xrd analysis

40
XRD analysis • Instruments and data acquisition • Getting data and data formats • Analysis software • Phase ID

Upload: jelena-zdravkovic

Post on 14-Apr-2015

200 views

Category:

Documents


4 download

DESCRIPTION

RSA analiza

TRANSCRIPT

Page 1: XRD Analysis

XRD analysis• Instruments and data acquisition

• Getting data and data formats

• Analysis software

• Phase ID

Page 2: XRD Analysis

Equipment

• Scintag PAD-V – Pole-Figure attachment– Scintillation detector

• Scintag XDS-2000– Theta-Theta goniometer– i-Ge energy-dispersive detector

• Bruker D8– GADDS area detector

Page 3: XRD Analysis

Data Acquisition • Assumption: infinite, randomly distributed

particles– Size < ~30m (320 grit)– watch for preferred orientation

• Sample on rotation axis

• Good statistics!

• Standards important for precision work

Page 4: XRD Analysis

Acquisition issues• Statistics

Page 5: XRD Analysis

Poisson distribution

• Describes processes where each event is independent and has a constant probability of occurring within a time interval.

• Standard Deviation () = (I)½

• Var (I) = 2 = I

Page 6: XRD Analysis

S/N ratio• Any point on a scan will have a fixed count rate

total counts (I) are proportional to time.

timeN

S

thus

II

II

N

S

Page 7: XRD Analysis

Lin

(Cou

nts)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2-Theta - Scale

15 20 30 40 50 60 70

Page 8: XRD Analysis

Lin

(C

ou

nts

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

2-Theta - Scale

15 20 30 40 50 60 70

Page 9: XRD Analysis

Lin

(C

ou

nts

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

2-Theta - Scale

15 20 30 40 50 60 70

S/N = 20/18 = 1 (2)

Page 10: XRD Analysis

Lin

(C

ou

nts

)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2-Theta - Scale

15 20 30 40 50 60 70

Page 11: XRD Analysis

Lin

(C

ou

nts

)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2-Theta - Scale

15 20 30 40 50 60 70

S/N = 400/80 = 5 (2)

Page 12: XRD Analysis

S/N continued…• We usually want NET intensity rather than

GROSS intensity.

• Need to subtract the background

• What uncertainty do we have in the NET intensity?

Page 13: XRD Analysis

Uncertainty propagation

uvvux

uvx

uvvux2

2

2

2

2

2

2

2

uvvux

vux

uvvux2

2

2

2

2

2

2

2

/

222222 2 uvvux abba

bvaux

Source: P.R. Bevington Data Reduction and Analysis for the Physical Sciences, 2nd

ed., p. 50

Variances add

Cross terms = 0 for independent

variables

Relative Variances add

Page 14: XRD Analysis

Case when absolute variances add

222222 2 uvvux abba

bvaux

22BPBP

If B is large, then the remainder after subtraction will be small and the relative uncertainty will be very large.

Page 15: XRD Analysis

Acquisition issues• Statistics

• Fluorescence effects

Page 16: XRD Analysis

Lin

(C

ou

nts

)

0

1000

2000

3000

4000

5000

2-Theta - Scale

15 20 30 40 50 60 70

Fe sample with Cu radiation

Page 17: XRD Analysis

FURNACE DUST - File: 715-03.RAW - Type: 2Th/Th unlocked - Start: 15.000 ° - End: 75.000 ° - Step: 0.030 ° - Step time: 4.5 s - Temp.: 25 °C (Room) - Time Started: 0 s - 2-Theta: 15.000 ° - Theta:

Lin

(C

ou

nts

)

0

1000

2000

3000

4000

5000

2-Theta - Scale

15 20 30 40 50 60 70

What is the difference in the S/N of the net intensity?

Page 18: XRD Analysis

Acquisition issues• Statistics

• Fluorescence effects

• Geometric Effects – Off-axis– Absorption depth (sampling depth)

Page 19: XRD Analysis

Aberrations• Bragg-Brentano goniometer is a para-focusing

geometry. • All elements must be precisely located.• If the sample is displaced from the rotation

axis, there is a peak shift

cos2

2R

h

Page 20: XRD Analysis

Operations: Y Scale Mul 0.712 | Strip kAlpha2 0.514 | Background 1.000,1.000 | Import

QUARTZ OFFSET - File: 715Q-01.RAW - Type: 2Th/Th unlocked - Start: 15.000 ° - End: 69.990 ° - Step: 0.030 ° - Step time: 0.2 s - Temp.: 25 °C (Room) - Time Started: 0 s - 2-Theta: 15.000 ° - Theta:

