應用 hec-ras 一維水理模式評估渠首工構造物之淹水 …‡‰用hec-ras一... ·...

15
2012 年中華水土保持學會年會及學術研討會論文集 1 應用 HEC-RAS 一維水理模式評估渠首工構造物之淹水潛勢-臺中水系灌區為例 陳豐文 [1*] 林修德 [2] 陳宗益 [3] 藍士呈 [4] 蔡瀚陞 [5] 台中地區之灌溉用水多仰賴河川取水方式,鑒於豐水期間因暴雨或颱風事件產生高逕流量,河岸之渠首 工為灌溉系統最易遭受洪水淹沒之設施。渠首工程為河川取水最關鍵之水利建造物,洪水所造成之掏刷、淤積或設 備毀壞…等狀況均會影響渠首工之正常運作。為瞭解台灣中部用於農業灌溉所設置之重要渠首工其淹水潛勢,本研 究選定中部地區三條重要河川(由北而南為大安溪、大甲溪及烏溪)為研究區域,以美國陸軍工兵團水文研究中心開發 之河川分析系統(HEC-RAS)進行 15 處渠首工在不同洪峰流量條件下之淹水潛勢模擬分析,以提供豐水期間渠首工 設施維護對策之參酌。 關鍵字:HEC-RAS、淹水潛勢分析、渠首工。 Application of HEC-RAS model assessment the headworks structure of flood potential - a Case Study of TaiChung Irrigation District Feng-Wen Chen [1*] Hsiu-Te Lin [2] Tsung-Yi Chen [3] Shyh-Cherng Lan [4] Han-Sheng Tsai [5] ABSTRACT Most the irrigation water was intake from river in Taichung area. The headworks facilities for the irrigation system was the most vulnerable to flood at the river bank on the grounds that high flow period rainstorm or typhoon events generate high runoff. Headworks for the river water intake is the most critical hydraulic structures, floods caused by submerged obstacle like silt or equipment damage...etc, will affect the operation of the headworks. The purposes of this study understand flood potential with the important headworks in central Taiwan for agricultural irrigation. In this paper the study area to the main flow of three river basins: Daan River, Daja River, and Wu River etc. in central Taiwan; according to the United States Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC) development of the River Analysis System (HEC-RAS), and analysis 16 different places of the headworks at different peak flow conditions of the simulation analysis of flood potential. Finally, this case study can be provided as a reference for the headworks facilities maintenance countermeasures during high flow period. Key Words: HEC-RAS, Flood potential analysis, headworks. 一、前 台灣中部地區之農業灌溉用水來源多仰賴河川取水;然而台灣豐枯水期明顯之水文特性,造成劇烈之流量變化、 河床高程因洪峰而反覆沖刷與沉積,河道動床現象嚴重影響農業灌溉用水供應之穩定。然河川行水區之高灘地本為 提供豐水期間因暴雨或颱風事件排洪、漫淹之用,惟農業灌溉取水用之渠首工多位於行水區域內,河川高逕流時自 然首當其衝,然渠首工依淹沒深度多寡將產生不同程度之損壞,輕則土砂淤積、重則設備(或設施)損壞等狀況,為瞭 解台灣中部地區位於行水區高灘地之渠首工淹水潛勢,本研究以水理分析模式進行評估。 本研究回顧國內淹水潛勢模擬相關文獻,目前常見之分析模式有 HEC-RAS FLO-2D SWMM SOBEK 等, 如黃勝頂(2002)HEC-RAS 模擬台中市筏子溪近自然工法規劃,比較設計前後對河川水位之影響;陳瑞宗(2003) 亦使用 HEC-RAS 模擬台中市筏子溪之水位,以側溢流堰概念推估桃芝颱風襲台期間之溢流體積,並進一步使用 GIS 1財團法人農業工程研究中心助理研究員(* 通訊作者 E-mail: [email protected]Assistant Researcher, Agricultural Engineering Research Center, Taoyuan 320, Taiwan 2財團法人農業工程研究中心助理研究員 Assistant Researcher, Agricultural Engineering Research Center, Taoyuan 320, Taiwan 3臺中農田水利會工務組組長 Taichung Irrigation Association, Taichung 404, Taiwan 4臺中農田水利會設計股股長 Taichung Irrigation Association, Taichung 404, Taiwan 5臺中農田水利會助理工程師 Taichung Irrigation Association, Taichung 404, Taiwan

