» Æ ¡ f ½ l Ì ã Ì Â i È ì p...d ¡ x p Ì \ » Æ ¡ f ½ l Ì ã Ì Â i È ì p...

31
Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi (RIMS, Kyoto University) Symposium on Representation Theory 2005 Kakegawa, Shizuoka November 15 - 18, 2005 1) 2) [1] Multiplicity-free theorem in branching problems of uni- tary highest weight modules, Proc. Symposium on Rep- resentation Theory held at Saga, Kyushu 1997 (ed. K. Mimachi), (1997), 9–17. [2] Multiplicity one theorem in the orbit method (with Nas- rin), in memory of Karpelevic “Lie Groups and Symmet- ric Spaces”, (eds. S. Gindikin), 161–169 Amer. Math. Soc. 2003 [3] Geometry of Multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity, Acta Appl. Math. 81 (2004), 129-146. [4] Multiplicity-free representations and visible actions on complex manifolds, Publ. RIMS 41 (2005), 497-549. 表現論シンポジウム講演集,2005 pp.33-63 - 33 -

Upload: others

Post on 07-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

重複度1の表現と複素多様体上の

可視的な作用

Multip

licity-fre

ere

pre

sentatio

ns

and

visib

leactio

ns

on

com

ple

xm

anifold

s

ToshiyukiK

obayashi

(RIM

S,K

yoto

Univers

ity)

Sym

posiu

mon

Repre

sentatio

nT

heory

2005

Kakegawa,Shizuoka

Novem

ber15

-18,2005

アブストラクト:

  正則ベクトル束に群作用が与えられているときに、そ

の正則な大域切断の空間に実現された表現を考える。 この

表現は、

1)底空間が非コンパクトならば一般に無限次元表現

であり、

2)底空間における群軌道が無限個ならば一般に既約

とは程遠い表現になる。

  しかし、ある種の幾何的な条件(『可視的な作用』)が

満たされていれば、重複度が1という性質がファイバーへの

表現⇒大域切断における表現に伝播することが証明できる。

  この概説講演では、有限次元および無限次元の表現に

おける重複度1の表現のたくさんの例を紹介し、それが『可

視的な作用』という幾何的な条件からどのように理解できる

かを説明する予定です。

[1]

Mult

iplici

ty-fre

eth

eore

min

bra

nch

ing

pro

ble

ms

ofuni-

tary

hig

hes

tw

eigh

tm

odule

s,P

roc.

Sym

pos

ium

onR

ep-

rese

nta

tion

Theo

ryhel

dat

Sag

a,K

yush

u19

97(e

d.

K.

Mim

achi)

,(1

997)

,9–

17.

[2]

Mult

iplici

tyon

eth

eore

min

the

orbit

met

hod

(wit

hN

as-

rin),

inm

emor

yof

Kar

pel

evic

“Lie

Gro

upsan

dSym

met

-

ric

Spac

es”,

(eds.

S.

Gin

dik

in),

161–

169

Am

er.

Mat

h.

Soc.

2003

[3]

Geo

met

ryof

Mult

iplici

ty-fre

ere

pre

senta

tion

sof

GL(n

),

vis

ible

acti

ons

onflag

vari

etie

s,an

dtr

iunity,

Act

aA

ppl.

Mat

h.81

(200

4),12

9-14

6.

[4]

Mult

iplici

ty-fre

ere

pre

senta

tion

san

dvis

ible

acti

ons

on

com

ple

xm

anifol

ds,

Publ.

RIM

S41

(200

5),49

7-54

9.

表現論シンポジウム講演集,2005pp.33-63

- 33 -

Page 2: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.1

(Eig

enspace

decom

positio

n)

H:Vectorsp./

C,d

im<

A∈

End

C(H

)1©

s.t.

Ais

dia

gonalizable

,

all

eig

envalu

es

are

distin

ct.

⇒H

=Ce 1

⊕···⊕

Ce n

≃C

n(canonical)

1©&

detA

6=0

πA

:Z

−→

GL

C(H

)is

MF

n7−→

An

Eg.2

(Fourierseries

expansio

n)

L2(S

1)

≃∑

n∈

Z

Cei

nx

f(x

)=

n∈

Z

an

einx

Tra

nsla

tio

n(⇒

rep.ofthe

gro

up

S1 )

f(·)

7→f(·−

c)(c

∈S

1≃

R/2π

Z)

S1

yL

2(S

1)

isM

F

- 34 -

Page 3: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

π:

G→

GL

C(H

)

gro

up

Def.

