· Ç Ç Ç Ç ÇÇ ÇÇ ÇÇ ÇÇ ... ambient temperature and total power dissipated in ic is tj...

19
Semiconductor Components Industries, LLC, 2009 November, 2009 Rev. 9 1 Publication Order Number: NCP3063JP/D NCP3063, NCP3063B, NCV3063 1.5A、昇圧/降圧/反転 スイッチング・レギュレータ NCP3063シリーズは、一般的MC34063AおよびMC33063A モノリシックDCDCコンバータをさらにい周数にアップ グレードしたデバイスです。これらのデバイスは、内償された基準電圧、コンパレータ、アクティブ電流付きの制御されたデューティ・サイクル・オシレータ、 ドライバ、および高電流出力スイッチから成されていま す。このシリーズは、最小の外付け品数による圧、昇圧 、および圧反アプリケーションにむために別に 設計されました。 特長 40V入力までの動作 低スタンバイ電流 1.5Aまでの出力スイッチ電流 出力調整可 150kHzの周数動作 高精1.5%準電 新しい特長 ヒステリシス付内サーマル・シャットダウン サイクル単位の電流 フリー・パッケージをアプリケーション 圧、昇圧、および反転電源アプリケーション LED バッテリ・チャージャ Figure 1. Typical Buck Application Circuit L REFERENCE D COMPARATOR 5 R2 R S Q SET dominant + 7 COMPARATOR CT 3 Rs 1.25 V 8 NCP3063 REGULATOR TSD 0.2 V + 2 6 R1 R S Q 4 1 12 V CT 2.2 nF OSCILLATOR 47 mH V out 3.3 V / 800 mA + 470 mF C out V in + 220 mF C in SET dominant 0.15 W 3.9 kW 2.4 kW PDIP8 P, P1 SUFFIX CASE 626 http://onsemi.com MARKING DIAGRAMS DFN8 CASE 488AF SOIC8 D SUFFIX CASE 751 1 8 NCP3063x AWL YYWWG NCP3063x = Specific Device Code x = B A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G = PbFree Package (Note: Microdot may be in either location) See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet. ORDERING INFORMATION V3063 ALYW G 1 3063x ALYW G 1 NCV3063 AWL YYWWG 1 1 1 8 NCP 3063x ALYW G NCP 3063 ALYW G 1

Upload: dinhnhi

Post on 08-Nov-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Semiconductor Components Industries, LLC, 2009

November, 2009 − Rev. 91 Publication Order Number:

NCP3063JP/D

�������� ��������������

�� ������������� �������

NCP3063���������MC34063A��MC33063A �����DC−DC��������������������� !"#�$%&'()*�+#�$%��,�+�-�.�*"/0���1������234�5�6 78+59�*"#:�23;<$�=;>����� ?$������@A%$�BC��D�*E�F'()+������GH+I7J�K���L�0�M0���0N����O��P���Q�R"S��T����*F!"(

��

40VUAF&+VW

X%���$� 1.5AF&+@A%$�B�

@A0�YZ� 150kHz+���VW

��-1.5%/0

[!��� \%2��%7,�<�]=;�^�_`a�

<$�=bc+�5�

�d��;1�O�e��f

��������

�0�M0���N�����O��P� gALED�h�i

��2�;B^�e^

Figure 1. Typical Buck Application Circuit

L

REFERENCE

D

COMPARATOR

5

R2

R

SQ

SET dominant

+−

7 COMPARATOR

CT3

Rs

1.25 V

8NCP3063

REGULATOR

TSD

0.2 V

+

2

6

R1

R

SQ

4

1

12 VCT

2.2 nF

OSCILLATOR

47 �H

Vout3.3 V /800 mA

+470 �FCout

Vin

+

220 �FCin

SET dominant

0.15 �

3.9 k�2.4 k�

PDIP−8P, P1 SUFFIX

CASE 626

http://onsemi.com

MARKINGDIAGRAMS

DFN−8CASE 488AF

SOIC−8D SUFFIXCASE 751

1

8

NCP3063xAWL

YYWWG

NCP3063x = Specific Device Codex = B

A = Assembly LocationL, WL = Wafer LotY, YY = YearW, WW = Work Week� = Pb−Free Package

(Note: Microdot may be in either location)

See detailed ordering and shipping information in the packagedimensions section on page 16 of this data sheet.

ORDERING INFORMATION

V3063ALYW

1

3063xALYW

�1

NCV3063AWL

YYWWG

1

1

18

NCP3063xALYW

NCP3063ALYW

1

NCP3063, NCP3063B, NCV3063

http://onsemi.com2

Figure 2. Pin Connections

Timing Capacitor

ComparatorInvertingInput

VCC

N.C.

Ipk Sense

GND

Switch Emitter

Switch Collector

(Top View)

4

3

2

1

5

6

7

8ÇÇÇÇ

ÇÇÇÇÇÇÇÇ Comparator

InvertingInput

VCC

N.C.

