wydziaŁ informatyki, elektrotechniki, i automatyki...wydział informatyki, elektrotechniki i...

171
Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 1 WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI KATALOG PRZEDMIOTÓW Kierunek Efektywność Energetyczna Studia I stopnia o profilu praktycznym Rok akademicki: 2015/2016

Upload: others

Post on 10-Aug-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

1

WYDZIAŁ INFORMATYKI,

ELEKTROTECHNIKI, I AUTOMATYKI

K AT ALOG PRZEDMIOTÓW

K i e r u n e k

Efektyw ność Energetyczna

S t u d i a I s t o p n i a o p r o f i l u p r a k t y c z n y m

R o k a k a d e m i c k i : 2 0 1 5 / 2 0 1 6

Page 2: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

2

SSS PPP III SSS TTT RRR EEE ŚŚŚ CCC III Algebra liniowa z geometrią analityczną ....................................................................................... 3 Analiza matematyczna .................................................................................................................. 6 Aparaty i urządzenia elektryczne .................................................................................................. 9 Automatyka zabezpieczeniowa w systemach z OZE .................................................................. 13 Automatyzacja procesów technologicznych ................................................................................ 16 Bezpieczeństwo i Higiena Pracy ................................................................................................. 20 Biopaliwa i transport ekologiczny ................................................................................................ 23 CAD i grafika inżynierska ............................................................................................................ 26 Chemia ........................................................................................................................................ 29 Efektywne systemy oswietleniowe .............................................................................................. 33 Eksploatacja urządzeń ................................................................................................................ 37 Energooszczędne napędy elektryczne ........................................................................................ 40 Fizykatechniczna ......................................................................................................................... 44 Generacja rozproszona z OZE .................................................................................................... 46 Gospodarka energetyczna i rynek energii ................................................................................... 50 Historia techniki ........................................................................................................................... 54 Instalacje i urządzenia przemysłowe ........................................................................................... 56 Instalacje sanitarne i HVAC ......................................................................................................... 59 Interfejsy energoelektroniczne OZE ............................................................................................ 62 Inżynieria materiałowa w energetyce .......................................................................................... 65 Jakość dostawy energii elektrycznej ........................................................................................... 68 Kompatybilność elektromagnetyczna .......................................................................................... 72 Komunikowanie się w biznesie .................................................................................................... 75 Mechanika ogólna i wytrzymałość materiałów ............................................................................ 78 Metody numeryczne .................................................................................................................... 81 Mikrosieci i systemy prosumenckie ............................................................................................. 84 Napędy przekształtnikowe ........................................................................................................... 87 Ocena zgodności w systemach energetycznych......................................................................... 91 Ochrona własności intelektualnej ................................................................................................ 94 Odnawialne i kogeneracyjne źródła energii................................................................................. 97 Podstawy audytingu energetycznego ........................................................................................ 101 Podstawy automatyki ................................................................................................................. 104 Podstawy elektroenergetyki....................................................................................................... 107 Podstawy elektrotechniki i Energoelektroniki ............................................................................ 110 Podstawy energetyki cieplnej .................................................................................................... 113 Podstawy przedsiębiorczości .................................................................................................... 116 Pomiary eksploatacyjne i odbiorcze .......................................................................................... 118 Projekt wdrożeniowy .................................................................................................................. 121 Projektowanie i wykonawstwo systemów z OZE....................................................................... 124 Przedsiębiorstwo energetyczne na rynku .................................................................................. 127 Seminarium dyplomowe ............................................................................................................ 129 Sieci i stacje elektroenergetyczne ............................................................................................. 131 Sieci komputerowe i sieci przemysłowe .................................................................................... 134 Stacjonarne i mobilne magazyny energii ................................................................................... 137 Sterowniki programowalne ........................................................................................................ 140 Sterowniki programowalne w budynkach i przemyśle ............................................................... 143 Symulacja i modelowania komputerowe w energetyce ............................................................. 147 Systemy zarządzania energią i mediami ................................................................................... 150 Systemy elektromaszynowe ...................................................................................................... 153 Techniki pomiarowe w energrtyce ............................................................................................. 156 Technologie informacyjne.......................................................................................................... 159 Termodynamika i mechanika płynów ........................................................................................ 162 Układy energoelektroniczne w elektroenergetyce ..................................................................... 165 Wychowanie fizyczne ................................................................................................................ 169

Page 3: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

3

AAA LLL GGG EEE BBB RRR AAA LLL III NNN III OOO WWW AAA ZZZ GGG EEE OOO MMM EEE TTT RRR III ĄĄĄ AAA NNN AAA LLL III TTT YYY CCC ZZZ NNN ĄĄĄ

Kod przedmiotu: 11.1 – WE – EEP – AL

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr Jacek Bojarski

Prowadzący: dr Jacek Bojarski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 II

egzamin

Ćwiczenia 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 II

egzamin

Ćwiczenia 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie posługiwania się aparatem algebry liniowej i geometrii analitycznej do opisu zagadnień związanych z efektywnością energetyczną.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie rozwiązywania problemów związanych z efektywnością energetyczną przy wykorzystaniu metod matematycznych.

C1K. Uświadomienie roli matematyki w opisie i rozwiązywaniu zagadnień związanych z efektywnością energetyczną

WYMAGANIA WSTĘPNE:

Brak wymagań.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład i ćwiczenia

Liczby zespolone: sprzężenie, moduł, postać trygonometryczna, postać wykładnicza, interpretacja geometryczna działań, potęgowanie, pierwiastkowanie.

Wielomiany: pierwiastki wielomianów, zasadnicze twierdzenie algebry.

Macierze: działania na macierzach, minory, rząd, wyznaczniki, odwrotność.

Rozwiązywanie układów równań liniowych. Twierdzenie Kroneckera-Cappellego. Twierdzenie Cramera. Metoda eliminacji Gaussa.

Wektory: iloczyn skalarny, wektorowy, mieszany. Równanie prostej, płaszczyzny. Wzajemne położenie punktów, prostych, płaszczyzn.

Przestrzenie, podprzestrzenie liniowe. Liniowa zależność i niezależność wektorów. Baza i wymiar przestrzeni. Jądro i obraz przekształcenia liniowego.

Przestrzeń afiniczna. Przestrzeń euklidesowa. Układ bazowy, układ współrzędnych. Bazy.

Page 4: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

4

Przekształcenia: translacja, obrót, skalowanie.

Formy dwuliniowe i kwadratowe. Macierz formy dwuliniowej, kwadratowej.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy.

Ćwiczenia: rozwiązywanie typowych zadań ilustrujących tematykę przedmiotu, ćwiczenia na zastosowanie teorii, rozwiązywanie zadań problemowych.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę z zakresu algebry liniowej i geometrii analitycznej niezbędnej do formułowania i rozwiązywania problemów inżynierskich.

Student rozumie potrzebę dalszego uczenia się.

K1P_W01 K1P_U14 K1P_K01

Egzamin pisemny. W

Student posługuje się pojęciami z zakresu algebry liniowej i geometrii analitycznej. Posiada umiejętność rozwiązywania zadań. Potrafi formułować problem inżynierski w języku matematyki. Potrafi pozyskać informacje z literatury, internetu i innych wiarygodnych źródeł z zakresu algebry liniowej i geometrii analitycznej niezbędnych do rozwiązywania elementarnego problemu inżynierskiego.

K1P_W01 K1P_U14 K1P_K01

Kolokwia L

WARUNKI ZALICZENIA:

Wykład

Ocena na postawie pisemnego egzaminu.

Ćwiczenia

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych na podstawie ocen z kolokwium.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, ćwiczenia 60%.

Uwaga:

Niezależnie od formy zajęć, ocena pozytywna może zostać wystawiona jedynie, gdy wszystkie oceny cząstkowe w każdej z form zajęć są pozytywne.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + Ć) 60h 36h

Konsultacje 10h 10h

Page 5: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

5

Przygotowanie się do zajęć 40h 64h

Przygotowanie się do egzaminu 40h 40h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. J. Klukowski, I. Nabiałek, Algebra, WNT, 1999.

2. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1, Oficyna Wydawnicza GiS, Wrocław.

3. J. Rutkowski, Algebra liniowa w zadaniach, PWN, 2012.

4. A. Białynicki-Birula, Algebra liniowa z geometrią, PWN, 1979.

5. J. Gancarzewicz, Algebra liniowa z elementami geometrii, Wydawnictwo Naukowe UJ, 2001.

LITERATURA UZUPEŁNIAJĄCA:

1. G. Banaszak, W. Gajda, Elementy algebry liniowej, cz. I, WNT, 2002.

2. W. Dubnicki, L. Fikus, H. Sosnowska, Algebra liniowa w zadaniach, PWN, 1985.

3. K. Nomizu, Fundamentals of Linear Algebra, McGraw-Hill, Inc, New York, 1966.

PROGRAM OPRACOWAŁ:

dr Jacek Bojarski

Page 6: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

6

AAA NNN AAA LLL III ZZZ AAA MMM AAA TTT EEE MMM AAA TTT YYY CCC ZZZ NNN AAA

Kod przedmiotu: 11.1 – WE – EEP – AM

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr Jacek Bojarski

Prowadzący: dr Jacek Bojarski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 I

egzamin

Ćwiczenia 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 I

egzamin

Ćwiczenia 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie posługiwania się aparatem analizy matematycznej do opisu zagadnień związanych z efektywnością energetyczną.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie rozwiązywania problemów związanych z efektywnością energetyczną przy wykorzystaniu metod matematycznych..

C1K. Uświadomienie roli matematyki w opisie i rozwiązywaniu zagadnień związanych z efektywnością energetyczną.

WYMAGANIA WSTĘPNE:

Brak wymagań.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład i ćwiczenia

Zbiory. Funkcje elementarne i ich własności.

Ciągi liczb rzeczywistych. Zbieżność ciągów liczbowych. Przestrzeń metryczna, zbieżność.

Szereg liczbowy: działania, zbieżność. Szereg geometryczny. Kryteria zbieżności szeregów.

Granica funkcji. Ciągłość odwzorowania.

