Fig. 3.1.

C

A

D

cylinder

piston

B

Fig. 3.1

The vertical motion of the piston in the cylinder is assumed to be simple harmonic. The top surface of the piston is at AB when it is at its lowest position; it is at CD when at its

highest position, as marked in Fig. 3.1.

(a) The displacement d of the piston may be represented by the equation

d = – 4.0 cos(220t )

where d is measured in centimetres.

(i) State the distance between the lowest position AB and the highest position CD of the top surface of the piston.

distance = .......................................... cm [1]

9

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

(ii) Determine the number of oscillations made per second by the piston.

number = ................................................ [2]

(iii) On Fig. 3.1, draw a line to represent the top surface of the piston in the position where the speed of the piston is maximum. [1]

(iv) Calculate the maximum speed of the piston.

speed = ..................................... cm s–1 [2]

10

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

(b) The engine of a car has several cylinders. Three of these cylinders are shown in Fig. 3.2.

C

A

D

B

X Y Z

Fig. 3.2

X is the same cylinder and piston as in Fig. 3.1. Y and Z are two further cylinders, with the lowest and the highest positions of the top

surface of each piston indicated. The pistons in the cylinders each have the same frequency of oscillation, but they are

not in phase. At a particular instant in time, the position of the top of the piston in cylinder X is as

shown.

(i) In cylinder Y, the oscillations of the piston lead those of the piston in cylinder X by a phase angle of 120° ( 2

3p rad).

Complete the diagram of cylinder Y, for this instant, by drawing

1. a line to show the top surface of the piston, [1]

2. an arrow to show the direction of movement of the piston. [1]

11

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

(ii) In cylinder Z, the oscillations of the piston lead those of the piston in cylinder X by a phase angle of 240° ( 4

3p rad).

Complete the diagram of cylinder Z, for this instant, by drawing

1. a line to show the top surface of the piston, [1]

2. an arrow to show the direction of movement of the piston. [1]

(iii) For the piston in cylinder Y, calculate its speed for this instant.

speed = ..................................... cm s–1 [2]

12

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

4 (a) (i) State what is meant by electric potential at a point.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................. [2]

(ii) Define capacitance.

..................................................................................................................................

............................................................................................................................. [1]

(b) The variation of the potential V of an isolated metal sphere with charge Q on its surface is shown in Fig. 4.1.

00 0.5 1.0 1.5 2.0 2.5 3.0

50

100

150

V / kV

Q / µC

200

Fig. 4.1

13

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

An isolated metal sphere has capacitance.

Use Fig. 4.1 to determine

(i) the capacitance of the sphere,

capacitance = ............................................. F [2]

(ii) the electric potential energy stored on the sphere when charged to a potential of 150 kV.

energy = ............................................. J [2]

(c) A spark reduces the potential of the sphere from 150 kV to 75 kV. Calculate the energy lost from the sphere.

energy = ............................................. J [2]

14

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

5 The poles of a horseshoe magnet measure 5.0 cm × 2.4 cm, as shown in Fig. 5.1.

A

pole pieceof magnet

direction ofmovement

of wire

copper wire

5.0 cm

2.4 cm

Fig. 5.1 The uniform magnetic flux density between the poles of the magnet is 89 mT. Outside the

region of the poles, the magnetic flux density is zero. A stiff copper wire is connected to a sensitive ammeter of resistance 0.12 Ω. A student moves

the wire at a constant speed of 1.8 m s–1 between the poles in a direction parallel to the faces of the poles.

(a) Calculate the magnetic flux between the poles of the magnet.

magnetic flux = .......................................... Wb [2]

(b) (i) Use your answer in (a) to determine, for the wire moving between the poles of the magnet, the e.m.f. induced in the wire.

e.m.f. = ............................................. V [3]

15

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

(ii) Show that the reading on the ammeter is approximately 70 mA.

[1]

(c) By reference to Lenz’s law, a force acts on the wire to oppose the motion of the wire. The student who moved the wire between the poles of the magnet claims not to have

felt this force. Explain quantitatively a reason for this claim.

..........................................................................................................................................

..................................................................................................................................... [3]

16

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

6 The variation with time t of the current I in a resistor is shown in Fig. 6.1.

0

I

t

Fig. 6.1

The variation of the current with time is sinusoidal.

(a) Explain why, although the current is not in one direction only, power is converted in the resistor.

..........................................................................................................................................