Ipk Sense

Timing Capacitor

GND

Switch Emitter

Switch Collector

(Top View)

Figure 3. Pin Connections

NOTE: EP Flag must be tied to GND Pin 4on PCB

EP Flag

Figure 4. Block Diagram

REFERENCE

COMPARATOR

5

R

SQ

SET dominant

+−

7 COMPARATOR

CT3

1.25 V

8

NCP3063

REGULATOR

TSD

0.2 V

+

2

6

R

SQ

4

1

OSCILLATOR

Switch Collector

Switch Emitter

Timing Capacitor

GNDComparator Inverting Input

+VCC

Ipk Sense

N.C.

SET dominant

NCP3063, NCP3063B, NCV3063

http://onsemi.com3

PIN DESCRIPTION

Pin No. Pin Name Description

1 Switch Collector Internal Darlington switch collector

2 Switch Emitter Internal Darlington switch emitter

3 Timing CapacitorOscillator Input

Timing Capacitor

4 GND Ground pin for all internal circuits

5 ComparatorInverting Input

Inverting input pin of internal comparator

6 VCC Voltage Supply

7 Ipk Sense Peak Current Sense Input to monitor the voltage drop across an external resistor to limit the peakcurrent through the circuit

8 N.C. Pin Not Connected

ExposedPad

Exposed Pad The exposed pad beneath the package must be connected to GND (Pin 4). Additionally, usingproper layout techniques, the exposed pad can greatly enhance the power dissipation capabilitiesof the NCP3063.

MAXIMUM RATINGS (measured vs. Pin 4, unless otherwise noted)

Rating Symbol Value Unit

VCC pin 6 VCC 0 to +40 V

Comparator Inverting Input pin 5 VCII −0.2 to + VCC V

Darlington Switch Collector pin 1 VSWC 0 to +40 V

Darlington Switch Emitter pin 2 (transistor OFF) VSWE −0.6 to + VCC V

Darlington Switch Collector to Emitter pin 1−2 VSWCE 0 to +40 V

Darlington Switch Current ISW 1.5 A

Ipk Sense Pin 7 VIPK −0.2 to VCC + 0.2 V

Timing Capacitor Pin 3 VTCAP −0.2 to +1.4 V

POWER DISSIPATION AND THERMAL CHARACTERISTICS

Rating Symbol Value Unit

PDIP−8 Thermal Resistance, Junction−to−Air R�JA 100 C/W

SOIC−8 Thermal Resistance, Junction−to−AirThermal Resistance, Junction−to−Case

R�JAR�JC

18045

C/W

DFN−8 Thermal Resistance, Junction−to−Air R�JA 80 C/W

Storage Temperature Range TSTG −65 to +150 C

Maximum Junction Temperature TJ MAX +150 C

Operating Junction Temperature Range (Note 3) NCP3063NCP3063B, NCV3063

TJ 0 to +70−40 to +125

C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above theRecommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affectdevice reliability.1. This device series contains ESD protection and exceeds the following tests:

Pin 1−8: Human Body Model 2000 V per AEC Q100−002; 003 or JESD22/A114; A115Machine Model Method 200 V

2. This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78.3. The relation between junction temperature, ambient temperature and Total Power dissipated in IC is TJ = TA + R� PD4. The pins which are not defined may not be loaded by external signals

NCP3063, NCP3063B, NCV3063

http://onsemi.com4

ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, TJ = Tlow to Thigh [Note 5], unless otherwise specified)

Symbol Characteristic Conditions Min Typ Max Unit

OSCILLATOR

fOSC Frequency (VPin 5 = 0 V, CT = 2.2 nF,TJ = 25C)

110 150 190 kHz

IDISCHG /ICHG

Discharge to Charge Current Ratio (Pin 7 to VCC, TJ = 25C) 5.5 6.0 6.5 −

IDISCHG Capacitor Discharging Current (Pin 7 to VCC, TJ = 25C) 1650 �A

ICHG Capacitor Charging Current (Pin 7 to VCC, TJ = 25C) 275 �A

VIPK(Sense) Current Limit Sense Voltage (TJ = 25C) (Note 6) 165 200 235 mV

OUTPUT SWITCH (Note 7)

VSWCE(DROP) Darlington Switch Collector toEmitter Voltage Drop

(ISW = 1.0 A, Pin 2 to GND,TJ = 25C) (Note 7)

1.0 1.3 V

IC(OFF) Collector Off−State Current (VCE = 40 V) 0.01 100 �A

COMPARATOR

VTH Threshold Voltage TJ = 25C 1.250 V

NCP3063 −1.5 +1.5 %

NCP3063B, NCV3063 −2 +2 %

REGLiNE Threshold Voltage Line Regulation (VCC = 5.0 V to 40 V) −6.0 2.0 6.0 mV

ICII in Input Bias Current (Vin = Vth) −1000 −100 1000 nA

TOTAL DEVICE

ICC Supply Current (VCC = 5.0 V to 40 V,CT = 2.2 nF, Pin 7 = VCC,VPin 5 > Vth, Pin 2 = GND,

remaining pins open)

7.0 mA

Thermal Shutdown Threshold 160 C

Hysteresis 10 C

5. NCP3063: Tlow = 0C, Thigh = +70C;NCP3063B, NCV3063: Tlow = −40C, Thigh = +125C

6. The VIPK(Sense) Current Limit Sense Voltage is specified at static conditions. In dynamic operation the sensed current turn−off value dependson comparator response time and di/dt current slope. See the Operating Description section for details.