(naive)

(π,H

)is

MF

multip

licity-fre

e

ifdim

Hom

G(τ,π)

≦1

(∀τ

:irre

d.re

p.of

G).

L2(S

1)

∃1

←ein

x

⇔dim

Hom

S1(τ,L

2(S

1))

=1

(∀τ

:irre

d.re

p.

of

S1)

⇒S

1y

L2(S

1)

isM

F

- 35 -

Page 4: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.3

(Taylo

rexpansio

n,

Laure

nt

expansio

n)

f(z1,...,zn)=

α=

(α1,...,α

n)a

αzα1

1···z

αn

n

Poin

t(too

obvio

us)

∃1

aα∈

Cfo

reach

α

dim

Hom

(S

1)n(τ

,O

(0)

≦1

(∀τ

:irre

d.re

p.of

(S1)n

)

i.e.

MF

Eg.4

(Peter-W

eyl)

¡¡

¡

irre

d.re

p.of

G

G:com

pact

(Lie

)gro

up

L2(G)≃

∑⊕

τ∈

G

τ⊠

τ∗

Tra

nsla

tio

n(⇒

rep.of

G)

f(·)

7→f(g

−1

1·g2)

⇒G

×G

yL

2(G

)is

MF

- 36 -

Page 5: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.5

(Sphericalharm

onics)

Hl:=

f∈

C∞

(S

n−1):

∆S

n−1f

=−

l(l+

n−

2)f

L2(S

n−1)≃

∞ ∑

l=0

Hl

O(n

)irre

d.

O(n)

yL

2(S

n−1)

isM

F

⊗-p

roduct

rep.

SL

2(C)

πk

y

irre

d.S

k(C2)

(k=

0,1,2,...)

Eg.6

(Cle

bsch-G

ord

an)

πk⊗

πl≃

πk+

l⊕

πk+

l−2⊕

···⊕

π|k−

l|

MF

- 37 -

Page 6: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Notatio

n

Hig

htest

weig

ht

λ=

(λ1

...,λ

n)∈

Zn,λ1≥

λ2≥

···≥

λn

πG

Ln

λ≡

πλ

:irred.

rep.

of

GL

n(C)

Eg.

λ=

(k,0,...,0)

↔G

Ln(C)

yS

k(C

n)

λ=

(1,...,1

︸︷︷

k

,0,...,0)

↔G

Ln(C)

k(C

n)

⊗-p

roduct

rep.

(G

Ln-c

ase)

Eg.7

(Pie

ri’s

law)

π(λ

1,...,λ

n)⊗

π(k,0

,...,0

)

≃⊕

µ1≥

λ1≥···≥

µn≥

λn

∑(µ

i−λ

i)=

k

π(µ1,...,µ

n)

MF

as

aG

Ln-m

odule

.

- 38 -

Page 7: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

⊗-p

roduct

rep.

(contin

ued)

Eg.

(countere

xam

ple

)π(2

,1,0

)⊗

π(2

,1,0

)is

NO

TM

F

as

aG

L3(C)-m

odule

.

⊗-p

roduct

rep.

(contin

ued)

λ=

(a,···,a

︸︷︷

p,

b,···,b

︸︷︷

q)∈

Zn,

a≥

b

Eg.

8.

(Stem

bridge

2001,K

–)

πλ

⊗π

νis

MF

as

aG

Ln(C

)-m

odule

if

1)

min

(a−

b,p,q)=

1(a

nd

νis

any),

or 2)

min

(a−

b,p,q)=

2and

νis

ofth

efo

rmν

=(x···x

︸︷︷

n1

y···y

︸︷︷

n2

z···z

︸︷︷

n3

)(x≥

y≥

z),

or 3)

min

(a−

b,p,q)≥

3,

&m

in(x−

y,

y−

z,n1,n2,n3)=

1.

- 39 -

Page 8: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.9

(G

Ln↓

GL

n−1)

πG

Ln

(λ1,...,λ

n)| G

Ln−1

≃⊕

λ1≥

µ1≥···≥

µn−1≥

λn

πG

Ln−1

(µ1,...,µ

n−1)

↑M

Fas

aG

Ln−1(C

)-m

odule

⇓Applicatio

n

Gelfand-T

setlin

basis

GL

n

πλ

yV

Fin

da

‘good’basis

of

V

Rem

ark.