Rachunek różniczkowy. Określenie i interpretacja pochodnej funkcji. Ciągłość a różniczkowalność. Podstawowe reguły różniczkowania. Twierdzenie o wartości średniej i ich zastosowania. Reguła de L’Hospitala. Pochodne wyższych rzędów. Badanie przebiegu zmienności funkcji. Ciągi i szeregi funkcyjne.

Rachunek różniczkowy funkcji wielu zmiennych. Pochodne cząstkowe. Pochodna kierunkowa. Pochodne

Page 7: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

7

cząstkowe i różniczki wyższych zmiennych. Ekstrema lokalne i globalne.

Całka nieoznaczona: definicja, metody wyznaczania.

Całka Riemana i własności. Podstawowe twierdzenia rachunku całkowego. Szacowanie całek oznaczonych. Całki niewłaściwe. Zastosowanie całki Reimanna. Szereg Fouriera.

Całki wielokrotne. Całka iterowana i wzór Fubiniego. Całka wielokrotna po dowolnym zbiorze. Zmiana zmiennych w całce wielokrotnej. Zastosowanie całek wielokrotnych.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy.

Ćwiczenia: rozwiązywanie typowych zadań ilustrujących tematykę przedmiotu, ćwiczenia na zastosowanie teorii, rozwiązywanie zadań problemowych.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę z analizy matematycznej niezbędnej do formułowania i rozwiązywania problemów inżynierskich.

Student rozumie potrzebę dalszego uczenia się.

K1P_W01 K1P_U14 K1P_K01

Egzamin pisemny. W

Student posługuje się pojęciami z zakresu analizy matematycznej. Posiada umiejętność rozwiązywania zadań. Potrafi formułować problem inżynierski w języku matematyki. Potrafi pozyskać informacje z literatury, internetu i innych wiarygodnych źródeł z zakresu analizy matematycznej niezbędnych do rozwiązywania elementarnego problemu inżynierskiego.

K1P_W01 K1P_U14 K1P_K01

Kolokwia L

WARUNKI ZALICZENIA:

Wykład

Ocena na postawie pisemnego egzaminu.

Ćwiczenia

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych na podstawie ocen z kolokwium.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, ćwiczenia 60%.

Uwaga:

Niezależnie od formy zajęć, ocena pozytywna może zostać wystawiona jedynie, gdy wszystkie oceny cząstkowe w każdej z form zajęć są pozytywne.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + Ć) 60h 36h

Page 8: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

8

Konsultacje 10h 10h

Przygotowanie się do zajęć 40h 64h

Przygotowanie się do egzaminu 40h 40h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej, WNT, 2004.

2. W. Rudin, Podstawy analizy matematycznej, PWN, 2009.

3. W. Kołodziej, Analiza matematyczna, PWN, 2009.

LITERATURA UZUPEŁNIAJĄCA:

1. G. M. Fichtenholz, Rachunek różniczkowy i całkowy, t.1,2, PWN, 2004/5.

2. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, PWN, 2008.

3. M. Lial, R. Greenwell, N. Ritchey, Calculus with Applications, Pearson, 2012.

4. R. Rudnicki, Wykłady z analizy matematycznej, PWN, 2006.

5. W. Sosulski, J. Szajkowski, Zbiór zadań z analizy matematycznej, Red. Wyd. Nauk Ścisłych i Ekonomicznych, UZ, 2007.

PROGRAM OPRACOWAŁ:

dr Jacek Bojarski

Page 9: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

9

AAA PPP AAA RRR AAA TTT YYY III UUU RRR ZZZ ĄĄĄ DDD ZZZ EEE NNN III AAA EEE LLL EEE KKK TTT RRR YYY CCC ZZZ NNN EEE

Kod przedmiotu: 06.0 – WE – EEP – AUE

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Paweł Szcześniak

Prowadzący: dr inż. Paweł Szcześniak, dr inż. Jacek Rusiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2

V

Zaliczenie na ocenę

Laborator ium 30 2 Zaliczenie na ocenę

Pro jekt 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

Zaliczenie na ocenę

Laborator ium 18 2 Zaliczenie na ocenę

Pro jekt 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z rodzajami aparatów i urządzeń elektrycznych pracujących w systemach i sieciach elektroenergetycznych.

CW2. Ukształtowanie podstawowej wiedzy z zakresu pracy i eksploatacji urządzeń elektrycznych oraz zjawisk fizycznych zachodzących w aparatach i urządzeniach elektrycznych.

C1U. Wyrobienie umiejętności obliczania charakterystycznych wielkości elektrycznych determinujących dobór urządzeń i aparatów elektrycznych w warunkach normalnej pracy oraz podczas stanów zakłóceniowych.

C1K. Przygotowanie do permanentnego uczenia się i podnoszenia posiadanych kompetencji.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, fizyka techniczna, podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Aparaty i urządzenia elektryczne w systemie elektroenergetycznym.

Ogólny podział i funkcje aparatów elektrycznych. Podział łączników elektroenergetycznych i ich podstawowe parametry.

Konstrukcje wyłączników i kryteria ich doboru.

Page 10: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

10

Konstrukcja rozłączników i kryteria ich doboru.

Konstrukcja odłączników i kryteria ich doboru.

Konstrukcja styczników i kryteria ich doboru.

Zjawiska fizyczne zachodzące w aparatach elektrycznych. Cieplne i dynamiczne działanie prądów.

Przekładniki prądowe.

Przekładniki napięciowe.

Wyznaczanie obciążalności torów prądowych i zestyków..

Obliczanie nagrzewania torów prądowych.

Liczniki energii elektrycznej.

Stacje elektroenergetyczne. Rozdzielnice elektroenergetyczne niskich i średnich napięć.

Systemy wspomagania projektowania urządzeń i aparatów elektrycznych.

Źródła światła.

Laboratorium

Badanie przekładników napięciowych.

Badanie przekładników prądowych.

Układy połączeń przekładników prądowych.

Badanie styczników i przekaźników.

Badanie przekaźników półprzewodnikowych.

Badanie aparatów zabezpieczeniowych rozdzielnic nn.

Koordynacja aparatów zabezpieczeniowych rozdzielnic nn.

Badanie transformatorów w układzie równoległym.

Badanie zjawisk komutacyjnych w obwodach RL oraz RLC.

Badanie aparatów różnicowoprądowych w układach sieci nn.

Badanie liczników energii elektrycznej.

Badania przyłącza kablowego nn.

Badania nagrzewania się torów prądowych.

Badanie elementów ochrony przepięciowej.

Badanie źródeł światła.

Projekt

Dobór urządzeń i aparatów elektrycznych do wybranej części instalacji elektrycznej o założonej funkcjonalności.

Projekt urządzenia elektrycznego o założonej funkcjonalności użytkowej.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna budowę urządzeń i aparatów elektrycznych wykorzystywanych w przesyle, rozdziale i użytkowaniu energii elektrycznej, umie zdefiniować poprawne warunki ich eksploatacji i określić ich cykl życia oraz zna zagrożenia jakim podlegają

K1P_W11, K1P_W19, K1P_W22, K1P_K01, K1P_K04.

Kolokwium pisemne na koniec semestru

W

Page 11: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

11

urządzenia i aparaty elektryczne.

Student potrafi przeprowadzić pomiary podstawowych parametrów lub oszacować stan eksploatacji aparatów i urządzeń elektrycznych.

K1P_U08, K1P_U17.

Ocena za sprawozdania z zajęć laboratoryjnych oraz bieżąca kontrola

na zajęciach L

Student potrafi zaprojektować proste urządzenie elektryczne lub system zawierający urządzenia lub aparaty elektryczne, dobrać jego podstawowe elementy spośród elementów dostępnych na rynku, ma świadomość konieczności ciągłego samokształcenia się w związku z postępem technologicznym w zakresie urządzeń elektrycznych oraz wzrostem wymagań formalnych i normatywnych w tym zakresie.

K1P_U08, K1P_U17, K1P_K01, K1P_K04.

Ocena za wykonane zadania projektowego

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych oraz ocen z przygotowania do zajęć na podstawie bieżącej kontroli na zajęciach.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 15h 36h

Przygotowanie się do zajęć 15h 30h

Sporządzenie sprawozdań 15h 15h

Sporządzenie projektów 15h 15h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. Bełdowski T., Markiewicz H.: Stacje i urządzenia elektroenergetyczne, WNT, Warszawa 1992.

2. Kotlarski W., Grad J.: Aparaty i urządzenia elektryczne, WSiP, 2013.

3. Markiewicz H.: Urządzenia elektroenergetyczne, Wydawnictwa Naukowo-Techniczne, Warszawa 2001.

4. Grzbiela C., Machowski A.: Maszyny, urządzenia elektryczne i automatyka w przemyśle, Wydawnictwo Naukowe, Katowice 2010.

Page 12: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

12

5. Maksymiuk J., Pochanke Z.: Obliczenia i badania diagnostyczne aparatury rozdzielczej, WNT, 2001.

LITERATURA UZUPEŁNIAJĄCA:

1. Markiewicz H.: Instalacje elektryczne. Warszawa, WNT 2005

2. Dołęga W.: Stacje elektroenergetyczne, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2007.

3. Niestępski S., Parol M., Pasternakiewicz J., Wiśniewski T.: Instalacje Elektryczne, budowa, eksploatacja, projektowanie, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001.

4. Dołęga W., Klajn A., Kobusiński M.: Laboratorium z urządzeń i instalacji elektrycznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2004.

PROGRAM OPRACOWAŁ:

dr inż. Paweł Szcześniak

[email protected]

Page 13: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

13

AAA UUU TTT OOO MMM AAA TTT YYY KKK AAA ZZZ AAA BBB EEE ZZZ PPP III EEE CCC ZZZ EEE NNN III OOO WWW AAA WWW SSS YYY SSS TTT EEE MMM AAA CCC HHH ZZZ

OOO ZZZ EEE

Kod przedmiotu: 06.0 – WE – EEP – AZ

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Adam Kempski

Prowadzący: dr hab. inż. Adam Kempski, dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 V

Zaliczenie na ocenę

Laborator ium 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 V

Zaliczenie na ocenę

Laborator ium 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z rodzajami zakłóceń występujących w systemach z OZE, metodami zabezpieczeń przed ich skutkami oraz sposobami ich eliminacji.

C1U. Ukształtowanie podstawowej wiedzy z zakresu doboru oraz konfigurowania układów zabezpieczeń w systemach energetycznych z OZE.