7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.8. NCV prefix is for automotive and other applications requiring site and change control.

NCP3063, NCP3063B, NCV3063

http://onsemi.com5

Figure 5. Oscillator Frequency vs. OscillatorTiming Capacitor

Figure 6. Oscillator Frequency vs. SupplyVoltage

Ct, CAPACITANCE (nF) VCC, SUPPLY VOLTAGE (V)

402925161273110

120

130

150

160

170

180

190

Figure 7. Emitter Follower Configuration OutputDarlington Switch Voltage Drop vs. Temperature

Figure 8. Common Emitter Configuration OutputDarlington Switch Voltage Drop vs. Temperature

TJ, JUNCTION TEMPERATURE (C) TJ, JUNCTION TEMPERATURE (C)

150100500−501.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

150100500−501.0

1.05

1.10

1.15

1.20

1.25

Figure 9. Emitter Follower Configuration OutputDarlington Switch Voltage Drop vs. Emitter Current

Figure 10. Common Emitter ConfigurationOutput Darlington Switch Voltage Drop vs.

Collector Current

IE, EMITTER CURRENT (A) IC, COLLECTOR CURRENT (A)

1.51.00.501.01.1

1.2

1.3

1.5

1.7

1.8

2.0

1.51.00.500.50.6

0.7

0.8

0.9

1.1

1.4

1.5

FR

EQ

UE

NC

Y (

kHz)

FR

EQ

UE

NC

Y (

kHz)

21 34 38

140

CT = 2.2 nFTJ = 25C

VO

LTA

GE

DR

OP

(V

)

VCC = 5.0 VIE = 1 A

VO

LTA

GE

DR

OP

(V

)

VCC = 5.0 VIC = 1 A

VO

LTA

GE

DR

OP

(V

)

VO

LTA

GE

DR

OP

(V

)

1.4

1.6

1.9

1.0

1.3

1.2

VCC = 5.0 VTJ = 25C

VCC = 5.0 VTJ = 25C

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 1011 121314151617181920

NCP3063, NCP3063B, NCV3063

http://onsemi.com6

Figure 11. Comparator Threshold Voltage vs.Temperature

Figure 12. Current Limit Sense Voltage vs.Temperature

TJ, JUNCTION TEMPERATURE (C) TJ, JUNCTION TEMPERATURE (C)

1259535205−25−401.20

1.22

1.24

1.26

1.28

1.30

12550355−10−25−400.10

0.12

0.14

0.18

0.20

0.22

0.28

0.30

Figure 13. Standby Supply Current vs. Supply Voltage

VCC, SUPPLY VOLTAGE (V)

3833288.03.02.0

2.5

3.0

3.5

4.5

5.0

5.5

6.0

Vth

, CO

MP

AR

AT

OR

TH

RE

SH

OLD

VO

LTA

GE

(V

)

Vip

k(se

nse)

, CU

RR

EN

T L

IMIT

SE

NS

EV

OLT

AG

E (

V)

20 95 110

0.16

I CC

, SU

PP

LY C

UR

RE

NT

(m

A)

CT = 2.2 nFPin 5, 7 = VCCPin 2 = GND

−10 806550 110

0.26

0.24

65 80

13 18 23 43

4.0

NCP3063, NCP3063B, NCV3063

http://onsemi.com7

����

NCP3063��DC−DC�����;���O��P���G�j�*" ������%$�B��;�k:���&'(l +����QmnoL)p��qE�GH+I7J�K!�&�M0��0���0N�������"rs#'L)pt&8F'(�$p!E���%_%utv!����:�]&Kw'(xyzJ)*t{|F'(}+�4~����Figure 4�,!F'(

!"#

NCP3063��\%2��%���DC−DC�����&���_59-�i���!E@A0���j!F'(����)+VW � ����#�<.����ww/�!E|������+��j���0=���.��1&'(}+�VW���Figure 14�,!F'(�,'L@A0����0�����+�+&{|�h2�'L"S����=pc3�4�!E{|F'(�����+�56V���d3� ���;��1���t@A0��=t�7���&{L)p�89!F'()*��qE�@A%$�B�-�i��qE59�*L���p#:�23;<$�=&�>�;>d�:|;!�@Ad3=�;��#�<�������!F'(@A0��=t�7��<'Lp

�@A%$�B+=<$�=+���>�t>?�*F'(d3� ���;��1�����@.���qE@A0t�7����X�'Lp"��%$�B���$��4=!F'()+��A�&�-�i<$�=+���-�i<$�=+��p��1<$�=�B�<$�=�F"���<$�=pB�<$�=+C�@A%$�B+�D�$��4='L)pt&8F'�EF���E��AN920/D����(