Vis

not

necessarily

MF

as

a(C

×)n-m

odule

.

Idea

ofG

elfand-T

setlin

basis

GL

n(C)

y

MF

×G

Ln−1(C)

y

MF

(C×)2

×G

Ln−2(C)

y

MF

. . .. . .

y

MF

(C×)n

- 40 -

Page 9: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Infinite

dim

ensio

nalcase

(cf.

Eg.9

)

Eg.1

0.

(U(p,q)↓

U(p−

1,q))

∀π:

irre

d.

unitary

rep.

of

U(p,q)

with

hig

est

weig

ht

⇒re

strictio

nπ| U

(p−1,q)is

MF

as

aU(p

−1,q)-

module

Eg.1

1.

(G

L−

GL

duality

)

N=

mn

⇒G

Lm

×G

Lny

S(C

N)

S(M

(m

,n;C))

This

rep.

isM

F

•Explicit

form

ula

···

GL

m−

GL

nduality

•G

enera

lizatio

n

(Bra

nchin

glaw

ofholo

.disc.

w.r.t.

sym

metric

pair)

Hua-K

ostant-S

chm

id-K

-¢ ¢ ¢ ¢

£ £ £ £

each

com

ponent···

finite

dim

∞−

dim

- 41 -

Page 10: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Anothergenera

lizatio

n

Eg.1

2(K

ac’s

MF

space)

S(C

N)

isstill

MF

as

aG

Lm−1×

GL

nm

odule

We

recall:

π:

Ggro

up→

GL

C(H

)

Def.

(naive)

(π,H

)is

MF

multip

licity-fre

eif

dim

Hom

G(τ,π)≤

1(∀τ:

irre

d.

rep.

of

G).

- 42 -

Page 11: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Observ

atio

n

n≤

1⇔

End(C

n)

iscom

mutative.

(π,H

):

unitary

rep.of

G

Def.

(π,H

)is

MF

if

End

G(H

)is

com

mutative.

More

genera

lly,(

,W

):top.re

p.

Def.

(,W

)is

MF

ifany

unitary

subre

p.

(π,H

)is

MF

(∃G-inj.

cont.hom

.H

→W

)

Eg.2

(Fourierseries

expansio

n)

L2(S

1)

≃∑

n∈

Z

Cei

nx

f(x

)=

n∈

Z

an

einx

einx

(cf.

centrifu

galsepara

tor)

Tra

nsla

tio

n(⇒

rep.ofthe

gro

up

S1 )

f(·)

7→f(·−

c)(c

∈S

1≃

R/2π

Z)

S1

yL

2(S

1)

isM

F

- 43 -

Page 12: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.1

3(Fouriertra

nsfo

rm)

L2(R)≃

∫ ⊕ RC

eiζ

xdζ

(direct

integra

lofHilbert

sp.)

f(x

)=∫ R

f(ζ

)eiζ

xdζ

Tra

nsla

tio

n(⇒

regularre

pre

sentatio

non

L2(R))

f(·)

7→f(·−

c)

Ry

L2(R

)is

“M

F”

. . .contin

uous

spectru

m

Sym

metric

Space

Eg.1

4.

G/K

:Rie

mannia

nSym

m.Space

⇒G

yL

2(G

/K

)is

MF.

Eg.1

5.

(counterexam

ple

)

G/H

:Sem

isim

ple

Sym

m.Space

⇒G

yL

2(G

/H

)

isNO

Talw

ays

MF.

- 44 -

Page 13: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.1

4-A.

G/K

=SL(n,R

)/SO

(n)

L2(G

/K

)≃

∫⊕ λ

1≥···≥

λn

Σλ

i=0

cont.spec.

MF

Hλ:∞

-dim

,irred.rep.of

G

Eg.1

5-A.

G/H

=SL(n,R

)/SO

(p,q

)

Multip

licity

ofm

ost

cont.spec.

inL

2(G

/H

)

=n!

p!q

!>

1if

p,q

>0.

⇒NO

TM

F

Vectorbundle

case

Eg.1

5-B.

