zooplankton - people.ucsc.edukudela/migrated/os130/lectures/2010/os130... · euglenophyta chl c...

30
Phytoplankton Nutrients Zooplankton

Upload: duonghuong

Post on 05-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Phytoplankton

Nutrients

Zooplankton

Page 2: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Small Algae   Diatoms

  Silica frustule, unique division   Coccolithophores

  Calcium carbonate plates   Dinoflagellates

  “two flagella”--starch plates

  Picoplankton   Includes cyanobacteria and

eukaryotic organisms

  Raphidophytes, Cryptophytes, Euglenophytes, etc.

Page 3: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Physical mixing processes

Nutrients Optical Properties of the Water Column

In the modern ocean carbon fixation by diatoms, dinoflagellates, and coccolithophorrids dominate the global signal.

This provides the organic carbon for metazoans and carbon flux to the ocean interior and seafloor.

Page 4: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

PHANEROZOIC MESOZOIC CENOZOIC

Carbon. Permian Triassic Jurassic Cretaceous Tertiary

Spec

ies

dive

rsity

/abu

ndan

ce (

rela

tive

scal

e)

Dinoflagellates

Chlorophytes

Diatoms

Coccolithophorids

The dominance by the big-3 is recent

End-Permian extinction

End-Triassic extinction

Page 5: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Critter Genome size % used in plastid

Bacteria ~3.1*106

Cyanobacteria ~6.1* 106

Chlorophyceae ~4.6* 108 10-50%

Diatoms ~1.6* 109 2-10% Coccolithophores ~2.4* 109 2-10% Dinoflagellates ~7.4* 1010 <0.1%

Assuming an average protein has 3000 amino acids and a typical cells has 105 proteins/cell.

Page 6: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Glaucocystophyta

Rhodophyta (Red Algae)

Cryptophyta

Heterokontophyta (kelps, diatoms, chrysophytes)

Haptophyta (Coccolithophorrids)

Chlorophyta (Green Algae)

Chlorarachniophyta

Euglenophyta Chl c & fucoxanthin Chl c &

peridinin Chl c & Chl b

Dinophyta

Page 7: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

EUKARYOTES: Division Chromophyta Class Bacillariophyceae (Diatoms)

  Cannot swim; Can regulate buoyancy (some can migrate)

  Require silicon; Encased in Pill-box shaped silica frustule

  Important in coastal areas and spring blooms

Page 8: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Looking Down on the Valve

�New

Side View

epitheca

hypotheca

pennate

centric

Images from http://www.microscopy-uk.org.uk/mag/wimsmall/diadr.html

pennate

pennate

centric

Silica frustule

Page 9: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

EUKARYOTES (continued): Division Chromophyta Class Pyrrophyta (Dinoflagellates)   Motile; Can migrate vertically   “Red tides” and shellfish poisoning   There are autotrophic and heterotrophic species

www.jochemnet.de/fiu/phaeocystis.gif

Page 10: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Dinoflagellates: Some are bioluminescent

http://www.microscopy-uk.org.uk/mag/art98/nocti.html

Noctiluca Noctiluca bloom

www.redtide.whoi.edu/hab/rtphotos/rtphotos.html

Page 11: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Dinoflagellates

Naked Noctiluca

Page 12: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

EUKARYOTES (continued): Division Chromophyta Class Prymnesiophyceae (Haptophyceae) Coccolithophores

  CaCO3 skeletal plates   pCO2 increases   DMS production

Emiliania huxleyi earthguide.ucsd.edu/images/eg/img/ehuxleyi.gif

Page 13: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

EUKARYOTES (continued): Division Chromophyta Class Cryptophyceae

  Motile   Contain phycobiliproteins   Can be recognized by size and fluorescence (flow cytometry)

Cryptomonas http://mac2031.fujimi.hosei.ac.jp/PDB/Images/Mastigophora/Cryptomonas/Cryptomonas.jpg www.unex.es/botanica/ clases.htm

Page 14: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Other Small Organisms

  1977--Hobbie discovers the importance of bacteria, using Acridine Orange

  1981--Chisholm and Olson discover picoplankton:   Cyanobacteria (or blue-green algae)   Prochlorococcus

  Late 1990s--Delong and others recognize importance of archaea

  2000-02--Small organisms dominate?