C1K. Wskazanie roli procesu samokształcenia się i ciągłego podnoszenia kwalifikacji w działalności inżynierskiej.

Wymagania wstępne:

Podstawy elektroenergetyki, aparaty i urządzenia elektryczne, odnawialne i ko generacyjne źródła energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Zakłócenia w systemie elektroenergetycznym. Klasyfikacja zakłóceń. Przegląd zakłóceń objętych działaniem automatyki zabezpieczeniowej.

Zadania elektroenergetycznej automatyki zabezpieczeniowej (EAZ) w systemie elektroenergetycznym. Ogólna struktura automatyki zabezpieczeniowej. Schematy funkcjonalne układu automatyki zabezpieczeniowej. Niezawodność i rezerwowanie

Zbieranie i wstępne przetwarzanie danych. Sygnały prądowe i napięciowe w stanach zakłóceniowych. Obwody pomiarowe w układach EAZ. Przekładniki pomiarowe prądowe i napięciowe. Dobór przekładników. Przetworniki wielkości pomiarowych zabezpieczeń. Przesył sygnałów pomiarowych.

Page 14: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

14

Główne kryteria zabezpieczeniowe i ich realizacje układowe. Kryterium nadprądowe. Zabezpieczenia nadprądowe bezzwłoczne i zwłoczne. Kryteria nad- i podnapięciowe. Kryterium różnicowo-prądowe. Kryterium podimpedancyjne. Kryterium kątowo-prądowe

Zabezpieczenia układów i urządzeń w układzie elektroenergetycznym. Zabezpieczenia linii i szyn zbiorczych. Zabezpieczenia polowe.

Zabezpieczenia generatorów synchronicznych, transformatorów i bloków generator-transformator. Zabezpieczenia silników. Zabezpieczenia urządzeń energoelektronicznych.

Układy automatyki samoczynnego ponownego załączania (SPZ), samoczynnego załączania rezerwy (SZR), samoczynnego częstotliwościowego odciążania (SCO)

Prądy i zabezpieczenia upływowe w instalacjach OZE z przekształtnikami energoelektronicznymi.

Zabezpieczenia przed pracą wyspową. Metody wykrywania pracy wyspowej w układach OZE współpracujących z siecią elektroenergetyczną.

Automatyka zabezpieczeniowa w systemach cieplnych OZE.

Automatyka zabezpieczeniowa w technologicznych systemach przemysłowych.

Laboratorium

Badanie właściwości czujników napięciowych z efektem Halla.

Badanie właściwości czujników prądowych z efektem Halla.

Badanie właściwości przekładnika Ferrantiego.

Układy połączeń przekładników prądowych.

Badanie właściwości przekaźników nadprądowych, pod- i nadnapięciowych.

Badanie właściwości zabezpieczeń pod- i nadczęstotliwościowych.

Badanie właściwości wyłączników nadmiarowo-prądowych z członem zwarciowym.

Badanie właściwości zespołu zabezpieczeń silnikowych i generatorowych.

Badanie właściwości zabezpieczeń w systemach sprężonego powietrza.

Badanie właściwości zabezpieczeń w systemach cieplnych

Badanie właściwości zabezpieczeń wyspowych.

Badanie właściwości zabezpieczeń upływowych w systemach PV.

Badanie właściwości układów SZR.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat sposobów zapewnienia bezpiecznej eksploatacji maszyn i urządzeń w systemach z OZE

K1P_W12 Kolokwium pisemne na koniec

semestru W

Student ma świadomość wpływu pogłębiania wiedzy w dziedzinie układów zabezpieczeniowych na bezpieczną eksploatację systemów OZE

K1P_K01, K1P_K04

Ocena za sprawozdania z zajęć laboratoryjnych oraz bieżąca kontrola

na zajęciach L

Student posiada podstawowe umiejętności w zakresie doboru urządzeń i nastaw automatyki zabezpieczeniowej w systemach z OZE

K1P_U17, K1P_U23

WARUNKI ZALICZENIA:

Wykład

Page 15: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

15

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych oraz ocen z przygotowania do zajęć na podstawie bieżącej kontroli na zajęciach.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 15h 18h

Przygotowanie się do zajęć 30h 30h

Sporządzenie sprawozdań 30h 30h

Czytanie literatury 15h 36h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. Wróblewski J.: Zespoły elektroenergetycznej automatyki zabezpieczeniowej, WNT, Warszawa, 1993.

2. Synal B.: Elektroenergetyczna automatyka zabezpieczeniowa - podstawy, Oficyna Wydawnicza

Politechniki Wrocławskiej, Wrocław 2000.

3. Żydanowicz J.: Elektroenergetyczna automatyka zabezpieczeniowa, WNT, Warszawa, 1987

LITERATURA UZUPEŁNIAJĄCA:

1. Winkler W., Wiszniewski A., Automatyka zabezpieczeniowa w systemach elektroenergetycznych, WNT,

Warszawa, 2004.

2. Januszewski M., Kowalik R., Smolarczyk A.: Cyfrowa elektroenergetyczna automatyka

zabezpieczeniowa, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2006.

3. Żydanowicz J., Namiotkiewicz M.: Automatyka zabezpieczeniowa w elektroenergetyce, WNT, W-wa,

1983.

4. Wiszniewski A.: Algorytmy pomiarów cyfrowych w automatyce elektroenergetycznej, WNT, W-wa, 1990.

PROGRAM OPRACOWAŁ:

Page 16: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

16

AAA UUU TTT OOO MMM AAA TTT YYY ZZZ AAA CCC JJJ AAA PPP RRR OOO CCC EEE SSS ÓÓÓ WWW TTT EEE CCC HHH NNN OOO LLL OOO GGG III CCC ZZZ NNN YYY CCC HHH

Kod przedmiotu: 06.6 – WE – EEP – APT

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : nauczyciel akademicki prowadzący wykład

Prowadzący: dr inż. Edward Tertel, dr inż. Piotr Kuryło, dr inż. Joanna Cyganiuk

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

4

W ykład 30 2 IV

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 IV

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie celowości, metod i narzędzi automatyzacji procesów technologicznych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru metod i narzędzi automatyzowania prostych procesów technologicznych oraz umiejętności projektowania, budowy i testowania prostych układów sterowania.

C1K. Uświadomienie miejsca i roli inżyniera odpowiadającego za zadania automatyzacji w nowoczesnych procesach technologicznych, w szczególności wpływu automatyzacji na techniczne oraz pozatechniczne aspekty działalności inżynierskiej.

WYMAGANIA WSTĘPNE:

Technologie informacyjne, Symulacja i modelowanie komputerowe, Podstawy elektroenergetyki, Podstawy energetyki cieplnej.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Istota automatyzacji, definicje: automatyka, automatyzacja, regulacja, sterowanie. Metody automatyzacji, celowość oraz ograniczenia w automatyzacji.

Proces produkcyjny, automatyzacja procesów technologicznych, stopień automatyzacji, obszary automatyzacji w systemach wytwarzania.

Elementy systemów technologicznych: instalacja technologiczna, system zasilania, system sterowania. Przykłady automatyzacji procesów technologicznych, standardowe topologie, tryby pracy.

Normalizacja oznaczeń na schematach automatyzacji – norma PN 89 M 42007. Standardowe elementy

Page 17: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

17

schematów technologicznych, obwody sterowania, punkty pomiarowe.

Sygnały w technologicznych układach sterowania – sygnały pomiarowe i sterujące, standardy sygnałów.

Pomiary typowych wielkości w automatyzacji procesów technologicznych: temperatura, wilgotność, ciśnienie, siła, poziom, natężenie przepływu.

Dwustanowe elektryczne elementy wykonawcze: przekaźniki, styczniki, elektrozawory.

Pneumatyczne i hydrauliczne środki automatyzacji procesów technologicznych. Siłowniki, zawory sterujące, elementy logiczne, osprzęt hydrauliczny i pneumatyczny.

Metody projektowania i budowy hydraulicznych i pneumatycznych układów sterujących, Zapis schematów hydraulicznych i pneumatycznych.

Robotyzacja w procesach technologicznych. Przegląd konstrukcji i zastosowań robotów, roboty przemysłowe, roboty mobilne. Stopnie swobody robota, przestrzeń robocza robota, komunikacja robotów z otoczeniem, czujniki, efektory, napędy, podstawy sterowania.

Sterowanie numeryczne. Sterowniki programowalne PLC. Podstawy budowy, fazy cyklu sterownika, główne obszary zastosowań. Podstawy komunikacji w systemach sterowników.

Podstawy programowania sterowników PLC. Rodzaje języków programowania. Standaryzacja języków. Struktury programów sterujących.

Poziom operatorski hierarchicznego systemu sterowania– systemy SCADA. Zadania systemów SCADA. Przykłady systemów SCADA.

Podstawy projektowania, wdrażania, rozruchu i serwisowania zautomatyzowanych systemów technologicznych.

Podsumowanie, kolokwium zaliczeniowe.

Laboratorium

Wprowadzenie, omówienie ćwiczeń i zasad realizacji.

Realizacja podstawowych funkcji logicznych: OR, AND, NOT z użyciem podstawowych elementów pneumatyki.

Sterowanie zautomatyzowaną pracą siłowników pneumatycznych/hydraulicznych – układy kombinacyjne i sekwencyjne.

Programowanie sterownika PLC metodą FBD (Function Block Diagram) - diagram bloków funkcyjnych –rodzaje bloków, sposoby łączenia układów.

Programowanie sterownika PLC metodą FBD – projektowanie programu dla określonego zadania technologicznego.

Dwustanowa regulacja temperatury.

Schematy kinematyczne robotów i manipulatorów.

Sterowanie manipulatorem ARM1.

Modelowanie i analiza pracy przerzutników.

Podsumowanie zajęć laboratoryjnych, zaliczenie zajęć.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny).

Laboratorium: ćwiczenia laboratoryjne na stanowiskach laboratoryjnych oraz komputerowych, praca w grupach.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat metod, celowości i znaczenia automatyzacji procesów technologicznych oraz środków technicznych stosowanych w automatyzacji. Zna standardy tworzenia schematów procesów technologicznych, w szczególności procesów

K1P_W08,

K1P_W09,

K1P_W22,

K1P_K01,

K1P_K04.