G/K

=G

L(n

,R)/O

(n)

Vτ:=

G× K

τ→

G/K

τ:

unitary

rep.of

K

⇒G

yL

2(V

τ)

unitary

Gy

L2(V

τ)

isNO

Talw

ays

MF.

but

itis

MF

ifτ≃

Λk(C

n)

(0≤

k≤

n)

- 45 -

Page 14: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Exam

ple

sofM

ultip

licity-F

ree

reps

•Peter-W

eyltheore

m

•Cart

an-H

elg

ason

theore

m

•Bra

nchin

glaws:

GL

n↓

GL

n−1,

On↓

On−1

•Cle

bsch-G

ord

an

form

ula

•Pie

ri’s

law

•G

Lm-G

Ln

duality

•Pla

nchere

lfo

rmula

for

L2(G

/K

)(G

/K

:Rie

mannia

nsy

mm

etr

icsp

aces)

•(G

elfand-G

raev-V

ers

hik

)canonical

repre

sentatio

ns

•Hua-K

ostant-S

chm

idK

-type

form

ula

•(K

ac)

linearm

ultip

licity-fre

espaces

•(Panyushev)

sphericalnilpotent

orb

its

•(Stem

bridge)

multip

licity-fre

etensor

pro

duct

repre

sentatio

ns

of

GL

n

etc.

Accord

ingly,various

techniq

ues

can

be

applied

ineach

MF

case.

Forexam

ple

,one

can

1)

look

foran

open

orb

it

ofa

Bore

lsubgro

up.

2)

apply

Little

wood-R

ichard

son

rule

sand

variants.

3)

use

com

putat’l

com

bin

atorics.

4)

em

plo

ythe

com

mutativity

ofthe

Hecke

alg

ebra

.

5)

apply

Schur-W

eylduality

and

Howe

duality

.

- 46 -

Page 15: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Aim

···

To

give

asim

ple

prin

cip

le

that

expla

ins

the

property

MF

ofall

these

exam

ple

s,

and

more.

§2M

Ftheorem

multip

licity

free

H,K

:Lie

groups

D:

com

ple

xm

fd.

P→

D:

H-equiv.

prin

cip

alK

-b’d

le

µ:

K→

GL

C(V

)

⇓ Settin

g1

H-equiv.

holo

.vectorb’d

le:

V:=

KV

→D

⇓ HyO

(D,V)=

holo

.sectio

ns

- 47 -

Page 16: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Settin

g2

σ1

yP

diff

eo.

σσ2

yK

auto.

σ3

yH

auto.

s.t.

σ(h

pk)=

σ(h)σ

(p)σ(k)

∋∋∋

HP

K

σy

D≃

P/K

anti-holo

morphic

Recall

Hy

Px

K

↓ D

B B B B B B B B B B

BM

∩∩

Hy

Px

−→

GL

C(V

)

↓ D

B⊂

:=p∈

P:σ(p)=

p

subset

M≡

MB

:=k∈

K:bk

∈H

b(∀b∈

B)

Assum

ptio

n

(a)

HB

K=

P

(b)

µ| M

isM

F

say,

µ| M

≃l ⊕

i=1

νi

(c)

µ

σ≃

µ∗

as

K-m

odule

s

νi

σ≃

ν∗ i

as

M-m

odule

s(∀i)

- 48 -

Page 17: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Assum

ptio

n

(a)

HB

Kcontain

san

interior

poin

tof

P

(b)

µ| M

isM

F

say,

µ| M

≃l ⊕

i=1

νi

(c)

µ

σ≃

µ∗

as

K-m

odule

s

νi

σ≃

ν∗ i

as

M-m

odule

s(∀i)

Poin

tofAssum

ptio

ns

(a)

···

base

sp.

(b)

···

fiber

(c)

···

oft

en

autom

atic

Theore

m(M

Ftheore

m)

Assum

e∃σ

and

∃B

⊂P

σ

satisfy

ing

(a)∼(c).

⇒H

yO

(D

,V)

isM

F.

- 49 -

Page 18: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Poin

t

•propagatio

nofM

Fproperty

fiberM

F⇒

sectio

ns

MF

•geom

etry

ofbase

space

···

‘visib

leactio

n’

yV

H↓

y

D

⇒H

y

O(D

,V)

Assum

ptio

n(c)

µ

σ≃

µ∗

as

K-m

odule

s

hold

sif

σis

aW

eylin

volu

tio

n

i.e. σ∈

Aut(

K),

σ2

=id

s.t.

σ(g)=

g−1

on

som

em

ax

toru

sof

K

e.g

.K

=U(n),

σ(g)=

g

- 50 -

Page 19: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

§3Visib

leactio

n

holo

morp

hic

Hy

Dcom

ple

xm

fd,connected

Def.