Page 15: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

PROKARYOTES (continued): Synechococcus

  Discovered in 1979   very small (ca. 1 µm)   contains phycoerythrin   can fluoresce orange or red   counted with epifluorescence

microscopy or flow cytometry

reprinted from Johnson and Sieburth 1979 http://www.woodrow.org/teachers/esi/1999/ princeton/projects/cyanopigs/data.htm

Page 16: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

  Discovered in 1988   Very small (<1.0 µm)   Divinyl chl a   Counted by flow

cytometry   Most abundant

autotroph on earth

PROKARYOTES (continued): Prochlorococcus

reprinted from Johnson and Sieburth 1979

Page 17: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

PROKARYOTES (continued): Trichodesmium(Oscillatoria thiebautii)

  Forms aggregates   Fixes nitrogen   Can migrate vertically   May transport phosphate

from depth to near surface   New production transports

more C

http://www.botan.su.se/fysiologi/Cyano/Tricho.jpg www.aims.gov.au/pages/research/ trichodesmium/tricho-01.html

Trichodesmium bloom

Page 18: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Phytoplankton

• Photosynthesis can be described using PvsE curves

• Nutrient uptake can be described using Michaelis-Menten curves

• When the cells are healthy, they are in balanced growth and have Redfield proportions of elements

• There’s a general relationship between size and number for everything in the ocean (including phytoplankton)

• Large cells can use “luxury uptake”

Page 19: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Phytoplankton

Nutrients

PvsE curves

Michaelis-Menten curves

• Photosynthetic Quotient: we can measure productivity using several methods, and convert one to the other using the PQ

• Redfield Ratios: we can measure any nutrient and convert to any other nutrient

Page 20: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Who takes up nutrients the fastest?

Page 21: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Nutrient-uptake kinetics and ecological/evolutionary selection

Phytoplankton isolated from oligotrophic environments have lower Ks values than phytoplankton from eutrophic environments (consistent with prediction based on ecological theory)

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12

Nutrient Uptake

Spe

cific

Rat

e of

Upt

ake

(d-1)

Nutrient Concentration (µM)

I

IIV

max = 2.25 d-1

Ks = 2.0 µM

Vmax

= 1.5 d-1

Ks = 0.5 µM

Page 22: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Nutrient kinetics for growth (rather than for uptake) are more difficult to determine: experiments involve growth in chemostat culture

Ks < 0.1 µg-at L-1

Page 23: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Droop Kinetics µ = µmax(1 - kq / Q)

µ = growth rate kq = minimum cell quota Q = current cell quota Qmax = max cell quota

•  If an organism has a high degree of “quota flexibility”, it can vary the ratio kq/Qmax by quite a bit--this allows for luxury uptake

•  Redfield Ratios are ONLY approximated when µ/µmax is close to 1

•  Therefore, cell composition can provide an indication of cell growth status, or limitation

Page 24: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Consequently, chemical composition responds to growth conditions

0.00

0.02

0.04

0.06

0.08

0.10

N:C

mol

ar ra

tio

0.12

0.0 0.2 0.4 0.6 0.8 1.0µ (d-1)

A

189 µmol m-2 s-1

63 µmol m-2 s-1

N-Limited <——> N-sufficient The chemical composition of phytoplankton is very responsive to growth conditions. Here, nitrogen content is lower when growth rate is limited by the supply of N (carbohydrates are accumulated).

Page 25: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Classic Bloom Dynamics

Margalef’s Mandala

Page 26: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Seasonal Patterns

Kudela et al., 2005, Oceanography 18: 185-197

Page 27: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Diatoms vs. Dinoflagellates

  Diatoms   Annual cycle   Prolonged duration   High species diversity   Clear succession pattern

  Sinking strategy   Elevated nutrients,

turbulence

  Dinoflagellates   Unpredictable   Ephemeral   Low diversity   Truncated

succession

  Swimming strategy

  Low nutrients, stratified water column

Page 28: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Size Scaling in the ocean

Log (size)

Log

(abu

ndan

ce)

viruses bacteria

phytoplankton zooplankton

Small fish Large fish

Whales

• There are “rules” about size and abundance— • small organisms grow faster, and are more abundant • You need large phytoplankton to get high biomass, to feed fish, etc.

Page 29: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Large Cells = High Biomass

From Chisholm, 1992

Page 30: Zooplankton - people.ucsc.edukudela/migrated/OS130/Lectures/2010/OS130... · Euglenophyta Chl c & Chl c & fucoxanthin Chl c & peridinin Chl b Dinophyta. EUKARYOTES: Division Chromophyta

Summary • Large cells do better in high nutrient environments because they can store excess nutrients

• Small cells do better in low nutrient environments because they have a high surface/volume ratio, generally grow faster, and require less of everything

• There are low macronutrients in much of the surface ocean

• large scale patterns of low biomass & small cells in the open ocean are driven by fast growth and large loss terms—diatoms and dinoflagellates exist at the “edges”, competing for higher nutrients, & show up when nutrients increase (e.g. upwelling)

• High biomass means large cells—leads to higher trophic transfer (diatoms rule!)