..........................................................................................................................................

..................................................................................................................................... [2]

(b) Using the relation between root-mean-square (r.m.s.) current and peak current, deduce the value of the ratio

average power converted in the resistore .

maximum power converted in the resistor

ratio = ................................................ [3]

17

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

7 Electrons are moving through a vacuum in a narrow beam. The electrons have speed v. The electrons enter a region of uniform magnetic field of flux density B. Initially, the electrons

are travelling at a right-angle to the magnetic field. The path of a single electron is shown in Fig. 7.1.

electron

speed v

region of magnetic fieldflux density B

Fig. 7.1

The electrons follow a curved path in the magnetic field.

A uniform electric field of field strength E is now applied in the same region as the magnetic field.

The electrons pass undeviated through the region of the two fields. Gravitational effects may be neglected.

(a) Derive a relation between v, E and B for the electrons not to be deflected. Explain your working.

..........................................................................................................................................

..........................................................................................................................................

.......................................................................................................................................... ..........................................................................................................................................

..................................................................................................................................... [3]

(b) An α-particle has speed v and approaches the region of the two fields along the same path as the electron. Describe and explain the path of the α-particle as it passes through the region of the two fields.

.......................................................................................................................................... ..........................................................................................................................................

..................................................................................................................................... [2]

18

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

8 (a) By reference to the photoelectric effect, state what is meant by the threshold frequency.

..........................................................................................................................................

..........................................................................................................................................

..................................................................................................................................... [2]

(b) The surface of a zinc plate has a work function of 5.8 × 10–19 J. In a particular laboratory experiment, ultraviolet light of wavelength 120 nm is incident

on the zinc plate. A photoelectric current I is detected. In order to view the apparatus more clearly, a second lamp emitting light of wavelength

450 nm is switched on. No change is made to the ultraviolet lamp. Using appropriate calculations, state and explain the effect on the photoelectric current

of switching on this second lamp.

..........................................................................................................................................

..................................................................................................................................... [4]

19

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

Section B

Answer all the questions in the spaces provided.

9 (a) (i) State, with reference to X-ray images, what is meant by sharpness.

..................................................................................................................................

.............................................................................................................................. [1]

(ii) Describe briefly two factors that affect the sharpness of an X-ray image.

1. ...............................................................................................................................

..................................................................................................................................

2. ...............................................................................................................................

.................................................................................................................................. [3]

(b) An X-ray image is taken of the skull of a patient. Another patient has a CT scan of his head.

By reference to the formation of the image in each case, suggest why the exposure to radiation differs between the two imaging techniques.

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

...................................................................................................................................... [4]

20

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

10 (a) State three properties of an ideal operational amplifier (op-amp).

1. ......................................................................................................................................

2. ......................................................................................................................................

3. ...................................................................................................................................... [3]

(b) A circuit incorporating an ideal op-amp is to be used to indicate whether a door is open or closed.

Resistors, each of resistance R, are connected to the inputs of the op-amp, as shown in Fig. 10.1.

R

R

RRS

–9 V

+9 V

+3 V

+

R

Fig. 10.1

The switch S is attached to the door so that, when the door is open, the switch is open. The switch closes when the door is closed.

21

9702/43/O/N/10© UCLES 2010 [Turn over

ForExaminer’s

Use

(i) Explain why the polarity of the output of the op-amp changes when the switch closes.

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

.............................................................................................................................. [3]

(ii) A red light-emitting diode (LED) is to be used to indicate when the door is open. A green LED is to indicate when the door is closed.

On Fig. 10.1,

1. draw symbols for the LEDs to show how they are connected to the output of the op-amp, [1]

2. identify the green LED with the letter G. [1]

Please turn over for Question 11.

22

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

11 The linear attenuation (absorption) coefficient µ for X-ray radiation in bone, fat and muscle is given in Fig. 11.1.

µ / cm–1

bonefatmuscle

2.90.900.95

Fig. 11.1

(a) A parallel X-ray beam of intensity I0 is incident either on some bone or on some muscle.

The emergent beam has intensity I.

Calculate the ratio II0

for a thickness of (i) 1.5 cm of bone,

ratio = ................................................ [2]

(ii) 4.6 cm of muscle.

ratio = ................................................ [1]

(b) Suggest why, on an X-ray plate, the contrast between bone and muscle is much greater than that between fat and muscle.