Upload: doankhanh

Post on 25-Sep-2018

263 views

Category:

Documents


1 download

TRANSCRIPT

  • 2012 1

    HEC-RAS -

    [1*] [2] [3] [4] [5]

    ()(HEC-RAS) 15

    HEC-RAS

    Application of HEC-RAS model assessment the headworks structure of flood potential - a Case Study of

    TaiChung Irrigation District Feng-Wen Chen[1*] Hsiu-Te Lin[2] Tsung-Yi Chen[3] Shyh-Cherng Lan[4] Han-Sheng Tsai[5]

    ABSTRACT Most the irrigation water was intake from river in Taichung area. The headworks facilities for the irrigation system was the most vulnerable to flood at the river bank on the grounds that high flow period rainstorm or typhoon events generate high runoff. Headworks for the river water intake is the most critical hydraulic structures, floods caused by submerged obstacle like silt or equipment damage...etc, will affect the operation of the headworks. The purposes of this study understand flood potential with the important headworks in central Taiwan for agricultural irrigation. In this paper the study area to the main flow of three river basins: Daan River, Daja River, and Wu River etc. in central Taiwan; according to the United States Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC) development of the River Analysis System (HEC-RAS), and analysis 16 different places of the headworks at different peak flow conditions of the simulation analysis of flood potential. Finally, this case study can be provided as a reference for the headworks facilities maintenance countermeasures during high flow period. Key Words: HEC-RAS, Flood potential analysis, headworks.

    ()

    HEC-RASFLO-2DSWMM SOBEK (2002) HEC-RAS (2003) HEC-RAS GIS

    1 * E-mail: [email protected] Assistant Researcher, Agricultural Engineering Research Center, Taoyuan 320, Taiwan 2 Assistant Researcher, Agricultural Engineering Research Center, Taoyuan 320, Taiwan 3 Taichung Irrigation Association, Taichung 404, Taiwan 4 Taichung Irrigation Association, Taichung 404, Taiwan 5 Taichung Irrigation Association, Taichung 404, Taiwan

  • 2012

    (Digital T

    ))

    1 Fig.1 Lo

    Terrain Mod

    )

    )( 2 )( 2()

    ocation of hea

    del, DTM)

    15 ( M114( M1

    2 M269

    1

    adworks

    15

    (

    179 L6-1, L6-2 M254, M)( M37

    15 (

    (2

    (200

    )()

    M254-O)(9

    )

    006) S

    08) HE

    7 M169( 1 )

    M259) 1

    1

    SOBEK

    C-GeoRAS

    ) 7 1

    M1

    ))

    1 )(184

    ( M249( M264(

    1

    2

    (

    M174)9

    M274

  • 2012 3

    1 Table 1 The Basic data of headworks

    (TM97)

    1

    X X a. b. c. d. e. f. g. h.

    M144 225699.64 225699.64 230.05 M169 221141.10 221141.10 142.79

    M174 218745.78 218745.78 117.00 M179 216210.97 216210.97 82.00 L6-1 212189.97 212189.97 17.00 L6-2 210782.87 210782.87 11.00

    M184 214294.33 214294.33 62.00

    M249 224055.65 224055.65 229.00 M254 223126.03 223126.03 209.62 M254-O 2 223126.03 223126.03 208.34

    M264 213038.47 213038.47 89.00 M269 210195.07 210195.07 52.00

    M259 211852.93 211852.93 74.00 M274 211290.38 211290.38 70.00

    M379 204286.66 204286.66 0.04

    1 a.b.c.d.e.f.g.h.