Kolokwium pisemne na koniec semestru

W

Page 18: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

18

zautomatyzowanych. Identyfikuje rodzaje sygnałów w automatyzacji, zna metody pomiaru typowych wielkości fizycznych w automatyzacji procesów technologicznych. Student rozumie znaczenie postępu w automatyzacji procesów technologicznych i związaną z tym potrzebę ciągłego uczenia się.

Student i potrafi właściwie dobrać i zastosować podstawowe środki automatyzacji procesów technologicznych do realizacji prostych zadań automatyzacji.

Potrafi zaprojektować i zasymulować działanie/przetestować prosty układ sterowania z użyciem zaworów rozdzielających, elementów funkcyjnych oraz sterowników PLC.

K1P_W08

K1P_W09,

K1P_W22,

K1P_U14,

K1P_U16,

K1P_U20,

K1P_U22.

Ocena z realizacji zajęć oraz za sprawozdania z zajęć laboratoryjnych.

L

WARUNKI ZALICZENIA:

Wykład

Ocena końcowa z wykładu jest ustalana na podstawie końcowego kolokwium pisemnego. Możliwe jest również przeprowadzenie kolokwium częściowego w połowie semestru.

Laboratorium

Ocena końcowa jest określana na podstawie ocen cząstkowych uzyskiwanych za realizację ćwiczeń (w tym przygotowanie do zajęć) (40%) oraz na podstawie ocen za sprawozdania ze zrealizowanych zajęć laboratoryjnych (60%).

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia ważona z ocen za poszczególne formy zajęć z wagami: wykład 0.6, laboratorium 0.4

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 4ECTS x (25h / 1ECTS) = 100h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 60h 36h

Konsultacje 10h 32h

Przygotowanie się do zajęć 15h 16h

Sporządzenie sprawozdań 15h 16h

Razem 100h 100h

LITERATURA PODSTAWOWA:

1. Chorowski B., Werszko M., Mechaniczne Urządzenia Automatyki WNT Warszawa 1990 i nowsze

2. Mikulczyński T., Automatyzacja procesów produkcyjnych, WNT Warszawa 2006

3. Honczarenko J., Roboty przemysłowe budowa i zastosowanie, WNT, Warszawa 2004

4. Kwaśniewski J., Programowalne sterowniki przemysłowe w systemach sterowania Kraków 1999.

5. J. Kasprzyk: Programowanie sterowników przemysłowych. WNT, Warszawa 2006

6. Literatura dodatkowo ustalana przez prowadzącego dla całego przedmiotu lub dla poszczególnych tematów zajęć.

Page 19: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

19

LITERATURA UZUPEŁNIAJĄCA:

1. Baier A., Kost G., Świder J., Zdanowicz R., Sterowanie i automatyzacja procesów technologicznych i układów mechatronicznych, WPŚ - 2012

2. Kost G., Łebkowski P., Węsierski Ł., Automatyzacja i robotyzacja procesów produkcyjnych PWE 2013

3. Pomiary, Automatyka, Robotyka – miesięcznik

4. http://www.automatyka.pl

PROGRAM OPRACOWAŁ:

dr inż. Edward Tertel

[email protected]

Page 20: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

20

BBB EEE ZZZ PPP III EEE CCC ZZZ EEE ŃŃŃ SSS TTT WWW OOO III HHH III GGG III EEE NNN AAA PPP RRR AAA CCC YYY

Kod przedmiotu: 06.9 – WE – EEP – BHP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Sławomir Piontek

Prowadzący: dr inż. Sławomir Piontek

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

3 W ykład 30 2 I Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 I Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. zapoznanie studentów z przepisami bezpieczeństwa i higieny pracy obowiązującymi w pracach z urządzeniami i maszynami elektrycznymi. Ugruntowanie wiedzy w zakresie metod i kryteriów oceny zagrożenia i narażenia w miejscu pracy oraz metod ochrony przed tymi zagrożeniami.

C1K. Zapoznanie studentów z zasadami postępowania w razie zaistnienia wypadku i zasadami udzielania pierwszej pomocy.

WYMAGANIA WSTĘPNE:

Brak

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Przepisy bezpieczeństwa i higieny pracy

Kwalifikacje osób zajmujących się eksploatacją urządzeń elektrycznych.

Działanie prądu elektrycznego na człowieka

Wpływ rodzaju prądu na skutki rażenia. Wartości progowe. Zmiany w organizmie.

Ochrona przeciwporażeniowa

Rodzaje i środki ochrony przeciwporażeniowej

Zakres i metodyka badania ochrony przeciwporażeniowej.

Zagrożenia związane z występowanie elektryczności statycznej

Zapobieganie elektryczności statycznej. Ładunki elektrostatyczne na człowieku.

Użytkowanie urządzeń elektrycznych

Ochrona przed porażeniem w instalacji elektrycznej sieci komputerowej.

Page 21: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

21

Ochrona przed skutkami łuku elektrycznego. Ochrona przeciwprzepięciowa

Urządzenia elektryczne w strefie zagrożonej wybuchem. Warunki dopuszczenia urządzeń do

stosowania

Europejski system oceny wyrobów i usług.

Pierwsza pomoc.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny z użyciem środków multimedialnych

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student rozumie zasady niezawodnej i bezpiecznej eksploatacji maszyn i urządzeń, potrafi stosować zasady bezpieczeństwa i higieny pracy w odniesieniu do wykonywanej działalności jak również do projektowanych urządzeń i systemów, rozumie potrzebę uczenia się przez całe życie, przede wszystkim w celu podnoszenia swoich kompetencji zawodowych i osobistych, prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu

K1P_W12

K1P_U12

K1P_K01

K1P_K05

Kolokwium pisemne na koniec semestru

W

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

Stacjonarne niestacjonarne

Godziny kontaktowe 30h 18h

Konsultacje 15h 18h

Przygotowanie się do zajęć 30h 39h

Razem 75h 75h

LITERATURA PODSTAWOWA:

[1] Strojny J. Bezpieczeństwo użytkowania urządzeń elektrycznych AGH, Kraków, 2003.

[2] Matula E., Sych M. Zapobieganie porażeniom elektrycznym w przemyśle, WNT Warszawa 1980.

[3] Prawo Energetyczne, URE, www.gip.pl, Warszawa 2004.

[4] Nauka o pracy, Bezpieczeństwo, Higiena i Ergonomia, Multimedialny Pakiet Edukacyjny dla Uczelni Wyższych, Centralny Instytut Ochrony Pracy, Państwowy Instytut Badawczy 2010.

LITERATURA UZUPEŁNIAJĄCA:

Page 22: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

22

[1] Edward Musiał, Komentarze do PN-HD 60-364, SEP COSiW

PROGRAM OPRACOWAŁ:

dr inż. Sławomir Piontek

[email protected]

Page 23: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

23

BBB III OOO PPP AAA LLL III WWW AAA III TTT RRR AAA NNN SSS PPP OOO RRR TTT EEE KKK OOO LLL OOO GGG III CCC ZZZ NNN YYY

Kod przedmiotu: 06.0 – WE – EEP – BTE

Typ przedmiotu: obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Marcin Jarnut

Prowadzący: dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

3

W ykład 15 1 VII

zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII

zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie metod wytwarzania oraz wykorzystania biopaliw i alternatywnych źródeł energii w transporcie, przemyśle i energetyce rozproszonej.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie określania wskaźników energochłonności i emisyjności systemów energetycznych, technologicznych i transportowych oraz racjonalizacji struktury zużycia paliw.

C1K. Uświadomienie roli biopaliw w gospodarce niskoemisyjnej.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy elektrotechniki i energoelektroniki, chemia, systemy elektromaszynowe, odnawialne i kogeneracyjne źródła energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Właściwości energetyczne i emisyjne paliw w systemach energetycznych i transportowych.

Wytwarzanie biopaliw.

Wykorzystanie biopaliw w energetyce cieplnej i systemach technologicznych.

Pojazdy zasilane biopaliwami i wodorem.

Pojazdy hybrydowe. Pojazdy elektryczne typu „plug in”

Systemy ładowania pojazdów elektrycznych.

Podsumowanie wiadomości z zakresu biopaliw i transportu ekologicznego.

Projekt

Page 24: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

24

Wyznaczanie wskaźników energetycznych i emisyjnych paliw konwencjonalnych i alternatywnych

Wyznaczanie wskaźników ekonomicznych działań racjonalizacyjnych w zakresie zmiany struktury wykorzystania paliw.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Projekt: metoda projektu, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę na temat sposobów wytwarzania i wykorzystania biopaliw i alternatywnych źródeł energii w przemyśle, energetyce rozproszonej i transporcie.

K1P_W21 Kolokwium pisemne na koniec semestru

W, P

Student potrafi oszacować wskaźniki energetyczne, emisyjne i ekonomiczne w procesach racjonalizacji struktury zużycia paliw i energii, ma świadomość rozwoju technologicznego w zakresie paliw niskoemisyjnych i ich roli w gospodarce

K1P_U19, K1P_U21 K1P_K01

Ocena za wykonane zadania projektowe

W, P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium pisemnego

Projekt

Ocena końcowa jest średnią arytmetyczną zadań projektowych wykonanych przez studenta w trakcie semestru

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia ważona z ocen ze wszystkich form przedmiotu przy czym wagi ocen z wykładu i projektu wynoszą po 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

stacjonarne niestacjonarne

Godziny kontaktowe (W + P) 30h 18h

Konsultacje 10h 12h

Przygotowanie się do zajęć 15h 25h

Przygotowanie sprawozdań 20h 20h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Witold M. Lewandowski, Michał Ryms, Biopaliwa. Proekologiczne odnawialne źródła energii,

Wydawnictwa Naukowo techniczne

Page 25: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

25

2. Ewa Klimiuk, Małgorzata Pawłowska, Tomasz Pokój, Biopaliwa. Technologie dla zrównoważonego

rozwoju, PWN

3. Tadeusz Juliszewski, Tadeusz Zając, Biopaliwo rzepakowe, PWRIL Państwowe Wydawnictwo

Rolnicze i Leśne

4. Jastrzębska Grażyna, Odnawialne źródła energii i pojazdy proekologiczne, Wydawnictwa Naukowo-

Techniczne

5. Chris Mi, M. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles: Principles and Applications

with Practical Perspectives, John Wiley & Sons

6. Iqbal Husain, Electric and Hybrid Vehicles: Design Fundamentals, Second Edition, CRC Press

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 26: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

26

CCC AAA DDD III GGG RRR AAA FFF III KKK AAA III NNN ŻŻŻ YYY NNN III EEE RRR SSS KKK AAA

Kod przedmiotu: 06.6 – WE – EEP – CGI

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Rusiński

Prowadzący: dr inż. Jacek Rusiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

4

W ykład 30 2 I

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 I

egzamin

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie norm rysunku technicznego i prowadzenia dokumentacji technicznej, nauka podstaw graficznego zapisu projektu technicznego układów elektrycznych i elektronicznych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie wykorzystywania pakietów komputerowego wspomagania projektowania CAD.