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

...................................................................................................................................... [3]

23

9702/43/O/N/10© UCLES 2010

ForExaminer’s

Use

12 (a) Data may be transmitted as an analogue signal or as a digital signal.

(i) Explain what is meant by

1. an analogue signal,

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

2. a digital signal.

..................................................................................................................................

..................................................................................................................................

.................................................................................................................................. [3] (ii) State two advantages of the transmission of data in digital form.

1. ...............................................................................................................................

..................................................................................................................................

2. ...............................................................................................................................

.................................................................................................................................. [2]

(b) The block diagram of Fig. 12.1 represents a system for the digital transmission of analogue data.

analoguesignal

ADCmulti-channel cable

DAC output

Fig. 12.1

(i) Describe the function of the ADC (analogue-to-digital converter).

..................................................................................................................................

..................................................................................................................................

.............................................................................................................................. [2]

(ii) Suggest why the transmission cable has a number of channels.

..................................................................................................................................

............................................................................................................................. [1]

24

9702/43/O/N/10© UCLES 2010

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

This document consists of 23 printed pages and 1 blank page.

DC (LK/CGW) 109959© UCLES 2015 [Turn over

Cambridge International ExaminationsCambridge International Advanced Level

*4388315613*

PHYSICS 9702/43

Paper 4 A2 Structured Questions May/June 2015

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question.

For Examiner’s Use

1

2

3

4

5

6

7

8

9

10

11

12

13

Total

2

9702/43/M/J/15© UCLES 2015

Data

speed of light in free space, c = 3.00 × 108 m s–1

permeability of free space, μ0 = 4π × 10–7 H m–1

permittivity of free space, ε0 = 8.85 × 10–12 F m–1

(1

4πε0 = 8.99 × 109 m F–1)

elementary charge, e = 1.60 × 10–19 C

the Planck constant, h = 6.63 × 10–34 J s

unified atomic mass constant, u = 1.66 × 10–27 kg

rest mass of electron, me = 9.11 × 10–31 kg

rest mass of proton, mp = 1.67 × 10–27 kg

molar gas constant, R = 8.31 J K–1 mol–1

the Avogadro constant, NA = 6.02 × 1023 mol–1

the Boltzmann constant, k = 1.38 × 10–23 J K–1

gravitational constant, G = 6.67 × 10–11 N m2 kg–2

acceleration of free fall, g = 9.81 m s–2

3

9702/43/M/J/15© UCLES 2015 [Turn over

Formulae

uniformly accelerated motion, s = ut + �� at 2

v2 = u2 + 2as

work done on/by a gas, W = pΔV

gravitational potential, φ = – Gm

r

hydrostatic pressure, p = ρgh

pressure of an ideal gas, p = �� NmV

<c2>

simple harmonic motion, a = – ω 2x

velocity of particle in s.h.m., v = v0 cos ωt

v = ± ω √⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ (x02 – x2)

electric potential, V = Q4πε0r

capacitors in series, 1/C = 1/C1 + 1/C2 + . . .

capacitors in parallel, C = C1 + C2 + . . .

energy of charged capacitor, W = �� QV

resistors in series, R = R1 + R2 + . . .

resistors in parallel, 1/R = 1/R1 + 1/R2 + . . .

alternating current/voltage, x = x0 sin ω t

radioactive decay, x = x0 exp(–λt )

decay constant, λ = 0.693

t ��

4

9702/43/M/J/15© UCLES 2015

Section A

Answer all the questions in the spaces provided.

1 (a) State Newton’s law of gravitation.

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

(b) The planet Neptune has eight moons (satellites). Each moon orbits Neptune in a circular path of radius r with a period T.

Assuming that Neptune and each moon behave as point masses, show that r and T are related by the expression

GMN = 4π2r3

T2

where G is the gravitational constant and MN is the mass of Neptune.

[3]

(c) Data for the moon Triton that orbits Neptune and for the moon Oberon that orbits the planet Uranus are given in Fig. 1.1.

planet moon radius of orbitr /105 km

period of orbit T / days

NeptuneUranus

TritonOberon

3.555.83

5.913.5

Fig. 1.1

5

9702/43/M/J/15© UCLES 2015 [Turn over

Use the expression in (b) to determine the ratio

mass of Neptunemass of Uranus

.

ratio = ......................................................... [3]

6

9702/43/M/J/15© UCLES 2015

2 (a) State what is meant by internal energy.