    2M245-O (M254)

    1. HEC-RAS

    HEC-RAS (U.S. Army Corps of Engineers, USACE)- (Hydrologic Engineering Center, HEC)HEC (1939-1945) 1964 HEC HEC-1()HEC-2()HEC-3() HEC-4() HEC-RAS 1995 HEC-2 (River Analysis System, RAS)(IWR)(GUI) a.b.c.d.(Brunner, 2010a) 4.1.0 (2010 )

    HEC-RAS HEC-RAS (Cross Section Conveyance Calculations)(Standard Step Method)( 1)

    ehgVZd

    gVZd

    22

    222

    22

    211

    11

    ............................................................ (1)

    d1d2Z1Z2V1V2()12

    ghe

    (2)

    g

    VVCSLhe 2

    222

    211

    .................................................................. (2)

    L()SC

    L(3)(3) LlLc Lr

    QlQc Qr

  • 2012 4

    rcl

    rrccllQQQ

    QLQLQLL

    ................................................................................................................. (3)

    K(Conveyance)

    HEC-RAS ( 2)

    n (4)(5)

    21SKQ ................................................................................................................................. (4)

    321 RAn

    Kx

    ........................................................................................................................... (5)

    K nxAR

    2 HEC-RAS Fig.2 Conveyance of sub-sections of river in the HEC-RAS model

    HEC-RAS (New Computational Features)

    a.b.

    ()c.

    d. 0.1(Brunner, 2010a)

    HEC-RAS 1995 Pistocchi(2002);

    (2004); Chuienchooklin etal.(2007); Crawford(2010) HEC-RAS

    Shahrokhnia Javan(2005) Doroodzan

    20012002

    HEC-RAS Shahrokhnia Javan(2007)

    HEC-RAS

    (2008)(2009) HEC-RAS

    (2003) HEC-RAS

    HEC-RASHEC-RAS(Brunner,

    2010b) a.b.

    a.b.()

  • 2012

    HEC-RA

    2.

    ( http://

    00

    24

    00

    s= 0.0

    5 10

    2,960-15

    Q2=3,

    Q200=15,

    cmsQ1

    Q20=12,0

    2 Table 2

    S

    gic.wra.gov.t

    35 ( 22

    4 ( 5.021

    0- 21-1

    0007n = 0

    0 20

    5,990 cms

    150 cmsQ5

    ,990 cms

    100=10,300 cm

    000 cmsQ5

    Peak flow of

    2

    * 3,1502,960

    2,600 3,800

    (2000)

    tw )

    2.107 km

    km

    )0

    .037 (2

    50 100

    1,200

    =5,620 cms

    Q2=

    msQ200=11

    50=17,000 cm

    3~ 5

    f each basin f

    5 0 5,620 0 5,320 0 4,500 0 7,000 21-

    HEC-

    )

    )

    0.036 (

    2000)

    0 200

    -11,500 cms

    Q10=7,430 c

    2,600 cmsQ

    1,500 cms

    msQ100=21,

    3

    for simulation

    10 7,430 7,070 5,900 9,400 1

    1 23

    RAS

    03

    (s)

    23- 3

    s 3,800

    cmsQ20=9,2

    Q5=4,500 cm

    Q2=

    ,000 cmsQ

    n

    20 5

    9,270 11,8,850 11,7,300 8,9

    12,000 17,

    36-D (

    n

    35

    0-26,000 cm

    270 cmsQ50

    msQ10=5,900

    =3,800 cms

    Q200=26,000 c

    50 100 820 13,84340 13,34900 10,30000 21,00

    20.200 km

    s =

    ) s =

    s

    0=11,820 cms

    0 cmsQ20=7

    Q5=7,000 cm

    cms

    200 0 15,990 0 15,450 0 11,500 0 26,000

    Google Ear

    )