The

actio

nis

(stro

ngly)visib

le

∃D

′⊂

Dopen

subset

if∃σ

yD

anti-holo

morp

hic

∃N

⊂D

totally

real

s.t.

σ| N

=id

Nm

eets

every

H-o

rbit

inD

σstabilizes

every

H-o

rbit.

Assum

ptio

n(a)

+(stro

ngly)

visib

le

actio

n

Assum

ptio

n(a):

HB

K=

P

forsom

eB

⊂P

σ

⇒N

:=

PσK

/K

meets

every

H-o

rbit

on

D:=

P/K

⇒H

yD

visib

le

(σ:

involu

sio

n⇒

N:

totally

real)

- 51 -

Page 20: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Exam

ple

ofVisib

leactio

ns

T=

a∈

C:|a|=

1

(≃

S1)

Eg.

Ty

C⊃

R

az7→

az

Rm

eets

every

T-orbit

R

⇒T-actio

non

Cis

visib

le.

holo

morphic

Hy

(D

,J)com

ple

xm

fd,connected

Def.

Actio

nis

visib

leif

∃D

′⊂

D,

open

∃N

⊂D

s.t.

totally

real

Nm

eets

every

H-orbit

Jx(T

xN

)⊂

Tx(H

·x)

(x∈

N)

- 52 -

Page 21: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

sym

ple

ctic

Hy

(D

,ω)

sym

ple

ctic

mfd

Def.

(G

uille

min

-Stern

berg

,

Huckle

berry-W

urz

bacher)

Actio

nis

coisotro

pic

(orm

ultip

licity-fre

e)

if

Tx(H

·x)⊥

ω⊂

Tx(H

·x)

(x∈

D)

isom

etric

Hy

(D,g)

Rie

mannia

nm

fd

Def.

(Podesta-T

horb

erg

sson)

Actio

nis

polarif

∃N

⊂D

s.t.

Nm

eets

every

H-o

rbit.

TxN

⊥T

x(H

·x)

(x∈

N)

- 53 -

Page 22: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Hy

D

com

pact

com

pact,K

ahle

r

Rie

mannia

n

Polar

Visib

le&

dim

S=

dim

M

Coisotro

pic

(m

ultip

licity-

free)

Com

ple

xSym

ple

ctic

Stro

ngly

Visib

le

Com

ple

x

Exam

ple

sofVisib

leactio

ns

Eg.

Ty

Cis

visib

le.

∪ R⇓

Eg.

Tn

yC

nis

visib

le.

∪ Rn

Eg.

Tn

yPn−1

Cis

visib

le.

Pn−1

R⇓

Eg.

U(1

U(n−

1)

yB

n

(fu

llflag

variety

)is

visib

le.

Eg.

U(n)

yPn−1

Bn

isvisib

le.

- 54 -

Page 23: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Unders

tandin

gofvisib

leactions

HL

⊃G ∪ Gσ

:=

Tn

U(1

U(n−

1)

⊃U(n)

∪O

(n)

Geom

etr

y² ±

¯ °P

n−1R

meets

every

Tn-o

rbit

on

Pn−1C

‖G

σ/G

σ∩

L‖ H

‖G

/L

(visib

leaction)

←→

Gro

up

® ­

© ªG

=H

GσL

⇒Eg.3

l

Gro

up

® ­

© ªG

=L

GσH

⇒Eg.9

l

Gro

up

² ±

¯ °(G

×G)=

dia

g(G)(

Gσ×

Gσ)(H

×L)

⇒Eg.7

⇓T

heore

m

Various

kin

ds

ofM

Fre

sult

inclu

din

g

•(Fourierseries)

Ty

L2(T)

Eg.2

•(Taylo

rseries)

Tn

yO

(C

n)

Eg.3

•(G

Ln↓

GL

n−1)Restrictio

nπ| G

Ln−1Eg.9

•(Pie

ri)

π⊗

Sk(C

n)

Eg.7

•(K

ac)

GL

m−1×

GL

ny

S(C

mn)

Eg.1

2

- 55 -

Page 24: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.

G/K

com

pact

sym

m.sp.

⇒G

yG

C/K

Cis

visib

le.

⇓T

heore

m

Eg.1

6.

Gy

L2(G

/K

)is

MF.

