医 学 图 像 配 准

Click here to load reader

Upload: israel

Post on 23-Jan-2016

140 views

Category:

Documents


1 download

DESCRIPTION

医学图像处理专题讨论. 医 学 图 像 配 准. Medical Image Registration. 许 向 阳. 医学图像信息研究中心. 2014年9月1日. 内 容 提 要. 一、配准的基本概念 二、配准的临床应用 三、配准的核心框架 四、医学图像配准的分类 五、关键技术讨论. 一、配准的基本概念. 医学图像配准是指对于一幅医学图像寻求一种或者一系列的空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。 一致是指人体上的同一解剖点或者至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 保持不动的图像叫参考图像; - PowerPoint PPT Presentation

TRANSCRIPT

  • Medical Image Registration *

  • Basic conception of registration Image registration, also called image matching or alignment, is a process to register one image to others, so that the transformation matrix between two of them are determined so that they are corresponding each other in space.

    Image registration is the process of estimating an optimal transformation between two images.

  • q = T(p)R FT: T = arg max S(R,T(F)) T

  • Digital subtraction angiographyDSA 1977NudelmanDSA

  • Li Qiang, etc, Improved contralateral subtraction images by use of elastic matching technique , Med. Phys. 27 .8., August 2000(a)

  • 2005

  • PET

  • Talairach Ono

  • Transform Metric: OptimizerInterpolatorRegistration is treated as an optimization problem with the goal of finding the spatial mapping that will bring the moving image into alignment with the fixed image.

  • 3.1

  • 3.2

  • 3.2 B Windowed Sinc

  • 3.3

  • Mean squares Normalized correlation Mean reciprocal squared difference Mutual information by Viola and Wells Mutual information by Mattes Kullback Liebler distance metric Normalized mutual information Mean squares histogram Correlation coefficient histogram Cardinality Match metric Kappa Statistics metric Gradient Difference metric3.3

  • 3.4 Amoeba: Nelder-Meade downhill simplex. Conjugate Gradient: Fletcher-Reeves form of the conjugate gradient with or without preconditioning.

    Gradient Descent: Advances parameters in the direction of the gradient where the step size is governed by a learning rate

  • 3.4 Powell Arent Levenberg-Marquadrt Newton-Raphson hash

  • 4.1 ()

  • 4.2 Subject IntraSubject InterSubject Atlas4.3 (Modalities) Monomodal Multimodal Modality to modal Patient to modality

  • 4.3 XCT (Computed Tomography)MRI (Magnetic Resonance Imaging)US (Ultra Sound)MRA (Magnetic Resonance Angiography)DSA (Digital Subtraction Angiography)

  • SPECT (Single Photon Emission Computed Tomography)PET (Positron Emission Tomography )fMRI (functional MRI)EEG (Electro-EncephaloGraphy,)MEG (Magneto-EncephaloGraphy) 4.3

  • 4.5 4.4 Object Head (Brain or skull, Eye, Dental) Thorax (Entire, Caridac, Breast) Abdomen (General, Kidney,Liver) Limbs (General, Femur, Humerus, Hand) Spine and vertebrate Pelvis and perineum

  • 4.6

  • 72 4.6

  • r 4.6

  • BrownRobertsWells (BRW)Cosman-Roberts-Wells (CRW)Gill-Thomas-CosmanGTC

    4.6

  • 2004.3 4.6

  • Matthew Y. Wang, An Automatic Technique for Finding and LocalizingExternally Attached Markers in CT and MRVolume Images of the Head,IEEE transactions on Biomedical Engineering.Vol.43, No. 6, 1996

    4.6

  • , 2003,No.5 4.6

  • 4.6

  • 4.6

  • 4.6 (Anatomic Landmarks) (umbilic point)

  • 4.6 Igor D. Grachev,etc,A Method for Assessing the Accuracy of Intersubject Registration of the Human Brain Using Anatomic LandmarksNeuroImage 9, 250268 (1999)

  • 4.6

  • 4.6 Detected point landmarks in a 2D sagittal MR image of ahuman brain

    Karl RohrOn 3D differential operators for detecting point landmarksImage and Vision Computing 15 (1997) 219-233

  • 4.6 Vo l. 14,No. 72002

  • 4.6

  • 4.6

  • 4.6

  • 4.6

  • 4.7

  • 4.9 4.8

  • 5.1 /I1(x1,y1,z1)I2(x2,y2,z2)P (x1,y1,z1) I2(x2,y2,z2)I1I2P

  • 5.1.1 Rigid Body Transformation x: x=x+p, y=y y: x=x, y=y+q : x=xcos +ysin y=- xsin +ycos 5.1

  • 5.1.1 Rigid Body Transformation5.1 xpyq

  • 5.1.1 Rigid Body Transformation5.1 xp,yq,

  • 5.1.1 Rigid Body Transformation5.1 , xp, yq

  • 5.1.1 Rigid Body Transformation5.1 pq ,

  • 5.1.1 Rigid Body Transformation5.1

  • 5.1.1 6 x p y q z r x y z :125.1

  • 5.1.1 P(u) = Au+BU=(x,y,z)AB

    A ATA=IATAI5.1

  • 5.1.2 Affine Transformation CT MR5.1

  • 5.1.2 9 x p y q z r x y z x mxy myz mz5.1

  • 5.1.2 612

    xyz1e11 e12 e13 e14e21 e22 e23 e24e31 e32 e33 e34 0 0 0 1xyz1=eij15.1

  • 5.1.2 5.1 657 (2)(1,3)1234567

  • 5.1.3

    (1) (2)

    Perspective or Projective Transformation5.1

  • 5.1.3 xy1e11 e12 pe21 e22 q f g 1xy1=x= (e11*x+e12*y+p) / (f*x+g*y+1)5.1

  • 5.1.4 Nonlinear Transformationcurved transformation

    5.1

  • 5.1.4 x=e00+e01x+e02y+e03z+e04x2+e05xy+e06xz+e07y2+e08yz+e09z2 y=e10+e11x+e12y+e13z+e14x2+e15xy+e16xz+e17y2+e18yz+e19z2 z=e20+e21x+e22y+e23z+e24x2+e25xy+e26xz+e27y2+e28yz+e29z2 n f(X)=AX+B+ Wi U (|Pi-X|) i=1B5.1

  • 5.1.5 5.1

  • 5.1.5 5.1

  • 5.1.5 5.1

  • Hausdroff , 5.2

  • (Correlation ratio) (Correlation coefficient) PIU(Partitioned intensity uniformity) , 5.2

  • 5.2

  • 5.3 (ICP) WGF

  • 5.3 head-hat methodPelizzariChenhathead Powell

  • 5.3 ICP ICPBesl Mckay ICP """"""""""