© giovanni flamand – imec 2009...

35
1 © Giovanni Flamand – IMEC 2009

Upload: others

Post on 13-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

1© Giovanni Flamand – IMEC 2009

Page 2: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

High-efficiency multijunction solar cells for Concentrator PV

applications

Giovanni FlamandIMEC

Workshop on Sustainable EnergiesTechnical University, Lyngby, Denmark

January 14-15 2009

Page 3: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

3© Giovanni Flamand – IMEC 2009

Contents

• High-efficiency multijunction

solar cells

• CPV system

• Commercial status and challenges

Page 4: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

4© Giovanni Flamand – IMEC 2009

Contents

• High-efficiency multijunction

solar cells

• CPV system

• Commercial status and challenges

Page 5: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

5© Giovanni Flamand – IMEC 2009

Multijunction

solar cell basics

Fundamental solar cell efficiency limits

Eg

E<Eg

X

E=Eg

E

Eg

– Incomplete absorption

E>Eg

– Thermalization

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

Inte

nsity

(mW

/cm

2 nm

) AM1.5 spectrum

Single-junction cell efficiency is limited to ≈

30%

Page 6: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

6© Giovanni Flamand – IMEC 2009

Multijunction

solar cell basics

Multijunction

cells: combine different cells (different Eg

) to minimize absorption and thermalization

losses Cell 1

Cell 2

Cell 3

E

Eg2Eg3 Eg1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

Inte

nsity

(mW

/cm

2 nm

)

AM1.5 spectrum

Page 7: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

7© Giovanni Flamand – IMEC 2009

Multijunction

solar cell basics

Practical implementation?

Spectral splitting•

Mechanical stack•

Monolithic stack

Page 8: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

8© Giovanni Flamand – IMEC 2009

Multijunction

solar cell basics

Practical implementation?

Spectral splitting•

Mechanical stack•

Monolithic stack

Cell 3Cell 2Cell 1

Main challenges:

- bulky- mechanical architecture- electrical architecture- limited by optical system

Page 9: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

9© Giovanni Flamand – IMEC 2009

Multijunction

solar cell basics

Practical implementation?

Spectral splitting•

Mechanical stack•

Monolithic stack

Cell 3

Cell 2

Cell 1

Main challenges:

- electrical architecture- optical coupling- interconnect/stacking complexity- heat dissipation

Page 10: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

10© Giovanni Flamand – IMEC 2009

Multijunction

solar cell basics

Practical implementation?

Spectral splitting•

Mechanical stack•

Monolithic stackCell 3Cell 2Cell 1

Main challenges:

- series connection - current matching requirement- limited choice of materials (lattice matching)

Page 11: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

11© Giovanni Flamand – IMEC 2009

State-of-the-art

In0.5

Ga0.5

P/GaAs/Ge monolithic triple-junction

Optimal single-junction: GaAs

(25.1 %)•

Addition of lattice-matched In0.5

Ga0.5

P top cell (30.3 %)•

Addition of Ge

bottom cell in high-quality Ge

substrate (32.0 %)

Page 12: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

12© Giovanni Flamand – IMEC 2009

State-of-the-art

Record conversion efficiencies obtained (32% under 1 sun, 40.1% under concentration)

Key technologies:

current matching of top and middle cell• wide-gap tunnel junction•

exact lattice matching (1% Indium added in GaAs

cell)• InGaP

disordering• Ge

junction formation

Page 13: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

13© Giovanni Flamand – IMEC 2009

Further optimization of triple-junction design

Important limitation: Ge

photocurrent is used inefficiently because of current matching requirement

Rload

I1I2I3

Itotal

InGaP2 ≤ 17.7 mA/cm2

GaAs ≤ 15.2 mA/cm2

Ge ≤ 29.1 mA/cm2Rload

I1I2I3

Itotal

InGaP2 ≤ 17.7 mA/cm2

GaAs ≤ 15.2 mA/cm2

Ge ≤ 29.1 mA/cm2

In0.5

Ga0.5

P/GaAs/Ge monolithic triple-junction

Room for improvement !

Page 14: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

14© Giovanni Flamand – IMEC 2009

Metamorphic InGaP/InGaAs/Ge

Optimal combination: lattice matched In0.65

Ga0.35

P top and In0.17

Ga0.83

As middle cell, 1.1% lattice-mismatched

to Ge

bottom cell (metamorphic cell)

Decrease top and middle cell bandgap

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

Inte

nsity

(mW

/cm

2 nm

) AM1.5 spectrum

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

Inte

nsity

(mW

/cm

2 nm

) AM1.5 spectrum

Page 15: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

15© Giovanni Flamand – IMEC 2009

Metamorphic InGaP/InGaAs/Ge

Lattice-mismatch causes dislocations and subsequent recombination

In0.15

Ga0.85

As layer

graded buffer efficiently stopsthreading dislocationsGe

substrate

Buffer structures are used to accommodate dislocationsand allow growth of relaxed active layers