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

(b) The variation with volume V of the pressure p of an ideal gas as it undergoes a cycle ABCA of changes is shown in Fig. 2.1.

1.0

1.5

3.0 4.0 5.0 6.0 7.0 8.0

2.0

2.5

3.0

p / 105 Pa

V / 10 m3

3.5

4.0

A C

B

Fig. 2.1

The temperature of the gas at A is 290 K. The temperature at B is 870 K.

7

9702/43/M/J/15© UCLES 2015 [Turn over

Determine

(i) the amount, in mol, of gas,

amount = .................................................. mol [2]

(ii) the temperature of the gas at C.

temperature = ..................................................... K [2]

(c) Explain why the change from C to A involves external work and a change in internal energy.

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

8

9702/43/M/J/15© UCLES 2015

3 (a) Define specific latent heat.

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

(b) An electrical heater is immersed in some melting ice that is contained in a funnel, as shown in Fig. 3.1.

heatermelting

ice

water

Fig. 3.1

The heater is switched on and, when the ice is melting at a constant rate, the mass m of ice melted in 5.0 minutes is noted, together with the power P of the heater. The power P of the heater is then increased. A new reading for the mass m of ice melted in 5.0 minutes is recorded when the ice is melting at a constant rate.

Data for the power P and the mass m are shown in Fig. 3.2.

power of heater P / W

mass m melted in 5.0 minutes / g

mass m melted per second / g s−1

70

110

78

114

.................................

.................................

Fig. 3.2

9

9702/43/M/J/15© UCLES 2015 [Turn over

(i) Complete Fig. 3.2 to determine the mass melted per second for each power of the heater. [2]

(ii) Use the data in the completed Fig. 3.2 to determine

1. a value for the specific latent heat of fusion L of ice,

L = ................................................ J g−1 [3]

2. the rate h of thermal energy gained by the ice from the surroundings.

h = .................................................... W [2]

10

9702/43/M/J/15© UCLES 2015

BLANK PAGE

11

9702/43/M/J/15© UCLES 2015 [Turn over

4 (a) For an oscillating body, state what is meant by

(i) forced frequency,

...........................................................................................................................................

...................................................................................................................................... [1]

(ii) natural frequency of vibration,

...........................................................................................................................................

...................................................................................................................................... [1]

(iii) resonance.

...........................................................................................................................................

...........................................................................................................................................

...................................................................................................................................... [2]

(b) State and explain one situation where resonance is useful.

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

(c) In some situations, resonance should be avoided.

State one such situation and suggest how the effects of resonance are reduced.

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

12

9702/43/M/J/15© UCLES 2015

5 A charged metal sphere is isolated in space. Measurements of the electric potential V are made for different distances x from the centre of the sphere.

The variation with distance x of the potential V is shown in Fig. 5.1.

0

1.0

0 2.0 4.0 6.0 8.0 10.0

2.0

3.0

4.0

V / 103 V

x / cm

Fig. 5.1

(a) Use Fig. 5.1 to determine the electric field strength, in N C−1, at a point where x = 4.0 cm. Explain your working.

electric field strength = ............................................... N C−1 [3]

(b) The charge on the sphere is 8.0 × 10−9 C.

(i) Use Fig. 5.1 to state the electric potential at the surface of the sphere.

potential = ..................................................... V [1]

13

9702/43/M/J/15© UCLES 2015 [Turn over

(ii) The sphere acts as a capacitor. Determine the capacitance of the sphere.

capacitance = ..................................................... F [2]

14

9702/43/M/J/15© UCLES 2015

6 (a) State the type of field, or fields, that may cause a force to be exerted on a particle that is

(i) uncharged and moving,

...................................................................................................................................... [1]

(ii) charged and stationary,

...................................................................................................................................... [1]

(iii) charged and moving at right-angles to the field.

...................................................................................................................................... [2]

(b) A particle X has mass 3.32 × 10−26 kg and charge +1.60 × 10−19 C.

The particle is travelling in a vacuum with speed 7.60 × 104 m s−1. It enters a region of uniform magnetic field that is normal to the direction of travel of the particle. The particle travels in a semicircle of diameter 12.2 cm, as shown in Fig. 6.1.

12.2 cmpath ofparticle X

region ofuniform magneticfield

Fig. 6.1

For the uniform magnetic field,

(i) state its direction,

...........................................................................................................................................