Eg.1

7.(vectorbundle

case)

Vk=

U(n)

×O

(n)Λ

k(C

n)→

U(n

)/O

(n)

U(n

)y

L2(V

k)

isM

F.

Eg.

G/K

non-c

om

pact

sym

m.sp.

⇒G

⊂cro

wn

GC/K

Cis

visib

le.

⇓T

heore

m

Eg.1

6′ .

Gy

L2(G

/K

)is

MF.

Eg.1

7′ .

(vectorbundle

case)

Vk=

GL(n,R

O(n

)Λk(C

n)→

U(n

)/O

(n)

GL(n

,R)

yL

2(V

k)

isM

F.

- 56 -

Page 25: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

G/K

Herm

itia

nsym

m.space

Eg.

G=

SL(2

,R)

K=

SO

(2)

H=

a0

0a−1

:a

>0

G/K

≃z∈

C:|z|<

1

Ky

G/K

visib

leH

yG

/K

visib

le

K-orbits

H-orbits

Theorem

H⊂

G⊃

K

Assum

e

G/K

Herm

itia

nsym

m.sp.

(G

,H)

sym

metric

pair

⇒H

yG

/K

isvisib

le

⇓T

heorem

Eg.18

πλ,π

µ:

hig

hest

wt.m

odule

s

ofscalartype

⇒π

λ⊗

πµ

isM

F

Eg.19

πλ

:hig

hest

wt.m

odule

ofscalartype

(G,H

):

sym

metric

pair

⇒π

λ| H

isM

F

- 57 -

Page 26: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Also,fo

rfinite

dim

ensio

nalcase

⇓T

heore

m

Eg.2

0(O

kada,1998)

gC

=gl(

n,C)

λ=

(a,···,a

︸︷︷

p

,b,···,b

︸︷︷

n−

p

)∈

Zn,a≥

b

πλ| h

Cis

MF

if

hC

=

gl(

k,C)+

gl(

n−

k,C)

(1≤

k≤

n)

o(n,C)

sp(n 2,C)

(n:even)

G:

non-com

pact,sim

ple

Lie

gp.,

G/K

Herm

itia

n

Eg.

SU(p,q

),S

O(n,2

),S

p(n,R

),

SO

∗(2

n),E

6(−14),E

7(−25)

gC

=k C

+p+

+p−

Def.

(π,V

)∈

Gunitary

hig

hest

wt

rep

⇔υ∈

V∞

:dπ(X

=0

(∀X

∈p+)

6=0

µ KW

rite

π=

πG(µ)

(µ∈

K)

Def.

π:

holo

morphic

discrete

serie

s

⇔Hom

G(π,L

2(G))

6=0

π:

scalartype

⇔dim

µ=

1

- 58 -

Page 27: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Def.

(G,H

)sym

metric

pair,

holo

morphic

type

⇔∃τ∈

Aut(

G),

τ2

=id

s.t.

(G

τ) 0

⊂H

⊂G

τ

τy

G/K

holo

morphic

gC

=k C

+p++

p−

∪∪

∪∪

hC

=gτ C

=kτ C

+pτ ++

pτ −

tτ⊂

Cartan

∩∩

Cartan

t⊂

k

ν1,.

..,ν

k

maxim

alset

of

strongly

orth.roots

in∆

(p−

τ+

,tτ)

Note:

k=

R-rank

G/H

Def.

(G,H

)sym

metric

pair,

holo

morphic

type

⇔∃τ∈

Aut(

G),

τ2

=id

s.t.

(G

τ) 0

⊂H

⊂G

τ

τy

G/K

holo

morphic

Eg.

τ=

θ,

H=

K

Eg.

G=

Sp(n,R

)(n=

p+

q)

H=

Sp(p,R

Sp(q

,R)

H=

U(p,q

)

H=

U(n)

(=K

)

cf.

H=

GL(n

,R)

not

holo

.type

- 59 -

Page 28: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Theore

m

πG(µ)∈

G:holo

.disc.series,

scalarty

pe

(G

,H

):sym

metric

pair,

holo

morp

hic

type

πG(µ

)H

≃∑

a1≥···≥

ak≥0

aj∈

N

πH

µ

∣ ∣ ∣

tτ−

k∑ j=

1a

jνj

H=

K···

Schm

id(1969)

GL(n

,C)

yN

⊂nilpotent

orb

itM

(n,C)

Eg.2

1(Panyushev

1994)

O(N

)is

MF

as

GL(n

,C)-m

odule

⇔N

=N

(2p,1

n−2p)

(0≤

∃p≤

n 2)

N(2

p,1

n−2p)∋

01

00

p

···︷

︸︸

︷0

10

0

0···n−

2p

0

︸︸

- 60 -

Page 29: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.