$%&

-�i���p@A%$�B+>d C���$¡��;��#�<CT�G¢!"�&�~�?£�*F'(��#�<CT��1¤6+HI+,��¥�%p�����qE¦;§�*�¨�3�J++)©|���KD!F'()+HI��6/(6 + 1)F"�0.857(L�p!E�%$�B��;�����+GgtON/(tON + tOFF)���!F'(-�i+¨�������0�L500mV&'(ª1-�i����¤'LCT+��#�<���M'L���Figure 15�{L«���!F'(NCP3063+&K¬�e+www.onsemi.com�Excel��%+��­�=t{|F'(

Figure 14. Typical Operating Waveforms

1

0

Output Switch

1

0

On

Off

Feedback Comparator Output

Nominal Output Voltage Level

Startup Operation

Output Voltage

Timing Capacitor, CT

IPK Comparator Output

NCP3063, NCP3063B, NCV3063

http://onsemi.com8

'�()*+���,�-���

D®+A�&VW!E�L0���=t��_�*"�����&��@A%$�B+�D�0d3� ���;��1���&N¯�*�-�i��qEO°!F'(�����@[email protected]��q"|�d3� ���0t89&8±Lp�Q®VWA�t-K!F'()*�+%u�&�Ipk�²�%;��1���t`���_�@A%$�B�³R!F'(VCC��`���_�

@A%$�Bp"´�H�µ¶RSC�·U!E�

%$�B��0�¸¹!F'(RSC&+0��t�²�%;��1�����qE º��*F'(0��tVCC�¤!E200mV�S»Lp���1����?�B�²�_!E�<$�=bc

&@A%$�B+�D�O°�oF'(�������/�� ������������������� ����!"�#�$%&'()�*+,

-./012

RealVturn−off onRs Resistor

t_delay

I1

Io

di/dt slope I through theDarlington

SwitchVipk(sense)

VIPK(Sense)�5�²�%0%���P= ��T�%u&U��*E�F'(`$¼¡��VW&��²�%�*"�+���>d�����1���+½V C���+¾8di/dt��qEWF|F'(

Rscµ¶&+sX+Vturn−off(

Vturn_off � Vipk(sense) � Rs � (t_delay � di�dt)

L�Ipk��1���+½V Ct_delay(Y¿��350ns&'(�+¾8di/dt��$�`��;¨�&+0À��$�`���+ZÁ�ÂqEg8±|F'(

���O��P�&+sX+Gg¨���tGÃ%u��E�`���_�;%$�B�+Gg�[1.5A�\¤�S»�)p�]^!E±Ä��(

.�/0��1234�

Ggrm��-�S»"ym�IC�³R'L"S��,�<�]=;�^�_`a�6 �Å»E�F'(160C(L)&6V'Lp�@A%$�Bt#3²�4=�*F'(�-²�%6 �10C+\%2��%&���*E�F'(B���-tÁ±p�150C+%���P= F&X�'Lp�%$�B�Æ�$��4=�*F'(��345�67

&()89� �:;���<=>?@ABC1�

DE�FG./�)012HI(J�KL���M

F*1�N�O5�P0QR2

56��

@A%$�B�`���_��D&���*E�F'()*��qE����O��P���_��`%$�B��`-��X0��&+'ÇE+%u&���a�)pt&8F'(`���_�@A%$�B��Gg40V+����−È¡��0��Gg1.5A+��É|Ê»L������*E�F'(

��������

Figures 16Ë24��NCP3063+bcÌpdeÌ�,!F'(3�+Í1�����;_�~etl6 �+���sX+2%_;#���Îf!EÏ,!E{|F'(

Figure 15��g11?Ð���¤'Lhi+���M«�,!F'(F"�NCP3063+�����O��P���ÑÒÓÔ��www.onsemi.com�Îf�*E�F'(

Figure 25Ë 31��I�_?�e%����!"}+�NCP3063���O��P��,!F'()+

¥�:��P���@A��Õw'+�Ö×&�jØ�%_�Ù»t�×I��SL+�Úk�F'(NMOS_?�e%�&+4�%_�D�PMOS_?�e%�&+����D���XVCE(sat) PNP&+����D+}+�6 ��,!F'(I�_?�e%����'LT+Û!��Gg250

kHzF&Z���VW���&'(Ü+lm�$�`��w��#�<Ý+HÞ@A�K���'L)pt&8F'(

NCP3063, NCP3063B, NCV3063

http://onsemi.com9

(See Notes 9, 10, 11) Step−Down Step−Up Voltage−Inverting

tontoff

Vout � VFVin � VSWCE � Vout

Vout � VF � VinVin � VSWCE

|Vout| � VFVin � VSWCE

ton tontoff

f �tontoff

� 1�

tontoff

f �tontoff

� 1�

tontoff

f �tontoff

� 1�

CT CT � 381.6 � 10�6

fosc� 343 � 10�12

IL(avg) Iout Iout �tontoff

� 1� Iout �tontoff

� 1�Ipk (Switch)