    0.0111n =

    = 0.006n =

    2

    sQ100=13,8

    7,300 cmsQ

    msQ10=9,4

    00- 23-

    5

    rth

    15

    0.038 (

    0.04

    2

    840 cms

    Q50=8,900

    00 cms

    15

    21-1 35

  • 2012

    3 HECFig.3 Cr

    4 HECFig.4 Cr

    5 HEC

    C-RAS ross-section o

    C-RAS ross-section o

    C-RAS

    -of Wu river of

    -of Daja river o

    -

    HEC-RAS mo

    of HEC-RAS m

    odel

    model

    6

  • 2012 7Fig.5 Cross-section of Daan river of HEC-RAS model

  • 2012 8

    3 HEC-RAS Table 3 Cross-section used for simulation by using HEC-RAS model

    No. No. No. 1 -00 0k+000 1 -03 0k+000 1 -15 0k+000 2 -01 0k+479 2 -04 0k+646 2 -16 0k+517 3 -01-1 0k+732 3 -05 1k+339 3 -17 1k+039 4 L6-1 0k+986 4 -06 2k+001 4 -18 1k+594 5 -02 1k+204 5 -07 2k+575 5 -19 2k+110 6 -03 1k+797 6 M269 2k+599 6 M379 2k+444 7 L6-2 2k+101 7 -08 2k+698 7 -20 2k+610 8 -04 2k+415 8 -09 3k+264 8 -21 3k+194 9 -05 2k+998 9 -10 3k+775 9 -22 3k+767 10 -06 3k+683 10 M274 3k+885 10 -23 4k+396 11 -07 4k+277 11 -11 4k+256 11 -24 5k+021 12 -08 4k+874 12 M259 4k+713 13 -09 5k+609 13 -12 4k+815 14 -09-1 5k+910 14 M264 5k+412 15 M184 6k+228 15 -13 5k+609 16 -10 6k+431 16 -14 6k+135 17 M184-1 6k+500 17 -15 6k+692 18 -10-1 6k+782 18 -17 7k+777 19 -11 7k+159 19 -18 8k+424 20 -11-1 7k+579 20 -26 13k+843 21 M179 7k+868 21 -27 14k+386 22 -12 7k+998 22 -28 14k+876 23 -13 8k+576 23 -28-1D 15k+263 24 -13-1 9k+031 24 -29 15k+539 25 -14 9k+289 25 -30 16k+304 26 -14-1 9k+782 26 M254 16k+672 27 -15 10k+153 27 M249 17k+571 28 M174 10k+506 28 -33 17k+915 29 -16 10k+847 29 -34 18k+560 30 -17 11k+505 30 -35D 19k+223 31 -18 11k+994 31 -35-1 19k+343 32 -19 12k+532 32 -36D 20k+200 33 -19-1 12k+912 34 M169 13k+035 35 -20 13k+419 36 -21 13k+904 37 -21-1 14k+495 38 -23 15k+092 39 -24 15k+456 40 -26 16k+635 41 -27 17k+203 42 -28 17k+922 43 -29 18k+330 44 -30 18k+929 45 M144 19k+060 46 -31 19k+606 47 -32 20k+351

    -00-032.3 km-36D-158.5 km

    48 -33 21k+049 49 -34 21k+467 50 -35 22k+107

  • 2012 9

    1.

    HEC-RAS 2 5 10 20 50 100 200

    (

    )(T)(QT) HEC-RAS

    2 HEC-RAS

    6- 10 4 2 15

    2

    ( 3,150 cms 2,600 cms 3,800 cms)

    5 ( 5,620 cms

    4,500 cms 7,000 cms)

    5

    10

    7,430 cms 7,300 cms 9,400 cms

    10

    20

    20

    20

    (2008)

    2.