C1K. Uświadomienie roli wykorzystania nowoczesnych pakietów typu CAD przy tworzeniu dokumentacji projektów technicznych.

WYMAGANIA WSTĘPNE:

Technologie informacyjne, algebra z geometrią

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Ogólna charakterystyka rysunku technicznego. Normy rysunku technicznego.

Rzutowanie równoległe i prostokątne. Zasady rzutowania prostokątnego.

Wyznaczanie rzutów zarysów przekrojów brył płaszczyznami. Przekroje proste i złożone.

Zasady wymiarowania obiektów i elementów na rysunkach.

Narzędzia numeryczne stosowne w rysunku technicznym. Systemy komputerowego wspomagania projektowania typu CAD.

Podstawy zapisu konstrukcji w programach: MegaCad, Elcad, Orcad, PcSchematic itp.

Konstrukcja układów elektronicznych.

Rysunek techniczny układów elektronicznych, elementy i symbole, schematy ideowe.

Page 27: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

27

Edytor schematów i elementów elektronicznych.

Podstawy projektowania obwodów drukowanych.

Instalacje elektryczne w konstrukcjach budowlanych.

Rysunek techniczny instalacji elektrycznych w programie Elcad.

Rzut konstrukcji budowlanej. Elementy i symbole w budynkowych instalacjach elektrycznych i teletechnicznych.

Rysunek techniczny elektrycznych układów sterowania i automatyki.

Podsumowanie wiadomości z zakresu grafiki inżynierskiej.

Laboratorium

Wprowadzenie do rysunku technicznego

Podstawy rysunku technicznego – rzutowanie równoległe prostokątne

Podstawy rysunku technicznego – przekroje brył

Podstawy rysunku technicznego – wymiarowanie elementów

Podstawy rysunku technicznego obwodów elektronicznych – wprowadzenie Orcad

Zasady wykonywania dokumentacji układów elektronicznych - właściwości elementów

Zasady wykonywania dokumentacji układów elektronicznych - schemat ideowy

Zasady wykonywania dokumentacji układów elektronicznych – podstawy projektowania obwodów drukowanych

Podsumowanie wiadomości z zakresu postaw rysunku technicznego

Podstawy rysunku technicznego instalacji elektrycznych – wprowadzenie do programu CAD

Zasady wykonywania dokumentacji instalacji elektrycznych w konstrukcjach budowlanych - schemat ideowy

Zasady wykonywania rzutu konstrukcji budowlanej

Instalacje elektryczne w konstrukcjach budowlanych – rysunek wykonawczy

Instalacje teletechniczne w konstrukcjach budowlanych

Podsumowanie wiadomości z zakresu postaw rysunku technicznego elektrycznego

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat podstaw wykonywania rysunku technicznego, zna podstawowe zasady zapisu graficznego projektów obwodów elektrycznych, potrafi wykorzystać oprogramowanie CAD w pracy inżynierskiej.

K1P_W10 K1P_U20 K1P_K01

Egzamin na koniec semestru W

Student rozumie potrzebę stosowania oprogramowania CAD przy tworzeniu dokumentacji technicznej, potrafi wybrać odpowiednie do danego zadania oprogramowanie CAD i stosować je przy tworzeniu dokumentacji technicznej opracowywanego projektu.

K1P_U03, K1P_U04, K1P_U14, K1P_K04

Ocena za sprawozdania z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

Warunkiem zaliczenia jest pozytywna ocena z egzaminu na koniec semestru.

Page 28: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

28

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 60%, laboratorium 40%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 4ECTS x (25h / 1ECTS) = 100h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 20h

Przygotowanie się do zajęć 25h 24h

Sporządzenie sprawozdań 15h 20h

Razem 100h 100h

LITERATURA PODSTAWOWA:

1. Michel K., Sapiński T.: Rysunek techniczny elektryczny, Wydawnictwa Naukowo-Techniczne, Warszawa, 1987.

2. Wawer M.: Grafika inżynierska: Podstawy komputerowego zapisu konstrukcji w systemie MegaCAD, SGGW, Warszawa, 2001.

3. Mazur J.W., Kosiński K., Polakowski K.: Grafika inżynierska z wykorzystaniem metod CAD, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2004.

LITERATURA UZUPEŁNIAJĄCA:

1. Markiewicz H.: Instalacje elektryczne, WNT, Warszawa, 2005

PROGRAM OPRACOWAŁ:

dr inż. Jacek Rusiński

[email protected]

Page 29: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

29

CCC HHH EEE MMM III AAA

Kod przedmiotu: 13.3 – WE – EEP – CH

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr Izabela Krupińska

Prowadzący: dr Izabela Krupińska

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

5

W ykład 30 2

II

zaliczenie na ocenę

Ćwiczenia 15 1 zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

II

zaliczenie na ocenę

Ćwiczenia 9 1 zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

Celem przedmiotu jest nabycie przez studentów umiejętności i kompetencji w zakresie rozumienia przemian chemicznych i ich znaczenia dla procesów energetycznych w oparciu o podstawowe prawa, obliczenia i eksperymenty chemiczne.

WYMAGANIA WSTĘPNE:

Nieformalne: Chemia na poziomie szkoły średniej.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe pojęcia i prawa chemiczne.

Budowa atomu, konfiguracje elektronowe atomów, układ okresowy pierwiastków.

Wiązania chemiczne. Oddziaływania międzycząsteczkowe.

Stany skupienia materii.

Klasyfikacja i nomenklatura związków nieorganicznych.

Typy reakcji chemicznych.

Roztwory i ich właściwości. Teoria elektrolitów. Dysocjacja. Równowagi w roztworach elektrolitów, prawo rozcieńczeń Ostwalda, definicje kwasów i zasad, pojęcie pH.

Hydroliza. Roztwory buforowe.

Page 30: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

30

Kinetyka reakcji chemicznych. Kataliza.

Podstawy termochemii.

Elektrochemia. Reakcje utleniania i redukcji. Szereg napięciowy metali. Ogniwa elektrochemiczne. Równanie Nernsta.

Korozja metali. Korozja chemiczna. Korozja elektrochemiczna. Ochrona przed korozją.

Elementy chemii organicznej. Wprowadzenie do chemii organicznej. Węglowodory (alkany, alkeny, alkiny, węglowodory aromatyczne).

Alkohole, fenole, aldehydy, ketony.

Kwasy karboksylowe, estry, aminy.

Ćwiczenia

Podstawowe pojęcia w chemii, wzory, nazewnictwo.

Typy reakcji chemicznych.

Obliczenia stechiometryczne.

Roztwory. Stężenia procentowe.

Stężenia molowe.

Przeliczanie stężeń.

Reakcje utleniania i redukcji.

Dysocjacja elektrolityczna, stopień i stała dysocjacji.

pH roztworów.

Reakcje zobojętniania. Miareczkowanie.

Hydroliza soli.

Roztwory buforowe.

Reakcje strącania osadów. Iloczyn rozpuszczalności.

Termochemia.

Elektrochemia.

Laboratorium

Typy reakcji chemicznych.

Elektrolity.

Hydroliza soli.

Bufory.

Reakcje utleniania i redukcji.

Analiza kationów grupy I.

Analiza kationów grupy II.

Analiza kationów grupy III.

Analiza kationów grupy IV i V.

Analiza miareczkowa – alkacymetria.

Analiza miareczkowa – redoksymetria.

Analiza miareczkowa – kompleksometria.

Analiza wagowa.

Analiza wybranych związków organicznych.

Podstawy syntez organicznych.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Ćwiczenia: ćwiczeniowa, problemowa giełda pomysłów w celu rozwiązania danego problemu chemicznego

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Page 31: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

31

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę w zakresie chemii ogólnej oraz w zakresie chemii organicznej w tym procesów spalania paliw, prowadzenia prostych analiz chemicznych w procesach energetycznych.

K1P_W04

K1P_K01

Kolokwium pisemne na koniec semestru

W

Student zna podstawowe metody obliczeniowe stosowane do rozwiązywania prostych problemów z zakresu chemii ogólnej; potrafi analizować proste problemy chemiczne oraz znajdować ich rozwiązania w oparciu o poznane prawa, twierdzenia i metody

K1P_W04

K1P_U15

K1P_K01

Ocena z pisemnego kolokwium zaliczeniowego na koniec cyklu dydaktycznego

Ć

Student ma zweryfikowaną laboratoryjnie wiedzę w zakresie chemii ogólnej oraz podstaw chemii organicznej, potrafi wykonać proste analizy chemiczne z wykorzystaniem technik laboratoryjnych, opracowuje wyniki, prawidłowo je interpretuje i wyciąga z nich wnioski, potrafi pracować i współdziałać w grupie w celu rozwiązania określonego problemu chemicznego

K1P_W04

K1P_U15

K1P_K01

Ocena ze sprawdzianów kontrolnych oraz ocena za sprawozdania z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

Ocena końcowa jest oceną z kolokwium pisemnego.

Ćwiczenia

Ocena końcowa jest oceną z kolokwium końcowego.

Kolokwium pisemne: 5 pytań, ocena z kolokwium jest średnią arytmetyczną z pięciu ocen za poszczególne pytania.