IL(avg) ��IL2

IL(avg) ��IL2

IL(avg) ��IL2

RSC 0.20Ipk (Switch)

0.20Ipk (Switch)

0.20Ipk (Switch)

L �Vin � VSWCE � Vout�IL

� ton �Vin � VSWCE�IL

� ton �Vin � VSWCE�IL

� ton

Vripple(pp)

�IL � 18 f CO

�2

� (ESR)2 ton Iout

CO� �IL � ESR

ton IoutCO

� �IL � ESR

VoutVTH�R2

R1� 1� VTH�R2

R1� 1� VTH�R2

R1� 1�

9. VSWCE − Darlington Switch Collector to Emitter Voltage Drop, refer to Figures 7, 8, 9 and 10.10.VF − Output rectifier forward voltage drop. Typical value for 1N5819 Schottky barrier rectifier is 0.4 V.11. The calculated ton/toff must not exceed the minimum guaranteed oscillator charge to discharge ratio.

78,�9���:;<=>?@#ABCD>E

Vin − �7VWUA0Vout − ßn+@A0Iout − ßn+@A��IL − ßn+¨��−¨��;$�`��;���=�Gg@A�+ym�àá$�`���âIL(avg)+10%op�L����IL�G¢'L)p�ãä!F'()*��Ipk (Switch)tRSC&���*L�5�%���P= �<!����'L+�Úk�F'(��qLtGH$�`���%����'L)p&{Lym��IL = 2(IL(avg))p!F'()*t�����+@A�år�A�HÏ��XZ!F'(f − Gg@A%$�B���Vripple(pp) − ßn+¨��−¨��@A���=0G�+Ì��æL"S�����=0�?$���@.�k:���P��"rçs�èé'"S�X���t�!J*ê|Foë(��#�<âCO��%$�B��;�k:���;���O��P�zJ�

���*"uì"´µ¶(ESR)2��#�<&J*ê|Foë(

Figure 15. Design Equations

NCP3063, NCP3063B, NCV3063

http://onsemi.com10

Figure 16. Typical Buck Application Schematic

J204

GND

1

J203

1

C203

2.2 nFC202

C205

C206

C201

R202

U201

NCP3063

5

36

4

8

7

1

2

COMP

TCAP

GND

N.C. SWC

SWE

R203

R201

0R15

D201

1N5819

J202

GND

1

J201

1

L201+VIN = +12 V

0.1 �F

2K4 1%

3K9 1%

220 �F / 50 V

+0.1 �F

470 �F / 25 V

+

+VOUT = +3.3 V / 800 mA

VCC

IPK

47 �H

Value of Components

Name Value

L201 47 �H, Isat > 1.5 A

D201 1 A, 40 V Schottky Rectifier

C202 220 �F, 50 V, Low ESR

C205 470 �F, 25 V, Low ESR

C203 2.2 nF Ceramic Capacitor

Name Value

R201 150 m�, 0.5 W

R202 2.40 k�

R203 3.90 k�

C201 100 nF Ceramic Capacitor

C202 100 nF Ceramic Capacitor

Test Results

Test Condition Results

Line Regulation Vin = 9 V to 12 V, Io = 800 mA 8 mV

Load Regulation Vin = 12 V, Io = 80 mA to 800 mA 9 mV

Output Ripple Vin = 12 V, Io = 40 mA to 800 mA 85 mVpp

Efficiency Vin = 12 V, Io = 400 mA to 800 mA > 73%

Short Circuit Current Vin = 12 V, Rload = 0.15 � 1.25 A

Figure 17. Buck Demoboard Layout

Figure 18. Efficiency vs. Output Current for the BuckDemo Board at Vin = 12 V, Vout = 3.3 V, TA = 25C

OUTPUT LOAD (Adc)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EF

FIC

IEN

CY

(%

)

76

74

72

70

68

66

64

NCP3063, NCP3063B, NCV3063

http://onsemi.com11

Figure 19. Typical Boost Application Schematic

J104

GND

1

J103

1

C103

2.2 nFC102

C105C106

C101

R102

U101

NCP3063

5

36

4

8

7

1

2

COMP

TCAP

GND

N.C. SWC

SWE

R103

R101

0R15D101 1N5819

J102

GND

1

J101

1

L101

+VIN = +12 V

0.1 �F

1K0 1%

18K0 1%

470 �F / 25 V

+0.1 �F 330 �F / 50 V

+

+VOUT = +24 V / 350 mA

VCC

IPK

100 �H

Value of Components

Name Value

L101 100 �H, Isat > 1.5 A

D101 1 A, 40 V Schottky Rectifier

C102 470 �F, 25 V, Low ESR

C105 330 �F, 50 V, Low ESR

C103 2.2 nF Ceramic Capacitor

Name Value

R101 150 m�, 0.5 W

R102 1.00 k�

R103 18.00 k�

C101 100 nF Ceramic Capacitor

C106 100 nF Ceramic Capacitor

Test Results

Test Condition Results

Line Regulation Vin = 9 V to 15 V, Io = 250 mA 2 mV

Load Regulation Vin = 12 V, Io = 30 mA to 350 mA 5 mV

Output Ripple Vin = 12 V, Io = 10 mA to 350 mA 350 mVpp

Efficiency Vin = 12 V, Io = 50 mA to 350 mA > 85.5%

Figure 20. Boost Demoboard Layout

Figure 21. Efficiency vs. Output Current for the BoostDemo Board at Vin = 12 V, Vout = 24 V, TA = 25C