    HEC-RAS 2012 610 2

    610 6/12 271.5 mm

    26,587.7 /(3,077.28 cms)26,592.8 /(3,077.87 cms)

    8/2 412.5 mm 22,809.5 /

    (2,639.99 cms)22,737.8 /(2,631.69 cms)

    (610 11)( 12)

    2

    5 (Q2=2,600 cms, Q5=4,500 cms)

  • 2012

    6 Fig.6 Re

    esult of simul

    lation of head

    (I) dworks in Daa

    an river(I)

    10

  • 2012

    7 Fig.7 Re

    8 Fig.8 Re

    esult of simul

    esult of simul

    lation of head

    lation of head

    (I) dworks in Daa

    (I) dworks in Daj

    an river(II)

    a river(I)

    11

  • 2012

    9 Fig.9 Re

    10 Fig.10 Re

    esult of simul

    esult of simul

    lation of head

    lation of head

    (II) dworks in Daj

    dworks in Wu

    a river(II)

    river

    12

  • 2012 13

    11 (610 ) Fig.11 Variation of flow simulation in Napu canal (610 event)

    12 () Fig.12 Variation of flow simulation in Napu canal (Event of typhoon Saola)

    A.

    F. (610 ) E. ()

    D. (610 ) C. ()

    B. (610 )

    A. () B. ()

  • 2012 14

    4 Table 4 Simulation on flooded degree of resistance of headworks in Dann river

    (m)

    HEC-RAS

    (T) QT = 2 QT = 5 QT = 10 QT = 20 QT = 50 QT = 100 QT = 200

    L6-2 11.00 14.84 15.63 16.08 16.49 16.99 17.34 17.69 15.80 -0.96 -0.17 0.28 0.69 1.19 1.54 1.89

    L6-1 17.00 21.28 22.25 22.79 23.45 24 24.4 24.82 23.32 -2.04 -1.07 -0.53 0.13 0.68 1.08 1.50

    M184

    62.00 65.14 65.69 66.15 66.49 66.95 67.32 67.64 69.21

    -4.07 -3.52 -3.06 -2.72 -2.26 -1.89 -1.57 66.70 -1.56 -1.01 -0.55 -0.21 0.25 0.62 0.94

    68.70 -3.56 -3.01 -2.55 -2.21 -1.75 -1.38 -1.06 64.00 1.14 1.69 2.15 2.49 2.95 3.32 3.64

    M179 82.00 84.56 85.43 85.68 85.91 86.29 86.55 86.9 91.89

    -7.33 -6.46 -6.21 -5.98 -5.60 -5.34 -4.99 90.19 -5.63 -4.76 -4.51 -4.28 -3.90 -3.64 -3.29

    M174 117.00 120.09 120.23 120.65 121.14 121.56 121.89 122.26 127.16

    -7.07 -6.93 -6.51 -6.02 -5.60 -5.27 -4.90 122.93 -2.84 -2.70 -2.28 -1.79 -1.37 -1.04 -0.67

    M169

    142.79 148.09 150.32 151.62 152.8 154.24 155.29 156.3 162.00

    -13.91 -11.68 -10.38 -9.19 -7.76 -6.71 -5.69

    157.80 -9.71 -7.48 -6.18 -5.00 -3.56 -2.51 -1.50

    M144 230.05 231.87 232.64 233.11 233.57 234.14 234.6 235.02 240.00

    -8.13 -7.36 -6.89 -6.43 -5.86 -5.40 -4.98 1 232.00 -0.13 0.64 1.11 1.57 2.14 2.60 3.02

    M269 52.00 53.89 54.26 54.44 54.6 54.86 55.06 55.21 63.17

    -9.28 -8.91 -8.73 -8.57 -8.31 -8.11 -7.96 59.12 -5.23 -4.86 -4.68 -4.52 -4.26 -4.06 -3.91