...................................................................................................................................... [1]

15

9702/43/M/J/15© UCLES 2015 [Turn over

(ii) calculate the magnetic flux density.

magnetic flux density = ..................................................... T [3]

(c) A second particle Y has mass less than that of particle X in (b) and the same charge.

It enters the region of uniform magnetic field in (b) with the same speed and along the same initial path as particle X.

On Fig. 6.1, draw the path of particle Y in the region of the magnetic field. [1]

7 In many distribution systems for electrical energy, the energy is transmitted using alternating current at high voltages.

Suggest and explain an advantage, one in each case, for the use of

(a) alternating voltages,

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

(b) high voltages.

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [2]

16

9702/43/M/J/15© UCLES 2015

8 A photon of wavelength 6.50 × 10−12 m is incident on an isolated stationary electron, as illustrated in Fig. 8.1.

incident photon

electronmass me

deflected photonwavelength 6.84 × 10–12 m

wavelength 6.50 × 10–12 m

Fig. 8.1

The photon is deflected elastically by the electron of mass me. The wavelength of the deflected photon is 6.84 × 10−12 m.

(a) Calculate, for the incident photon,

(i) its momentum,

momentum = .................................................. N s [2]

(ii) its energy.

energy = ...................................................... J [2]

17

9702/43/M/J/15© UCLES 2015 [Turn over

(b) The angle θ through which the photon is deflected is given by the expression

Δλ = h

mec (1 – cos θ )

where Δλ is the change in wavelength of the photon, h is the Planck constant and c is the speed of light in free space.

(i) Calculate the angle θ.

θ = ...................................................... ° [2]

(ii) Use energy considerations to suggest why Δλ must always be positive.

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

...................................................................................................................................... [3]

18

9702/43/M/J/15© UCLES 2015

9 (a) An isotope of an element is radioactive. Explain what is meant by radioactive decay.

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [3]

(b) At time t, a sample of a radioactive isotope contains N nuclei. In a short time Δt, the number of nuclei that decay is ΔN.

State expressions, in terms of the symbols t, Δt, N and ΔN for

(i) the number of undecayed nuclei at time (t + Δt),

number = ......................................................... [1]

(ii) the mean activity of the sample during the time interval Δt,

mean activity = ......................................................... [1]

(iii) the probability of decay of a nucleus during the time interval Δt,

probability = ......................................................... [1]

(iv) the decay constant.

decay constant = ......................................................... [1]

19

9702/43/M/J/15© UCLES 2015 [Turn over

(c) The variation with time t of the activity A of a sample of a radioactive isotope is shown in Fig. 9.1.

A

00 t ½ 2t ½ 3t ½t

Fig. 9.1

The radioactive isotope decays to form a stable isotope S. At time t = 0, there are no nuclei of S in the sample.

On the axes of Fig. 9.2, sketch a graph to show the variation with time t of the number n of nuclei of S in the sample.

n

00 t ½ 2t ½ 3t ½t

Fig. 9.2[2]

20

9702/43/M/J/15© UCLES 2015

Section B

Answer all the questions in the spaces provided.

10 An operational amplifier (op-amp) is used in the comparator circuit of Fig. 10.1.

V IN V OUT1.2 k

4.2 k

R–5 V

+5 V

+4.5 V

+

Fig. 10.1

(a) (i) Show that the potential at the inverting input of the op-amp is +1.0 V.

[1]

(ii) Explain why the potential difference across resistor R is + 5 V when VIN is greater than 1.0 V and is zero when VIN is less than 1.0 V.

VIN > 1.0 V: .........................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

VIN < 1.0 V: .........................................................................................................................

...........................................................................................................................................

...........................................................................................................................................[4]

21

9702/43/M/J/15© UCLES 2015 [Turn over

(b) The variation with time t of the input voltage VIN is shown in Fig. 10.2.

1

00 time t

V IN

+1 V

2

3voltage / V

4

5

6

Fig. 10.2

(i) On the axes of Fig. 10.2, draw the variation with time t of the output potential VOUT. [2]

(ii) Suggest a use for this type of circuit.

...........................................................................................................................................

...................................................................................................................................... [1]

22

9702/43/M/J/15© UCLES 2015

11 (a) State and explain how, in an X-ray tube, the hardness of the X-ray beam is controlled.

...................................................................................................................................................

...................................................................................................................................................

...................................................................................................................................................