Laboratorium

Na ocenę końcową z ćwiczeń laboratoryjnych składa się ocena z kolokwium pisemnego sprawdzającego wiedzę teoretyczną z zakresu ćwiczenia i ocena ze sprawozdania z wykonanego ćwiczenia. Do zaliczenia ćwiczeń laboratoryjnych wymagane jest wykonanie wszystkich ćwiczeń laboratoryjnych przewidzianych w programie oraz uzyskanie pozytywnych ocen ze wszystkich kolokwiów pisemnych oraz sprawozdań. Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych z kolokwiów oraz z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdania z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana, jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, ćwiczenia 30% i laboratorium 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

Page 32: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

32

stacjonarne niestacjonarne

Godziny kontaktowe (W + Ć + L) 60h 36h

Konsultacje 10h 10h

Przygotowanie się do zajęć 30h 64h

Sporządzenie sprawozdań 15h 15h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. A. Bielański, Podstawy chemii nieorganicznej, Wydawnictwo Naukowe PWN

2. L. Pajdowski , Chemia ogólna, Wydawnictwo Naukowe PWN

3. J. Banaś, W. Solarski, Chemia dla inżynierów, Wydawnictwo Naukowo Dydaktyczne AGH

4. T. Lipiec, Z. Szmal, Chemia analityczna, Wydawnictwo Naukowe PZWL

5. P. Mastalerz, Chemia organiczna, Wydawnictwo Chemiczne

LITERATURA UZUPEŁNIAJĄCA:

1. M. J. Sienko, R. A. Plane, Chemia podstawy i zastosowania, Wydawnictwo Naukowo- Techniczne

2. J. McMurry, Chemia organiczna, Wydawnictwo Naukowe PWN

3. Praca zbiorowa pod redakcją Alfreda Śliwy, Obliczenia Chemiczne, Wydawnictwo Naukowe PWN

PROGRAM OPRACOWAŁ:

dr Izabela Krupińska

Page 33: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

33

EEE FFF EEE KKK TTT YYY WWW NNN EEE SSS YYY SSS TTT EEE MMM YYY OOO SSS WWW III EEE TTT LLL EEE NNN III OOO WWW EEE

Kod przedmiotu: 06.0 – WE – EEP – ESO

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Marcin Jarnut

Prowadzący: dr inż. Marcin Jarnut, mgr inż. Szymon Wermiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2

V

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie efektywności energetycznej źródeł światła i sposobów redukcji energochłonności w systemach oświetleniowych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru, rozmieszczenia i sterowania źródeł światła wg kryterium minimalizacji energochłonności.

C1K. Uświadomienie roli nowoczesnych wysokoefektywnych rozwiązań technicznych w działaniach służących realizacji polityki energetycznej ukierunkowanej na gospodarkę niskoemisyjną.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, fizyka techniczna, podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do efektywnej energetycznie techniki oświetleniowej.

Podstawowe pojęcia fotometrii i kolorymetrii.

Wymagania normatywne i formalne w systemach oświetleniowych.

Żarowe i fluoroscencyjne źródła światła.

Wyładowcze źródła światła.

Page 34: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

34

Źródła światła z diodami elektroluminescencyjnymi LED.

Kształtowanie przestrzennego rozsyłu światła. Oprawy oświetleniowe.

Oświetlanie wnętrz. Oświetlenie ogólne i miejsc pracy.

Oświetlenie zewnętrzne i drogowe. Iluminacja obiektów.

Oświetlenie awaryjne i ewakuacyjne.

Elementy i układy automatyki oświetleniowej.

Systemy wspomagania projektowania instalacji oświetleniowych.

Projektowanie efektywnych energetycznie systemów oświetleniowych.

Pomiary i eksploatacja w systemach oświetleniowych.

Podsumowanie wiadomości z zakresu efektywnych systemów oświetleniowych.

Laboratorium

Wprowadzenie to techniki oświetleniowej.

Pomiar i wyznaczanie podstawowych wielkości fotometrycznych i kolorymetrycznych z wykorzystaniem luksomierza, lumenomierza i spektrometru.

Badanie właściwości fotometrycznych i energetycznych żarówki i lampy halogenowej.

Badanie właściwości fotometrycznych i energetycznych lampy jarzeniowej.

Badanie właściwości fotometrycznych i energetycznych lampy sodowej.

Badanie właściwości fotometrycznych i energetycznych lampy metalohalogenowej.

Badanie właściwości fotometrycznych i energetycznych diod elektroluminescencyjnych.

Podsumowanie wiadomości z zakresu elektrycznych źródeł światła

Badanie współczynnika odbicia przegród.

Badanie wpływu kąta ochronnego oprawy na rozkład strumienia świetlnego.

Badanie wpływu współczynnika przenikania osłony na właściwości fotometryczne systemu oświetleniowego.

Badanie czujnika światła dziennego i czujnika obecności.

Badanie układów zapłonowych i układów regulacji natężenia oświetlenia.

Badanie właściwości regulacyjnych systemu automatyki oświetleniowej z magistralą DALI.

Podsumowanie wiadomości z zakresu efektywnych systemów oświetleniowych.

Projekt

Dobór i rozmieszczenie źródeł światła w wybranej lokalizacji z uwzględnieniem wymagań w zakresie normatywnym i kryterium minimalizacji zużycia energii.

Dobór elementów automatyki oświetleniowej do systemu oświetleniowego o założonej funkcjonalności wg kryterium minimalizacji zużycia energii.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat energochłonności elektrycznych systemów oświetleniowych i metod jej zmniejszania z zachowaniem wymagań normatywnych i eksploatacyjnych

K1P_W11, K1P_W19, K1P_W22, K1P_K01, K1P_K04

Kolokwium pisemne 2 razy w semestrze

W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat charakterystyk energetycznych i fotometrycznych

K1P_W11, K1P_W19, K1P_W22,

Ocena za sprawozdanie z zajęć laboratoryjnych

L

Page 35: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

35

elektrycznych źródeł światła, zna działanie podstawowych układów regulacji natężenia oświetlenia

K1P_U10

Student potrafi zaprojektować prosty system oświetleniowy, dobrać jego podstawowe elementy wg kryterium minimalizacji zużycia energii spośród elementów dostępnych na rynku, ma świadomość konieczności ciągłego samokształcenia się w związku z postępem technologicznym w zakresie efektywnych systemów oświetleniowych oraz wzrostem wymagań formalnych i normatywnych w tym zakresie

K1P_U08, K1P_U16, K1P_U17, K1P_K01, K1P_K04

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z 2 kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 33%, laboratorium 33% i projekt 33%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

Stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Przygotowanie się do zajęć 30h 42h

Sporządzenie sprawozdań 15h 27h

Sporządzenie projektów 15h 27h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. W. Żagan, Podstawy techniki świetlnej, Wydawnictwo Politechniki Warszawskiej

2. W. Wiśniewski, Elektryczne źródła światła, Oficyna Wydawnicza Politechniki Warszawskiej

3. W. Żagan, Oprawy oświetleniowe. Kształtowanie rozsyłu strumienia świetlnego i luminancji, Oficyna Wydawnicza Politechniki Warszawskiej

4. A. Wolska, Zasady badania oświetlenia na stanowiskach pracy, Centralny Instytut Ochrony Pracy

5. M. van Bommel, J.B. de Boer, Oświetlenie dróg, Wydawnictwa Komunikacji i Łączności

LITERATURA UZUPEŁNIAJĄCA:

1. P. Pracki, Projektowanie oświetlenia wnętrz, Oficyna Wydawnicza Politechniki Warszawskiej

Page 36: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

36

2. J. Bąk, Wydajne energetycznie oświetlenie wnętrz. Wybrane zagadnienia. Stowarzyszenie Elektryków Polskich, Centralny Ośrodek Szkolenie i Wydawnictw

3. J. Ratajczak, Oświetlenie iluminacyjne obiektów architektonicznych, Wydawnictwo Politechniki Poznańskiej

4. D. Czyżewski, S. Zalewski, Laboratorium fotometrii i kolorymetrii, Wydawnictwo Politechniki Warszawskiej

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 37: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

37

EEE KKK SSS PPP LLL OOO AAA TTT AAA CCC JJJ AAA UUU RRR ZZZ ĄĄĄ DDD ZZZ EEE ŃŃŃ

Kod przedmiotu: 06.0 – WE – EEP – EU

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Kaniewski

Prowadzący: dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

VI

egzamin

Laborator ium 15 1 zaliczenie na ocenę

Pro jekt 15 1 zaliczenie na ocenę

Studia niestacjonarne

W yk ład 18 2

VI

egzamin

Laborator ium 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy i zapoznanie studentów z podstawowymi pojęciami i miarami niezawodności urządzeń, systemów i obiektów technicznych

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie eksploatacji, zarządzania eksploatacją i utrzymaniem urządzeń, systemów i obiektów technicznych

C1K. Promocja i uświadomienie potrzeby rozwijania wysokiej niezawodności systemów, urządzeń i obiektów technicznych

WYMAGANIA WSTĘPNE:

Fizyka techniczna, podstawy elektrotechniki i energoelektroniki, podstawy elektroenergetyki, systemy elektromaszynowe.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do eksploatacji urządzeń

Podstawowe zagadnienia eksploatacji urządzeń i obiektów technicznych

Elementy układów technicznych, niezawodność układów technicznych

Bezpieczeństwo pracy elektrycznych urządzeń technicznych

Zarządzanie eksploatacją urządzeń i obiektów technicznych

Oddziaływanie cieplne urządzeń technicznych z otoczeniem

Page 38: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

38

Oddziaływanie elektromagnetyczne urządzeń elektronicznych z otoczeniem

Certyfikacje urządzeń zgodnie z dyrektywą LVD, EMC

Eksploatacja sieci i urządzeń elektroenergetycznych

Eksploatacja sieci i urządzeń teleinformatycznych

Pomiary odbiorcze i eksploatacyjne urządzeń technicznych

Podstawy diagnostyki technicznej i lokalizacji uszkodzeń

Technologia remontów, napraw i regeneracji infrastruktury technicznej

Efektywność energetyczna urządzeń, obiektów i systemów technicznych

Podsumowanie wiadomości z zakresu eksploatacji urządzeń

Laboratorium

Wprowadzenie do pomiarów eksploatacyjnych urządzeń.

Pomiary rezystancji izolacji sprzętu ochronnego i urządzeń elektrycznych

Badanie pętli zwarcia

Badania zabezpieczeń upływowych i wyłączników różnicowoprądowych

Badanie aparatów zabezpieczeniowych nn

Pomiary parametrów jakości energii elektrycznej zgodnie z normą PN EN 50160.