OUTPUT LOAD (Adc)

0 0.05 0.1 0.15 0.2 0.3 0.4

EF

FIC

IEN

CY

(%

)

90

85

84

83

82

8180

0.25 0.35

89

88

87

86

NCP3063, NCP3063B, NCV3063

http://onsemi.com12

Figure 22. Typical Voltage Inverting Application Schematic

J504

GND

1 J503

1

C503

2.2 nFC502

C501

R502

U501

NCP3063

5

36

4

8

7

1

2

COMP

TCAP

GND

N.C. SWC

SWE

R503

R501

0R15

L501

J502

GND

1

J501

1

+VIN = +5 V

0.1 �F

16K9 1%

1K96 1%

330 �F / 25 V

+ 22 �H

VOUT = −12 V / 100 mA

VCC

IPK

D501

C505470 �F / 35 V+

C506

0.1 �F

1N5819

Value of Components

Name Value

L501 22 �H, Isat > 1.5 A

D501 1 A, 40 V Schottky Rectifier

C502 330 �F, 25 V, Low ESR

C505 470 �F, 35 V, Low ESR

C503 2.2 nF Ceramic Capacitor

Name Value

R501 150 m�, 0.5 W

R502 16.9 k�

R503 1.96 k�

C501 100 nF Ceramic Capacitor

C506 100 nF Ceramic Capacitor

Test Results

Test Condition Results

Line Regulation Vin = 4.5 V to 6 V, Io = 50 mA 1.5 mV

Load Regulation Vin = 5 V, Io = 10 mA to 100 mA 1.6 mV

Output Ripple Vin = 5 V, Io = 0 mA to 100 mA 300 mVpp

Efficiency Vin = 5 V, Io = 100 mA 49.8%

Short Circuit Current Vin = 5 V, Rload = 0.15 � 0.885 A

Figure 23. Voltage Inverting Demoboard LayoutFigure 24. Efficiency vs. Output Current for the

Voltage Inverting Demo Board at Vin = +5 V,Vout = −12 V, TA = 25C

OUTPUT LOAD (mAdc)

804020036

38

40

44

46

48

50

52

EF

FIC

IEN

CY

(%

)

60 100

42

NCP3063, NCP3063B, NCV3063

http://onsemi.com13

Figure 25. Typical Boost Application Schematic with External NMOS Transistor

IC1 NCP3063

5

36

4

8

7

1

2

R4

VIN = 8 − 18 V/0.6 A VOUT = 31 V/0.35 A

+

COMP

TC

GND

N.C. SWC

SWE

VCC

IPK

1k

1N5819

D1

R3M18

C2

100n

C1

0V GND

C6

100n

C7R81k

C4

1n2

C5 6n8

R7

470

R5 24k

C3 10n

R2 1k

R1 82m 10�L1

6

2

5

1

4

3

G

D

S

Q1NTD18N06

IC2 BC846BPD

330� 330�

Figure 26. Typical Efficiency for ApplicationShown in Figure 25.

70

72

74

76

78

80

82

84

86

6 8 10 12 14 16 18 2070

72

74

76

78

80

82

84

86

6 8 10 12 14 16 18 20

EF

FIC

IEN

CY

(%

)

INPUT VOLTAGE (V)

ILOAD = 350 mA

í�UA0vî���@At1w�*L���O��P�&�I�_?�e%��ãä!F'(xïNMOS_?�e%����!"�É6 ���Ü+ ?$4��Figure 25�,!F'( ?$46 ������.�*"µ¶#3�$`R7/R8�ð!ENCP3063+SWE¨�C�59�*F'( ?$�IC2�>�;²¡��`���+X�%_;#:�=NPN/PNP_?�e%�BC846BPD&'(Ü+NPN_?�e%����_;ñ^1���%�¦'L"S+�Ì�`$>� p!Ery�*F'(PNP_?�e%�����_;��#�<�§'L"S+È¡��;dò~óp!Eô8F'()+

�D��50Ë100ns+z� ?$4;È�e�³{!�R7/R8#3�$`+|}A�50mW�5�!F'(@A�5��µ¶R3&�Y�*F'(XRDS(on) NMOS_?�e%�&+�`%$�B��t�~f���O��P�&Gg85%+×I�<D!F'(