.............................................................................................................................................. [3]

(b) A parallel beam of X-rays has intensity I0 and is incident on a medium having a linear absorption (attenuation) coefficient μ.

(i) State an equation for the variation of the intensity I with the thickness x of the medium.

...................................................................................................................................... [1]

(ii) Data for the linear absorption (attenuation) coefficient μ for an X-ray beam in blood and in muscle is shown in Fig. 11.1.

μ / cm−1

bloodmuscle

0.230.22

Fig. 11.1

Suggest why, if this X-ray beam is used to image blood vessels in muscle, contrast on the image would be poor.

...........................................................................................................................................

...........................................................................................................................................

...................................................................................................................................... [2]

23

9702/43/M/J/15© UCLES 2015 [Turn over

12 (a) Information may be carried by means of various channels of communication.

Name examples, one in each case, of devices where information is carried to the device using

(i) a wire pair,

...................................................................................................................................... [1]

(ii) a coaxial cable,

...................................................................................................................................... [1]

(iii) microwaves.

...................................................................................................................................... [1]

(b) State two advantages of optic fibres as compared with coaxial cables for long-range communication.

1. ..............................................................................................................................................

2. ..............................................................................................................................................[2]

(c) An optic fibre has length 62 km and an attenuation per unit length of 0.21 dB km−1. The input power to the fibre is P. At the receiver, the noise power is 9.2 μW. The signal-to-noise ratio at the receiver is 25 dB.

(i) Calculate the ratio, in dB, of the input power P to the noise power at the receiver.

ratio = ................................................... dB [2]

(ii) Use your answer in (i) to determine the input power P .

P = .................................................... W [2]

24

9702/43/M/J/15© UCLES 2015

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

13 During magnetic resonance imaging to obtain information about internal body structures, a large constant magnetic field is used with a calibrated non-uniform magnetic field superimposed on it.

(a) State and explain the purpose of

(i) the large constant magnetic field,

...........................................................................................................................................

...........................................................................................................................................

...................................................................................................................................... [2]

(ii) the non-uniform magnetic field.

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

...................................................................................................................................... [3]

(b) The de-excitation energy E (measured in joule) of a proton in magnetic resonance imaging is given by the expression

E = 2.82 × 10−26 B

where B is the magnetic flux density measured in tesla. The energy E is emitted as a photon of electromagnetic radiation in the radio-frequency

range.

Calculate the magnetic flux density required for the radio frequency to be 42 MHz.

magnetic flux density = ..................................................... T [2]

This document consists of 8 printed pages.

SPA (SJF5063/CG) T76306/2© UCLES 2009 [Turn over

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONSGeneral Certificate of Education Advanced Level

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a soft pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question.

*2434125478*

PHYSICS 9702/05

Paper 5 Planning, Analysis and Evaluation May/June 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

For Examiner’s Use

1

2

Total

www.XtremePapers.com

2

9702/05/M/J/09© UCLES 2009

ForExaminer’s

Use

1 A student wishes to determine the Young modulus E of wood from the period of oscillation of a loaded wooden rule, as shown in Fig. 1.1.

l

loadfixed end

Fig. 1.1

An equation relating the period of oscillation T to the overhanging length l of the rule is

T 2 = kl 3

E.

The constant k is given by

k = 16π 2M

wd 3

where M is the mass of the load, w is the width of the rule and d is the thickness of the rule.

Design a laboratory experiment to determine the Young modulus of wood. You should draw a diagram showing the arrangement of your equipment. In your account, you should pay particular attention to

(a) the procedure to be followed,

(b) the measurements to be taken,

(c) the control of variables,

(d) how to analyse the data,

(e) how to determine E,

(f) the safety precautions to be taken.[15]

3

9702/05/M/J/09© UCLES 2009 [Turn over

ForExaminer’s

Use

Diagram

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

4

9702/05/M/J/09© UCLES 2009

ForExaminer’s

Use........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

5

9702/05/M/J/09© UCLES 2009 [Turn over

ForExaminer’s

Use

2 An experiment is carried out to investigate how the current I required to melt a wire varies with the diameter d of the wire.

The equipment is set up as shown in Fig. 2.1.

A

wire

Fig. 2.1

Question 2 continues on the next page.

6

9702/05/M/J/09© UCLES 2009

ForExaminer’s

Use

It is suggested that I and d are related by the equation

I = pd q

where p and q are constants.