Testowanie urządzeń elektrycznych za pomocą specjalizowanych testerów

Badania parametrów eksploatacyjnych źródeł światła

Projekt

Harmonogram eksploatacji wybranych zasobników energii z uwzględnieniem wymagań w zakresie normatywnym i kryterium minimalizacji zużycia energii i kosztów.

Eksploatacja wybranych układów napędowych z uwzględnieniem wymagań w zakresie normatywnym i kryterium minimalizacji zużycia energii i kosztów.

Eksploatacja wybranego systemu zasilania gwarantowanego z uwzględnieniem niezawodności i aspektów ekonomicznych.

Wpływ wybranych parametrów zewnętrznych na pracę przekształtników energoelektronicznych i ich niezawodność.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat niezawodnej i bezpiecznej eksploatacji maszyn i urządzeń, zna zasady doboru maszyn i urządzeń do procesów przetwarzania energii z uwzględnieniem ich cyklu życia, kryteriów sprawności, energochłonności i kosztów eksploatacyjnych oraz wymagań formalnych i normatywnych

K1P_W09,

K1P_W12,

K1P_W22,

K1P_U08,

K1P_U24

K1P_K01

Kolokwium pisemne na koniec semestru

W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat eksploatacji maszyn i

urządzeń elektrycznych oraz zasobników energii, potrafi posłużyć się odpowiednio

dobranymi metodami i urządzeniami pomiarowymi, potrafi stosować zasady

bezpieczeństwa i higieny pracy w odniesieniu do wykonywanej działalności

K1P_W12,

K1P_W15,

K1P_U10,

K1P_U12,

K1P_U19

Ocena za sprawozdania z zajęć laboratoryjnych

L

Page 39: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

39

Student potrafi określić niezawodność działania prostych systemów i obiektów

technicznych, potrafi sformułować warunki eksploatacji urządzeń i prostych

obiektów i systemów technicznych z uwzględnieniem ich energooszczędności

oraz kosztów eksploatacyjnych

K1P_K04

K1P_U04,

K1P_U15,

K1P_U17,

K1P_U24

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 60h 36h

Konsultacje 18h

Przygotowanie się do zajęć 45h 46h

Sporządzenie sprawozdań 30h 30h

Sporządzenie projektów 40h 45h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. S. Legutko, Podstawy eksploatacji maszyn i urządzeń, Wydawnictwa Szkolne i Pedagogiczne, Warszawa 2004

2. J. Kazimierczak, Eksploatacja systemów technicznych, Wyd. Politechniki Śląskiej, Gliwice, 2000

3. A. Górecki, Z. Grzegórski, Montaż, naprawa i eksploatacja maszyn i urządzeń przemysłowych, Wydawnictwa Szkolne i Pedagogiczne

LITERATURA UZUPEŁNIAJĄCA:

1. S. Legutko, Podstawy eksploatacji maszyn, Wydawnictwo Politechniki Poznańskiej, Poznań 1999

2. B. Słowiński, Podstawy badań i oceny niezawodności obiektów technicznych, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 1999

3. S. Niziński, R. Michalski, Diagnostyka obiektów technicznych, Biblioteka Problemów Eksploatacji, ITeE, Radom 2002

PROGRAM OPRACOWAŁ:

dr inż. Jacek Kaniewski

Page 40: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

40

EEE NNN EEE RRR GGG OOO OOO SSS ZZZ CCC ZZZ ĘĘĘ DDD NNN EEE NNN AAA PPP ĘĘĘ DDD YYY EEE LLL EEE KKK TTT RRR YYY CCC ZZZ NNN EEE

Kod przedmiotu: 06.0 – WE – EEP – ENE

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Paweł Szcześniak

Prowadzący: dr inż. Paweł Szcześniak, dr inż. Jacek Kaniewski, mgr inż. Szymon Wermiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

V

Egzamin

Laborator ium 30 2 Zaliczenie na ocenę

Pro jekt 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

Egzamin

Laborator ium 18 2 Zaliczenie na ocenę

Pro jekt 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z budową, działaniem i podstawowymi charakterystykami, napędów energooszczędnych wykorzystujących nowoczesne silniki o poprawionej charakterystyce energochłonności oraz nowoczesne energoelektroniczne układy sterowania.

CW2. Ukształtowanie podstawowej wiedzy z zakresu pracy i eksploatacji napędów elektrycznych oraz doboru podzespołów nowoczesnych napędów elektrycznych.

C1U. Wyrobienie umiejętności obliczania charakterystycznych wielkości elektrycznych determinujących dobór urządzeń w nowoczesnych energooszczędnych napędach elektrycznych.

C2U. Wyrobienie umiejętności obliczania kosztów zakupu i eksploatacji nowoczesnych systemów napędowych.

C1K. Uświadomienie wpływu nowych technologii na zmniejszenie energochłonności systemów elektrycznych.

WYMAGANIA WSTĘPNE:

Podstawy elektrotechniki i energoelektroniki, Systemy elektromaszynowe, Automatyzacja procesów technologicznych.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Page 41: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

41

Wykład

Efektywność energetyczna napędów elektrycznych.

Klasy energetyczne napędów elektrycznych.

Budowa i konstrukcje energooszczędnych napędów elektrycznych.

Dobór mocy napędu elektrycznego.

Układy przekształtnikowe w napędach prądu przemiennego.

Układy przekształtnikowe w napędach prądu stałego.

Dobór systemu napędowego pod względem parametrów elektrycznych.

Dobór systemu napędowego pod względem trybu pracy.

Energooszczędność w napędach grupowych.

Nowoczesne energooszczędne układy sterowania i regulacji napędów z silnikami indukcyjnymi.

Nowoczesne energooszczędne układy sterowania i regulacji napędów z silnikami synchronicznymi.

Nowoczesne energooszczędne układy sterowania i regulacji napędów z silnikami prądu stałego.

Dobór wyposażenia dodatkowego napędów elektrycznych.

Dobór przewodów zasilających napędy elektryczne.

Napędy pomp. Obliczanie sprawności pomp. Dobór pomp.

Laboratorium

Badania porównawcze sprawności silników prądu przemiennego o różnej klasie energetycznej.

Badania porównawcze sprawności silników prądu przemiennego o różnej mocy znamionowej.

Badania porównawcze sprawności silników indukcyjnego klatkowego oraz synchronicznego z magnesami trwałymi.

Badanie wpływu temperatury silnika na sprawność napędu.

Badanie napędu z silnikiem indukcyjnym zasilanym z przemiennika częstotliwości ze sterowaniem skalarnym.

Badanie napędu z silnikiem indukcyjnym zasilanym z przemiennika częstotliwości ze sterowaniem wektorowym.

Układy sterowania napędami grupowymi.

Badanie napędów grupowych prądu przemiennego z falowników napięcia połączonych wspólną szyną DC.

Badanie nowoczesnych układów serwonapędowych z silniami indukcyjnymi.

Badanie nowoczesnych układów serwonapędowych z silniami synchronicznymi.

Badanie energoelektronicznego układu sterowania silnikiem prądu stałego.

Badanie napędu elektrycznego z bezszczotkowym silnikiem prądu stałego BLDC.

Badanie napędu elektrycznego z silnikiem reluktancyjnym przełączalnym SRM.

Dobór silników elektrycznych do typowych aplikacji napędowych.

Kompensacja współczynnika mocy w układach napędowych.

Projekt

Dobór systemu napędowego z silnikami o różnej klasie energetycznej.

Analiza energochłonności oraz kosztów ekonomicznych zakupu i eksploatacji systemów zaprojektowanych systemów napędowych.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Page 42: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

42

Student zna budowę i zasady sterowania energooszczędnymi systemami napędowymi wykorzystujące silniki o podwyższonej klasie energochłonności oraz nowoczesne układy energoelektroniczne.

K1P_W19, K1P_W22.

Egzamin W

Student potrafi przeprowadzić pomiary podstawowych parametrów elektrycznych i mechanicznych w nowoczesnych napędach elektrycznych, potrafi efektywnie sterować systemami napędowymi.

K1P_U08, K1P_U16.

Ocena za sprawozdania z zajęć laboratoryjnych oraz bieżąca kontrola

na zajęciach L

Student potrafi zaprojektować prosty system napędowy, dobrać jego podstawowe elementy spośród elementów dostępnych na rynku, oszacować koszty jego zakupu oraz eksploatacji, ma świadomość konieczności ciągłego samokształcenia się w związku z postępem technologicznym w zakresie napędów elektrycznych oraz wzrostem wymagań formalnych i normatywnych w tym zakresie.

K1P_U08, K1P_U16, K1P_U17

K1P_K01, K1P_K04

Ocena za wykonane zadania projektowego

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych oraz ocen z przygotowania do zajęć na podstawie bieżącej kontroli na zajęciach.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 36h

Przygotowanie się do zajęć 30h 30h

Sporządzenie sprawozdań 20h 20h

Sporządzenie projektów 35h 35h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Koczara W., Wprowadzenie do napędu elektrycznego, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2012.

Page 43: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

43

2. Kaźmierkowski M. P., Kalus M., Zwierchanowski Z., Polski program efektywnego wykorzystania energii w napędach elektrycznych PEMP, Krajowa Agencja Poszanowania Energii S A, Warszawa 2004.

3. Jędral W., Efektywność energetyczna pomp i instalacji pompowych, Krajowa Agencja Poszanowania Energii S A, Warszawa 2007.

4. Liszka S., Zieliński T., Energooszczędne silniki elektryczne niskiego napięcia, Fundacja na rzecz Efektywnego Wykorzystania Energii – FEWE, Katowice 2009.

5. Parasiliti F., Bertoldi P., Energy Efficiency in Motor Driven Systems, Springer, Berlin – Heidelberg 2003.

LITERATURA UZUPEŁNIAJĄCA:

1. Matulewicz W., Maszyny elektryczne w elektroenergetyce, Wydawnictwo Naukowe PWN, Warszawa 2005.

2. Zawirski K., Deskur J., Kaczmarek T., Automatyka napędu elektrycznego, Wydawnictwo Politechniki Poznańskiej, Poznań 2012.