0≤

2p≤

n

1)

U(n)

yN

(2p,1

n−2p)is

visib

le.

2)(P

anyushev)

O(N

2p,1

n−2p)

isM

F

N(2

p,1

n−2p)∋

01

00

p

···

︸︸

︷0

10

0

0···n−

2p

0

︷︸︸

Sketch

ofpro

of

G=

U(n)

H=

U(p)×

U(q)

(p+

q=

n)

G× H

M(p,q;

C)→

N(2

p,1

n−2p)

Hy

M(p

,q;

C)

visib

le

⇒G

yN

(2p,1

n−2p)

visib

le

More

exam

ple

sofvisib

leactio

ns

Eg.

n1+

n2+

n3

=p+

q=

n

Grp(R

n)

meets

every

orb

itof

U(n

1)×

U(n2)×

U(n3)y

Grp(C

n)

(⇒

visib

leactio

n)

⇔(U(n1)×

U(n2)×

U(n3))×

O(n)×(U(p)×

U(q))

։U(n)

⇔m

in(n

1+

1,n2+

1,n3+

1,p,q)

≦2

- 61 -

Page 30: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

⇓T

heorem

MF

property

ofthe

followin

g

•G

Lm

×G

Ln

yS(C

mn)

Eg.1

1

•G

Lm−1×

GL

ny

S(C

mn)

Eg.1

2

•the

Stem

brid

ge

list

of

πλ⊗

πν

Eg.8

•G

Ln↓(G

Lp×

GL

q)

Eg.2

2

•G

Ln↓(G

Ln1×

GL

n2×

GL

n3)

Eg.2

3

•∞

-dim

ensio

nalversio

ns

...

⊗-p

roduct

rep.

(contin

ued)

λ=

(a,···,a

︸︷︷

p,

b,···,b

︸︷︷

q)∈

Zn,

a≥

b

Eg.

8.

(Stem

bridge

2001,K

–)

πλ

⊗π

νis

MF

as

aG

Ln(C

)-m

odule

if

1)

min

(a−

b,p,q)=

1(a

nd

νis

any),

or 2)

min

(a−

b,p,q)=

2and

νis

ofth

efo

rmν

=(x···x

︸︷︷

n1

y···y

︸︷︷

n2

z···z

︸︷︷

n3

)(x≥

y≥

z),

or 3)

min

(a−

b,p,q)≥

3,

&m

in(x−

y,

y−

z,n1,n2,n3)=

1.

- 62 -

Page 31: » Æ ¡ f ½ l Ì ã Ì Â I È ì p...d ¡ x P Ì \ » Æ ¡ f ½ l Ì ã Ì Â I È ì p Multiplicity-free representations and visible actions on complex manifolds Toshiyuki Kobayashi

Eg.2

2.

(G

Ln↓(G

Lp×

GL

q))

n=

p+

q

πG

Ln

(x,...,x

,y,...,y

,z,...,z

)| G

Lp×

GL

qis

MF

(

n1

(

n2

(

n3

ifm

in(p,q)≤

2or

ifm

in(n1,n2,n3,x−

y,y−

z)≤

1(K

ostant

n3

=0;K

rattenthale

r1998)

Eg.2

3.

(G

Ln↓(G

Ln1×

GL

n2×

GL

n3))

n=

n1+

n2+

n3

πG

Ln

(a,...,a

,b,...,b)| G

Ln1×

GL

n2×

GL

n3

isM

F

(

p

(

q

ifm

in(n1,n2,n3)≤

1or

ifm

in(p,q,a−

b)≤

2

Orb

itm

ethod

GAd

yg∗

⊃O

G

∪↓pr

HAd∗

yh∗

⊃O

H

H⊂

G⊃

Ksym

m.

pair

Herm

itia

nsym

m.pair

g⊃

k⊃

center

⇔R·z

⊂g∗

6=

0

Theore

m(Nasrin

&K

-)

IfO

G∩

R·z6=

∅,then

#(O

G∩

pr−

1(O

H))/H

≦1

forany

OH.

- 63 -