    M274 70.00 72.78 73.31 73.69 73.91 74.16 74.34 74.49 80.10

    -7.32 -6.79 -6.41 -6.19 -5.94 -5.76 -5.61 75.70 -2.92 -2.39 -2.01 -1.79 -1.54 -1.36 -1.21

    M259 74.00 78.65 79.5 79.97 80.42 80.8 81.15 81.39 87.95

    -9.30 -8.45 -7.98 -7.53 -7.15 -6.80 -6.56 82.90 -4.25 -3.40 -2.93 -2.48 -2.10 -1.75 -1.51

    M264 89.00 91.08 91.48 91.72 91.94 92.26 92.44 92.59 96.24

    -5.16 -4.76 -4.52 -4.30 -3.98 -3.80 -3.65 93.69 -2.61 -2.21 -1.97 -1.75 -1.43 -1.25 -1.10

    M254-O3

    208.34 214.98 215.84 216.29 217.09 217.61 217.83 218.02 227.13

    -12.15 -11.29 -10.84 -10.04 -9.52 -9.30 -9.11 216.93 -1.95 -1.09 -0.64 0.16 0.68 0.90 1.09

    M254 209.62 215.61 216.71 217.34 218.16 218.72 219.03 219.28 217.90

    -2.29 -1.19 -0.56 0.26 0.82 1.13 1.38 216.90 -1.29 -0.19 0.44 1.26 1.82 2.13 2.38

    M249 229.00 231.78 232.88 233.46 234.06 234.66 235.27 235.56 236.58

    -4.80 -3.70 -3.12 -2.52 -1.92 -1.31 -1.02 () 232.68 -0.90 0.20 0.78 1.38 1.98 2.59 2.88

    M379

    0.04 7.12 8.87 9.88 10.85 12.15 12.96 13.86 16.33

    -9.21 -7.46 -6.45 -5.48 -4.18 -3.37 -2.47

    16.32 -9.20 -7.45 -6.44 -5.47 -4.17 -3.36 -2.46 12.19 -5.07 -3.32 -2.31 -1.34 -0.04 0.77 1.67

    1 2 3M254-O (M254)-30

    1. 15 2 5 10 20 50 100 200

    HEC-RASModel 3 10 2 ()5 ()

  • 2012 15

    610 ( 3,077 cms)( 2,631 cms) 2

    2.

    1. Brunner, G.W.(2010a), HEC-RAS river analysis system hydraulic reference manual, USACE-HEC. 2. Brunner, G.W.(2010b), HEC-RAS river analysis system hydraulic users manual version 4.1,

    USACE-HEC. 3. Crawford, D.A.(2010), Flood risk assessment: Proposed development of land at Ballochyle, by

    Sandbank, Argyll , TransTech Limited. 4. Chuienchooklin, S., P. Mekprugsawong, P. Chidchob(2007), The river analysis simulation model for

    the planning of Retention area and Diversion channel for flood reduction in the lower Yoms river basin, Thailand, 4th INWEPF Steering Meeting and Symposium, Thailand.

    5. Pistocchi, A., P. Mazzoli(2002), Use of HEC-RAS and HEC-HMS models with Arcview for hydrologic risk management, 1st iEMSs International Meeting, Switzerland.

    6. Shahrokhnia, M. A. and M. Javan(2005), Performance assessment of Doroodzan irrigation network by steady state hydraulic modeling, Irrigation and Drainage Systems, 19(2): 189-206.

    7. Shahrokhnia, M. A. and M. Javan(2007), Influence of roughness changes on offtaking discharge in irrigation canals, Water Resources Management, 21(3): 635-647.

    8. (2006)

    9. (2003) 35 3 pp.291 -308

    10. (2004) 52 2 pp.58 -68

    11. (2008) 3 4 pp. 297 -306

    13. (2003) HEC-RAS GIS -

    14. (2008) 15. (2002)

    16. (2008) HEC-GeoRAS --

    40 4 pp.455 -466 17 (2008)()