Operations: Strip kAlpha2 0.514 | Background 1.000,1.000 | Import

QUARTZ - File: Q091506.RAW - Type: 2Th/Th unlocked - Start: 18.000 ° - End: 72.000 ° - Step: 0.030 ° - Step time: 0.2 s - Temp.: 25 °C (Room) - Time Started: 0 s - 2-Theta: 18.000 ° - Theta: 0.000 ° -

Lin

(Cou

nts)

0

1000

2000

3000

2-Theta - Scale

15 20 30 40 50 60 70

Page 21: XRD Analysis

Operations: Y Scale Mul 0.712 | Strip kAlpha2 0.514 | Background 1.000,1.000 | Import

QUARTZ OFFSET - File: 715Q-01.RAW - Type: 2Th/Th unlocked - Start: 15.000 ° - End: 69.990 ° - Step: 0.030 ° - Step time: 0.2 s - Temp.: 25 °C (Room) - Time Started: 0 s - 2-Theta: 15.000 ° - Theta:

Operations: Strip kAlpha2 0.514 | Background 1.000,1.000 | Import

QUARTZ - File: Q091506.RAW - Type: 2Th/Th unlocked - Start: 18.000 ° - End: 72.000 ° - Step: 0.030 ° - Step time: 0.2 s - Temp.: 25 °C (Room) - Time Started: 0 s - 2-Theta: 18.000 ° - Theta: 0.000 ° -

Lin

(Cou

nts)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2-Theta - Scale

25 26 27 28

h < 100m

Illustrate correction process later

Page 22: XRD Analysis

Acquisition issues• Statistics

• Fluorescence effects

• Geometric Effects – Off-axis– Absorption depth (sampling depth)

• Spectral Contamination– Cu K, W L radiation

Page 23: XRD Analysis

Ni Filter• K/K intensity ratio is 9

• Ni filter attenuates K more than K– MAC of Ni for Cu K = 283 cm2/g– MAC of Ni for Cu K = 49 cm2/g

• A 20m Ni filter will produce a K/K ratio of about 500 while attenuating the K by a factor of ~2.

• K intensity is not 0!

Page 24: XRD Analysis

Spectral Contamination• Multiple Cu peaks

– K1 = 1.540562Å

– K2 = 1.54439Å

– Average =1.5418Å

– CuK = 1.392218Å

• W deposits on anode (filament contamination)– W L = 1.47639Å

Page 25: XRD Analysis

Lin

(Cou

nts)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

2-Theta - Scale

15 20 30 40 50 60 70 80

Page 26: XRD Analysis

Lin

(Cou

nts)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2-Theta - Scale

35 36 37 38 39 40 41 42 43 44 45

Cu K W L

Page 27: XRD Analysis

Data Format• EVA needs “.RAW”

• Scintag - creates “.RD”– VAX data acquisition computer. Need to

download data.– Convert to .RAW with ALL2EVA– Convert to ASCII with RD2ASCII (to read into

Excel)

• Bruker - .RAW

Page 28: XRD Analysis

ALL2EVA• Converts all .RD files (up to 100) in a

folder to .RAW

• DOS program - 8 character filename

• Tips:– Set up your ftp program to download to one

directory.– Setup an ALL2EVA shortcut to point to the

appropriate directory

Page 29: XRD Analysis

Set to your download directory

ALL2EVA shortcut

Page 30: XRD Analysis

Phase ID• EVA or Jade software

– EVA available in er6 lab– EVA & Jade in CEOF computer lab

• ICDD database (formerly JCPDS)

• Tutorials– www.matter.org.uk/diffraction/x-ray– www.ccp14.ac.uk/educate.htm

Page 31: XRD Analysis

EVA• tour

Page 32: XRD Analysis

EVA• displacement_1.eva

Page 33: XRD Analysis

Phase ID steps• Read .RAW file

• Subtract background, Strip K2

• Use background subtracted scan for Peak Search; Use K2 stripped scan for Peak Match.

• Match dominant peaks; displacement shift if necessary

• If displacement shift; return to RAW data and correct.

Page 34: XRD Analysis

EVA• Single phase (min11-01.raw)

– Elements: Mg and O

Page 35: XRD Analysis

EVA• TQ019-01.raw

– Pure Mg, Si, O used in the processing

Page 36: XRD Analysis

EVA• DA029.raw

– Multi component, initially unknown elements– SEM EDS

Page 37: XRD Analysis
Page 38: XRD Analysis
Page 39: XRD Analysis
Page 40: XRD Analysis

EVA• DA029.raw

– SEM EDS• Ti, Si, Mn, O, F• K, Na, Al, Mg, Fe