(a) A graph is plotted with lg I on the y-axis and lg d on the x-axis. Express the gradient andy-intercept in terms of p and q.

gradient = …………………………………

y-intercept = …………………………………[1]

(b) Values of d and I are given in Fig. 2.2.

d / 10–5 m I / A lg (d / 10–5 m) lg (I / A)

15 2.6 ± 0.1

19 3.5 ± 0.1

23 4.4 ± 0.1

27 5.4 ± 0.1

31 6.4 ± 0.1

Fig. 2.2

Calculate and record values of lg (d / 10–5 m) and lg (I / A) in Fig. 2.2. Include in the table the absolute errors in lg (I / A). [3]

(c) (i) Plot a graph of lg (I / A) against lg (d / 10–5 m). Include error bars for lg (I/ A). [2]

(ii) Draw the line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled. [2]

(iii) Determine the gradient of the line of best fit. Include the error in your answer.

gradient = ………………………………… [2]

7

9702/05/M/J/09© UCLES 2009 [Turn over

ForExaminer’s

Use

1.15 1.20

lg (d / 10-5 m)

lg (I / A)

1.25 1.30 1.35 1.40 1.45 1.500.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

8

9702/05/M/J/09© UCLES 2009

ForExaminer’s

Use

(iv) Determine the y-intercept of the line of best fit. Include the error in your answer.

y-intercept = ………………………………… [2]

(d) Using your answers to (c)(iii) and (c)(iv), determine the values of p and q. Include the error in your values. You need not give the units of p and q.

p = …………………………………

q = …………………………………[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

This document consists of 8 printed pages.

DC (SJF/CGW) 77200/2© UCLES 2014 [Turn over

Cambridge International ExaminationsCambridge International Advanced Level

*3280309247*

PHYSICS 9702/51

Paper 5 Planning, Analysis and Evaluation October/November 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question.

2

9702/51/O/N/14© UCLES 2014

1 A student investigates the power dissipated by a lamp connected to a model wind turbine as shown in Fig. 1.1.

turbinewind

lamp

Fig. 1.1

The power P dissipated in the lamp depends on the angle θ between the axis of the turbine and the direction of the wind, as shown by the top view in Fig. 1.2.

turbine

wind direction

Fig. 1.2

It is suggested thatP = k cosθ

where k is a constant.

Design a laboratory experiment to test the relationship between P and θ and determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to

(a) the procedure to be followed,

(b) the measurements to be taken,

(c) the control of variables,

(d) the analysis of the data,

(e) the safety precautions to be taken.[15]

3

9702/51/O/N/14© UCLES 2014 [Turn over

Diagram

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

4

9702/51/O/N/14© UCLES 2014

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

Defining the problem

Methods ofdata collection

Method of analysis

Safety considerations

Additional detail

5

9702/51/O/N/14© UCLES 2014 [Turn over

2 A student investigates electrical resonance in a circuit containing a capacitor and a coil connected in parallel.

The circuit is set up as shown in Fig. 2.1.

C

coil

signal generator

A

Fig. 2.1

The resonant frequency f is the frequency at which the current measured by the ammeter is a minimum.

An experiment is carried out to investigate how f varies with the capacitance C of the capacitor.

It is suggested that f and C are related by the equation

f = 2π LC

1

where L is a constant for the circuit.

(a) A graph is plotted of f 2 on the y-axis against 1C on the x-axis. Determine an expression

for the gradient in terms of L.

gradient = ................................................. [1]

6

9702/51/O/N/14© UCLES 2014

(b) Values of f and C are given in Fig. 2.2.

C / 10–4 F f / Hz1C

/ 103 F–1 f 2 / 103 Hz2

2.5 ± 10% 149

3.0 ± 10% 134

3.5 ± 10% 123

4.4 ± 10% 107

6.6 ± 10% 82

8.8 ± 10% 65

Fig. 2.2

Calculate and record values of 1C / 103 F–1 and f 2 / 103 Hz2 in Fig. 2.2.

Include the absolute uncertainties in 1C

. [3]

(c) (i) Plot a graph of f 2 / 103 Hz2 against 1C

/ 103 F–1. Include error bars for 1C

. [2]

(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled. [2]

(iii) Determine the gradient of the line of best fit. Include the uncertainty in your answer.

gradient = ................................................. [2]

7

9702/51/O/N/14© UCLES 2014 [Turn over

4

6

1.0 1.5 2.0 2.5

— / 103 F–1 1C

3.0 3.5 4.0 4.5

8

10

12

14

16

18

20

f 2 / 103 Hz2

22

24

8

9702/51/O/N/14© UCLES 2014

(d) Using your answer to (c)(iii), determine the value of L. Include the absolute uncertainty in your value and an appropriate unit.