NCP3063, NCP3063B, NCV3063

http://onsemi.com14

Figure 27. Typical Buck Application Schematic with External PMOS Transistor

IC1 NCP3063

5

36

4

8

7

1

2

R3

VIN = 8 − 19 VVOUT = 3V3/3 A

+

COMP

TC

GND

N.C. SWC

SWE

VCC

IPK

1k

C2

100n

C1

0V GND

C6

100n

C7R8470

C5

2n2

R6

22k

R2 1k7

R1 50m 10�L1

6

1

Q2NTGS4111P

C4

6n8

R51k

D1

1N5822

+

43

2

5

T1BC848CPD

330� 330�

60

65

70

75

80

85

90

95

100

0 0.5 1 1.5 2 2.5 3

Figure 28. NCP3063 Efficiency vs. Output Current forBuck External PMOS at Vout = 3.3 V, f = 220 kHz,

TA = 25C

EF

FIC

IEN

CY

(%

)

OUTPUT LOAD (Adc)

VIN = 8 V

VIN = 18 V

Figure 27��I�PMOS_?�e%����!"}+�����D�,!F'(Figure 27�,'p|�Q2��_� ?$4'Lõ��ö÷&'(

TC¨�pSWE¨�C�ry�*"µ¶âR6��1=%j�*"d3� ���0�år!F'(í�UA0vî������O��P��UA0t+12V�S»L���O��P��F"�@A���=�h'Lø�tv!����O��P�&�)+1=%jd3� ���ù«���'L)p�ãä!F'(µ¶R6+�É��10Ë68k&'(1=%;d3� ���ù«&��VW���t�â20%�±|F'(F"���+VW���&�|Uú�%$�B�����KD'L"S�@A���=0tH�±|�×Itûü�*F'(1=%;d3� ���+µ¶������Ì+��f�*"��#�<+¦;§��S»���G¢'Lª1t{|F'(G¢��Lp-�it�VW!F'(1=%;d3� ����s)'Lp8�TC¨�+Gg0t1.4V�S»L)p�&8Foë(

NCP3063, NCP3063B, NCV3063

http://onsemi.com15

Figure 29. Typical Buck Application Schematic with External Low VCE(sat) PNP Transistor

IC1 NCP3063

5

36

4

8

7

1

2

R2

VIN = 8 − 19 VVOUT = 3V3/1 A

+

COMP

TC

GND

N.C. SWC

SWE

VCC

IPK

1k

C2

100n

C1

0V GND

C5

100n

C6C3

2n2

R5

33

R3 1k7

R1

150m

33�L1Q1 NSS35200

D2

NSR0130

+

R4

33

D1

1N5819 100�100�

50

55

60

65

70

75

80

85

90

95

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 30. NCP3063 Efficiency vs. Output Current forExternal Low VCE(sat) at Vin = +5 V, f = 160 kHz,

TA = 25C

EF

FIC

IEN

CY

(%

)

OUTPUT LOAD (Adc)

Figure 29��I��$��?;_?�e%����!"���;�����+}+����O��P��,!F'()*�UA0p@A0+ÀtH�±��×It1w�*L�DzJ+�ý�¥�:��P�&'(>�;²¡��`���&+XVCE(sat)_?�e%�NSS35200��@A�t1A�UA0tGg15V�VW���t100Ë150kHz+���O��P��G�&'(%$�B��`-���þXZ`$>� D2���'Lpz�'Lymt{|F'(

NCP3063, NCP3063B, NCV3063

http://onsemi.com16

Figure 31. Typical Schematic of Buck Converter with RC Snubber and Pulse Feedback

IC1 NCP3063

5

36

4

8

7

1

2

R3

COMP

TC

GND

N.C. SWC

SWE

VCC

IPK

C1

0V 0V

C4C2

R522k

R2

R1

L1

D1C3R4

4n7

10R

UA/@A+�mo�@A@.¸V�F"�PCB�$�a_tõ�&�@A&-�tK÷LO�%&��SWE¨�&+%¼�6 t-��Ù»L+�Úk

�F'(�������Figure 31�,!F'(C3+��2.2Ë6.8nF��R4�10�Ë22��G¢&8F'(

ORDERING INFORMATION

Device Package Shipping†

NCP3063PG PDIP−8(Pb−Free)

50 Units / Rail

NCP3063BPG PDIP−8(Pb−Free)

50 Units / Rail

NCP3063BMNTXG DFN−8(Pb−Free)

4000 / Tape & Reel

NCP3063DR2G SOIC−8(Pb−Free)

2500 / Tape & Reel

NCP3063BDR2G SOIC−8(Pb−Free)

2500 / Tape & Reel

NCP3063MNTXG DFN−8(Pb−Free)

4000 / Tape & Reel

NCV3063PG PDIP−8(Pb−Free)

50 Units / Rail

NCV3063DR2G SOIC−8(Pb−Free)

2500 / Tape & Reel

NCV3063MNTXG DFN−8(Pb−Free)

4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel PackagingSpecifications Brochure, BRD8011/D.NCV prefix is for automotive and other applications requiring site and change control.