Page 16: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

16© Giovanni Flamand – IMEC 2009

Metamorphic InGaP/InGaAs/Ge

Best results obtained using In0.56

Ga0.44

P/In0.08

Ga0.92

As/Ge cell(0.5% MM): 40.7% at C=240

Copyright Spectrolab

Page 17: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

17© Giovanni Flamand – IMEC 2009

Inverted metamorphic InGaP/(In)GaAs/InGaAs

Further optimization of bandgap

combinations→ InGaP/GaAs/InGaAs(1 eV), or

InGaP/InGaAs(1.34eV)/InGaAs(0.9 eV) triple-junction cell

Dislocations degrade high bandgap

cells

In0.5

Ga0.5

PGaAs

Inactive Ge

1.4 eV1.85 eV

0.67 eV

1.9% mismatch

In0.3

Ga0.7

As1.0 eVbuffer

Inverting the structure limits dislocations to InGaAs

cell

In0.5

Ga0.5

PGaAs

Inactive Ge

1.4 eV1.85 eV0.67 eV

In0.3

Ga0.7

As1.0 eVbuffer

Page 18: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

18© Giovanni Flamand – IMEC 2009

In0.5

Ga0.5

PGaAs

Inactive Ge

1.4 eV1.85 eV

0.67 eV

In0.3

Ga0.7

As1.0 eVbuffer

Inverted metamorphic InGaP/(In)GaAs/InGaAs

Inverted metamorphic (IMM) has achieved record efficiencies of 33.8% (1 sun) and 40.8% (C=326)!

Additional advantages: flexible and light-weight

In0.5

Ga0.5

PGaAs

Inactive Ge

1.4 eV1.85 eV0.67 eV

In0.3

Ga0.7

As1.0 eVbuffer

handle

Page 19: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

19© Giovanni Flamand – IMEC 2009

IMEC approach

Mechanical stack using one-side contacted, thinned-down III-V cells

Full benefit of Ge

photocurrent →

increased η•

Limited complexity electrical architecture•

No tunnel junctions•

Modular approach•

(re-)use of 3D-stacking technology•

Robust against spectral variations

Page 20: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

20© Giovanni Flamand – IMEC 2009

Record efficiencies

Courtesy NREL

Page 21: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

21© Giovanni Flamand – IMEC 2009

Record efficiencies

Page 22: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

22© Giovanni Flamand – IMEC 2009

Contents

• High-efficiency multijunction

solar cells

• CPV system

• Commercial status and challenges

Page 23: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

23© Giovanni Flamand – IMEC 2009

Space applications

InGaP/GaAs/Ge

triple-junction cells have become theunchallenged workhorse for space applications:

High efficiency allows for reduced solar array area.•

Further weight reduction is achieved by use of thin (140-180 μm) Ge

substrates.•

Robustness to cosmic radiation results in high EOL efficiency.

Typical area ≈

30 cm2

Page 24: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

24© Giovanni Flamand – IMEC 2009

Terrestrial applications

Can this technology be brought down to earth?

Current state-of-the-art in terrestrial photovoltaics

is flat-plate Si modules, with η

13% (15-16% at cell level) at a module cost of 2-2.5 €/W (cell cost 1-1.5 €/W).

State-of-the-art InGaP/GaAs/Ge

cell cost ≈

200-250 $/W

Solution: apply InGaP/GaAs/Ge

cells in concentrator (CPV) systems.

Page 25: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

25© Giovanni Flamand – IMEC 2009

CPV system

Fresnel lens

Solar cellmm2

- size

Heat

Heat sinkElectric output

Solar irradiation

Replace expensive solar cells with cheaper optical elements

Make full use of high η

offered by multijunction

cells (Voc

~ ln

(Jsc

))•

High concentration (500-

1000) effectively offsets cell cost

CPV system components:

Solar cell•

Optics•

Tracker

Page 26: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

26© Giovanni Flamand – IMEC 2009

CPV system: optics

Basically two options: refractive vs. reflective

Photo Credit Solar systemsPhoto Credit Concentrix

Solar

Currently, as many solutions for optic system as CPV companies aroundTypical optical efficiency ≈

85%

Page 27: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

27© Giovanni Flamand – IMEC 2009

CPV system: tracker

Because of high concentration factor, CPV system needs to be pointed accurately at the sun (typical CPV acceptance angle = 0.10-10)

No proven best general solution →

room for improvement

Significant component of system cost (~20%) →

avoid overdesign!

Page 28: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

28© Giovanni Flamand – IMEC 2009

Contents

• High-efficiency multijunction

solar cells

• CPV system

• Commercial status and challenges

Page 29: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

29© Giovanni Flamand – IMEC 2009

Is CPV cost competitive?

Copyright Spectrolab

Page 30: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

30© Giovanni Flamand – IMEC 2009

Is CPV cost competitive?

Yes!but…

Page 31: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

31© Giovanni Flamand – IMEC 2009

Diffuse/Global irradiation lightYearly global irradiation(kWh/m²)

Is CPV cost competitive?

Page 32: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

32© Giovanni Flamand – IMEC 2009

Commercialization

First commercial systems are appearing.

© by Concentrix

Page 33: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

33© Giovanni Flamand – IMEC 2009

Commercialization

First commercial systems are appearing.

©

by Solar Systems

Page 34: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

34© Giovanni Flamand – IMEC 2009

Challenges

In order to move from demonstrator/prototype phase to commercial application, CPV industry requires:

• Assembly automation (Microelectronics/LED like)

• System integration

• Relevant DNI data

Standards: testing, power/energy rating, certification (IEC 62108)

Page 35: © Giovanni Flamand – IMEC 2009 1alan.ece.gatech.edu/ECE4833/Lectures/Lecture7B_Giovanni_FlamandCPV.pdfHigh-efficiency multijunction solar cells for Concentrator PV applications

35© Giovanni Flamand – IMEC 2009