L = ................................................. [3]

(e) The experiment is repeated using a capacitor of capacitance 10 μF ± 10%.

(i) Using the relationship given and your answer to (d), determine the value of f.

f = ............................................ Hz [1]

(ii) Determine the percentage uncertainty in the value of f.

percentage uncertainty = ............................................. % [1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

This document consists of 8 printed pages.

DC (ST/SW) 94471/2© UCLES 2015 [Turn over

Cambridge International ExaminationsCambridge International Advanced Level

*8129289249*

PHYSICS 9702/51

Paper 5 Planning, Analysis and Evaluation May/June 2015

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.The number of marks is given in brackets [ ] at the end of each question or part question.

2

9702/51/M/J/15© UCLES 2015

1 A student is investigating simple harmonic motion using an electric vibrator. A plate is attached to the top of the electric vibrator. A small mass is placed on the metal plate as shown in Fig. 1.1.

small massmetal plate

vibrator

Fig. 1.1

An alternating potential difference (p.d.) is applied to the vibrator. For a given peak p.d. V, there is a maximum frequency f at which the small mass remains in contact with the plate. The contact between the small mass and plate is lost when the frequency is greater than f.

It is suggested that the relationship between f and V is

k = π2f 2V where k is a constant.

Design a laboratory experiment to test the relationship between f and V. Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to

(a) the procedure to be followed,

(b) the measurements to be taken,

(c) the control of variables,

(d) the analysis of the data,

(e) the safety precautions to be taken.[15]

3

9702/51/M/J/15© UCLES 2015 [Turn over

Diagram

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

..................................................................................................................................................................

4

9702/51/M/J/15© UCLES 2015

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

.........................................................................................................................................................

Defining the problem

Methods ofdata collection

Method of analysis

Safety considerations

Additional detail

5

9702/51/M/J/15© UCLES 2015 [Turn over

2 A student is investigating the performance of a motor vehicle.

The vehicle is driven at a constant speed v on a test track, as shown in Fig. 2.1.

Fig. 2.1

The performance P of the vehicle is the distance travelled per unit volume of fuel, measured in kilometres per litre (km l –1). This is obtained from the vehicle’s computer system.

The experiment is repeated for different speeds.

It is suggested that P and v are related by the equation

P = kv m

where k and m are constants.

(a) A graph is plotted of lg P on the y-axis against lg v on the x-axis.

Determine expressions for the gradient and y-intercept.

gradient = ......................................................

y-intercept = ......................................................[1]

6

9702/51/M/J/15© UCLES 2015

(b) Values of v and P are given in Fig. 2.2.

v / km h–1 P / km l –1 lg (v / km h–1) lg (P / km l –1)

50 20.5 ± 0.5

61 16.0 ± 0.5

71 13.0 ± 0.5

80 11.0 ± 0.5

90 9.5 ± 0.5

99 8.0 ± 0.5

Fig. 2.2

Calculate and record values of lg (v / km h–1) and lg (P / km l –1) in Fig. 2.2. Include the absolute uncertainties in lg (P / km l –1). [3]

(c) (i) Plot a graph of lg (P / km l –1) against lg (v / km h–1). Include error bars for lg (P / km l –1). [2]

(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled. [2]

(iii) Determine the gradient of the line of best fit. Include the uncertainty in your answer.

gradient = ................................................. [2]

7

9702/51/M/J/15© UCLES 2015 [Turn over

1.650.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.70 1.75 1.80 1.85 1.90 1.95 2.00

lg (v / km h–1)

lg (P / km l –1)

8

9702/51/M/J/15© UCLES 2015

(iv) Determine the y-intercept of the line of best fit. Include the uncertainty in your answer.

y-intercept = ................................................. [2]

(d) (i) Using your answers to (a), (c)(iii) and (c)(iv), determine the values of k and m. You need not be concerned with the units of k and m.

k = ......................................................

m = ...................................................... [2]

(ii) Determine the percentage uncertainty in k.

percentage uncertainty in k = .................................................. %[1]

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.