NCP3063, NCP3063B, NCV3063

http://onsemi.com17

PACKAGE DIMENSIONS

SOIC−8 NBCASE 751−07

ISSUE AJ

SEATINGPLANE

��

��

N

J

X 45�

K

NOTES:1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A AND B DO NOT INCLUDE

MOLD PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.

6. 751−01 THRU 751−06 ARE OBSOLETE. NEWSTANDARD IS 751−07.

A

B S

DH

C

������������

DIMA

MIN MAX MIN MAXINCHES

4.80 5.00 0.189 0.197

MILLIMETERS

B 3.80 4.00 0.150 0.157C 1.35 1.75 0.053 0.069D 0.33 0.51 0.013 0.020G 1.27 BSC 0.050 BSCH 0.10 0.25 0.004 0.010J 0.19 0.25 0.007 0.010K 0.40 1.27 0.016 0.050M 0 8 0 8 N 0.25 0.50 0.010 0.020S 5.80 6.20 0.228 0.244

−X−

−Y−

G

������������

−Z−

������������ � � �

M� � � �

1.520.060

7.00.275

0.60.024

1.2700.050

4.00.155

� mminches

�SCALE 6:1

*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.

SOLDERING FOOTPRINT*

NCP3063, NCP3063B, NCV3063

http://onsemi.com18

PACKAGE DIMENSIONS

�������� �������� � �� ������ �� ���� ����

����� ����������� �����!� �����"� �������� ���"�� ��

�#"��� ���������$� ����������! ��� ����������! ��� ����

����% �&'��

���� ����� �� �� ��

�� �� ( ��$� �� ) ���� �� ���� !��"��*� �"��"�+� �"������'� ,��

� �

��

F

NOTE 2 −A−

−B−

−T−����� ����

H

J

G

D K

N

C

L

M

����$�������� - �

�� �� ��� �� ����������������

� &��� ����* ��$+� ������ *��� *�*� ����� ���*�� $�&� ���� ����� ���+�� ��$' ���� ����� ������ ���� ��+' ����� ���+�� �����-�� ������-��� ��+* ���+ ���$� ������ ���� ��$� ����' ������ ��&� $��$ ����� ���$�� +�*��-�� ��$���-��� ))) ���� ))) ����� ��+* ���� ���$� �����

� �

8 LEAD PDIPCASE 626−05

ISSUE L

NCP3063, NCP3063B, NCV3063

http://onsemi.com19

PACKAGE DIMENSIONS

8 PIN DFN, 4x4CASE 488AF−01

ISSUE C

ÉÉÉÉ

NOTES:1. DIMENSIONS AND TOLERANCING PER

ASME Y14.5M, 1994.2. CONTROLLING DIMENSION: MILLIMETERS.3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN0.15 AND 0.30MM FROM TERMINAL TIP.

4. COPLANARITY APPLIES TO THE EXPOSEDPAD AS WELL AS THE TERMINALS.

5. DETAILS A AND B SHOW OPTIONALCONSTRUCTIONS FOR TERMINALS.

DIM MIN MAXMILLIMETERS

A 0.80 1.00A1 0.00 0.05A3 0.20 REFb 0.25 0.35D 4.00 BSCD2 1.91 2.21E 4.00 BSC

E2 2.09 2.39e 0.80 BSCK 0.20 −−−L 0.30 0.50

DB

E

�����

A

�����

2X

2XTOP VIEW

SIDE VIEW

BOTTOM VIEW

ÇÇÇÇ

ÇÇÇÇÇÇÇÇ

Ç

C

A

(A3)A1

8X

SEATINGPLANE

����'

�����

ÇÇ

ÇÇÇÇÇe

8X L

K

E2

D2

b

NOTE 3

1 4

588X

���� �

���� �

� -

PIN ONEREFERENCE

*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.

SOLDERING FOOTPRINT*

8X0.63

2.21

2.39

8X

0.80PITCH

4.30

0.35

L1

DETAIL A

L

OPTIONALCONSTRUCTIONS

ÉÉÉÉÉÉÇÇÇ

A1

A3

L

ÇÇÇÇÇÇÉÉÉ

DETAIL B

MOLD CMPDEXPOSED Cu

ALTERNATECONSTRUCTIONS

L1 −−− 0.15

DETAIL B

NOTE 4

DETAIL A

DIMENSIONS: MILLIMETERS

PACKAGEOUTLINE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further noticeto any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liabilityarising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.”Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Alloperating parameters, including ”Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rightsnor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. ShouldBuyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deathassociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an EqualOpportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATIONN. American Technical Support: 800−282−9855 Toll FreeUSA/Canada

Europe, Middle East and Africa Technical Support:Phone: 421 33 790 2910

Japan Customer Focus CenterPhone: 81−3−5773−3850

NCP3063JP/D

LITERATURE FULFILLMENT:Literature Distribution Center for ON SemiconductorP.O. Box 5163, Denver, Colorado 80217 USAPhone: 303−675−2175 or 800−344−3860 Toll Free USA/CanadaFax: 303−675−2176 or 800−344−3867 Toll Free USA/CanadaEmail: [email protected]

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your localSales Representative