3. Tunia H., Kaźmierkowski M. P., Automatyka napędu przekształtnikowego, PWN 1987.

4. Orłowska-Kowalska T., Bezczujnikowe układy napędowe z silnikami indukcyjnymi, Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław 2003.

5. Kaźmierkowski M. P., Blaabjerg F., Krishnan R., Control in power electronics -Selected Problems, Elsevier 2002.

6. Plamitzer A. M., Maszyny elektryczne, WNT Warszawa 1986.

PROGRAM OPRACOWAŁ:

dr inż. Paweł Szcześniak

[email protected]

Page 44: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

44

FFF III ZZZ YYY KKK AAA TTT EEE CCC HHH NNN III CCC ZZZ NNN AAA

Kod przedmiotu: 13.2 – WE – EEP – FT

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : Dr hab. Mirosław Dudek

Prowadzący: Dr hab. Mirosław Dudek, dr Lidia Najder-Kozdrowska

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 I

egzamin

Ćwiczenia 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 I

egzamin

Ćwiczenia 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1_W. Zapoznanie studenta z podstawowymi zagadnieniami fizyki współczesnej i metodologią opisu zjawisk fizycznych..

WYMAGANIA WSTĘPNE:

Znajomość fizyki na poziomie szkoły średniej

ZAKRES TEMATYCZNY PRZEDMIOTU:

1. Mechanika klasyczna (rachunek wektorowy, macierze, prędkość średnia i chwilowa, przyspieszenie, spadek swobodny ciał, ruch jednowymiarowy, rzut ukośny, rzut poziomy, ruch jednostajny po okręgu, . dynamika punktu materialnego - zasady dynamiki Newtona, tarcie, siły w ruchu po okręgu, siły bezwładności, praca i energia, zasada zachowania energii, zasada zachowania pędu dla punktu materialnego, moment pędu). 2. Grawitacja (pole grawitacyjne). 3. Fale i akustyka (fale mechaniczne, fale stojące na strunie, fale dźwiękowe, zjawisko Dopplera). 4. Elektryczność i magnetyzm (ładunek elekrtyczny, prawo Coulomba, pole elektryczne, prawo Gaussa, potencjał elektryczny, prawo Ohma, łączenie oporów i źródeł napięcia, prawa Kirchoffa, pola magnetyczne i siły magnetyczne, silnik elektryczny). 5. Optyka (prawo odbicia i załamania światła, zwierciadła, soczewki, pryzmat i płytka płaskorównoległościenna, interferencja, dyfrakcja). 6. Fizyka współczesna (teoria względności,fotony, elektrony i atomy, falowa natura cząstek, mechanika kwantowa, struktura atomów, fizyka cząstek elementarnych).

METODY KSZTAŁCENIA:

wykład: wykład tradycyjny z użyciem środków multimedialnych

ćwiczenia: dyskusja, ćwiczenia rachunkowe

Page 45: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

45

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Zna podstawowe wielkości fizyczne K1P_W03 Ćwiczenia: kolokwia, listy zadań, aktywność w dyskusji

W, C

Rozumie zjawiska fizyczne występujące w przyrodzie i technice

K1P_U14, K1P_U15

K1P_K01

Wykład (egzamin pisemny)

ćwiczenia (kolokwia, listy zadań, dyskusja)

W, C

WARUNKI ZALICZENIA:

Wykład – egzamin w formie pisemnej

Ćwiczenia - warunkiem zaliczenia jest uzyskanie pozytywnych ocen z aktywności na ćwiczeniach i zaliczenie kolokwium pisemnego.

Składowe oceny końcowej = wykład: 50% + ćwiczenia: 50%

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + Ć) 60h 36h

Konsultacje 10h 10h

Przygotowanie się do zajęć 40h 64h

Przygotowanie się do egzaminu 40h 40h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. D. Halliday, R. Resnick, J. Walter, Postawy fizyki, tom 1-4, Wyd. Naukowe PWN, Warszawa 2005.

PROGRAM OPRACOWAŁ: MIROSŁAW DUDEK

Page 46: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

46

GGG EEE NNN EEE RRR AAA CCC JJJ AAA RRR OOO ZZZ PPP RRR OOO SSS ZZZ OOO NNN AAA ZZZ OOO ZZZ EEE

Kod przedmiotu: 06.0 – WE – EEP – GR

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Grzegorz Benysek, prof. UZ

Prowadzący: dr hab. inż. Grzegorz Benysek, prof. UZ dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

VI

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

VI

egzamin

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie rozproszonych układów wytwarzania energii elektrycznej i cieplnej ze szczególnym uwzględnieniem źródeł odnawialnych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru typu i wymiarowania układów miejscowego wytwarzania energii elektrycznej i ciepła.

C1K. Uświadomienie roli nowoczesnych wysokoefektywnych rozwiązań technicznych w działaniach służących realizacji polityki energetycznej ukierunkowanej na gospodarkę niskoemisyjną.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, fizyka techniczna, chemia, podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do generacji rozproszonej. Cele polityki energetycznej RP i UE w zakresie wzrostu udziału energii ze źródeł odnawialnych. Legislacja krajowa i europejska w zakresie energetyki rozproszonej i OZE.

Energetyka rozproszona. Podstawowe definicje. Alokacja źródeł rozproszonych w systemach energetycznych. Techniczne, środowiskowe i formalne warunki implementacji źródeł rozproszonych.

Układy kogeneracyjne i trójgeneracyjne. Skojarzone wytwarzanie energii elektrycznej i ciepła w układach z

Page 47: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

47

silnikami gazowymi, turbinami gazowymi, silnikami Stirlinga i turbinami ORC. Sprężarki absorpcyjne.

Energetyka wodna. Elektrownie przepływowe, szczytowo-pompowe, pływowe i „tidalne”. Wykorzystanie energii fal.

Energetyka wiatrowa. Turbiny, mikrosiłownie i farmy wiatrowe.

Energetyka słoneczna I. Cieplne i cieplno-elektryczne systemy solarne. Systemy biwalentne.

Energetyka słoneczna II. Ogniwa, panele, mikrosiłownie i farmy fotowoltaiczne.

Biomasa. Wykorzystanie biomasy do generacji energii cieplnej i elektrycznej.

Biogaz. Wytwarzanie i dystrybucja biogazu. Biogazowe układy kogeneracyjne.

Energetyka aerotermalna i geotermalna. Małe elektrownie i ciepłownie geotermalne. Pompy ciepła.

Ogniwa paliwowe. Wytwarzanie i wykorzystanie wodoru.

Miejscowe systemy wieloźródłowe. Systemy autonomiczne i systemy prosumenckie. Współpraca generacji rozproszonej z magazynami energii, koordynacja pracy źródeł rozproszonych. Elektrownia wirtualna (Virtual Power Plant)

Rekuperacja. Odzyskiwania energii odpadowej w budownictwie i przemyśle.

Mikroźródła. Pozyskiwanie energii z otoczenia.

Podsumowanie wiadomości z zakresu energetyki rozproszonej z OZE.

Laboratorium

Wprowadzenie do rozproszonych źródeł energii.

Badanie właściwości energetycznych ogniw fotowoltaicznych.

Badanie wpływu temperatury i częściowego zacienienia na właściwości energetyczne paneli fotowoltaicznych i systemów fotowoltaicznych.

Badanie właściwości energetycznych mikrosiłowni wiatrowej z turbiną o pionowej osi obrotu.

Badanie właściwości energetycznych mikrosiłowni wiatrowej z turbiną o poziomej osi obrotu.

Badanie właściwości regulacyjnych generatorów synchronicznych do zastosowań w układach kogeneracyjnych.

Badanie właściwości energetycznych ogniwa paliwowego.

Badanie właściwości energetycznych mikroturbiny wodnej.

Badanie właściwości ogniwa termoelektrycznego.

Badanie właściwości przetwornika piezoelektrycznego.

Badanie właściwości energetycznych przekształtników generatorowych z regulacją typu Maksimum Power Point Tracking (MPPT).

Badanie właściwości funkcjonalnych i energetycznych układów energoelektronicznych do sprzęgania mikroźródeł w trybie pracy synchronicznej z siecią.

Badanie właściwości funkcjonalnych i energetycznych układów energoelektronicznych do sprzęgania mikroźródeł w trybie pracy autonomicznej.

Badanie właściwości układu automatyki zabezpieczeniowej źródeł synchronicznych. Zabezpieczenie antywyspowe.

Podsumowanie wiadomości z zakresu miejscowych źródeł energii.

Projekt

Ocena potencjału energetycznego źródeł odnawialnych w określonej lokalizacji.

Wyznaczanie współczynników oszczędności energii pierwotnej i wykorzystania paliw pierwotnych w układach kogeneracyjnych.

Dobór elementów układu miejscowego wytwarzania energii wg zadanego kryterium i zadanego potencjału energetycznego w określonej lokalizacji.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

Page 48: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

48

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat metod miejscowego wytwarzania energii elektrycznej i cieplnej w źródłach odnawialnych (OZE), zna podstawy działania systemów kogeneracyjnych i wieloźródłowych.

K1P_W19, K1P_W20, K1P_W22, K1P_K01, K1P_K04

Egzamin W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat charakterystyk energetycznych i regulacyjnych miejscowych źródeł energii o raz układów ich sprzęgania z zawodowymi systemami energetycznymi.

K1P_W19, K1P_W20, K1P_W22

Ocena za sprawozdanie z zajęć laboratoryjnych

L

Student potrafi ocenić potencjał energetyczny OZE w określonym miejscu, umie zaprojektować prosty system z odnawialnym lub ko generacyjnym źródłem energii. Ma świadomość wpływu nowych, bardziej efektywnych technologii w zakresie generacji rozproszonej na oszczędność energii pierwotnej i wpływ na środowisko naturalne,

K1P_U08, K1P_U16, K1P_U17, K1P_U18, K1P_K01, K1P_K04

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 25% i projekt 25%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 10h 36h

Przygotowanie się do zajęć 25h 25h

Sporządzenie sprawozdań 25h 30h

Sporządzenie projektów 25h 30h

Razem 175h 175h

Page 49: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

49

LITERATURA PODSTAWOWA:

1. Klugmann E., Klugmann-Radziemska E., Alternatywne źródła energii. Energetyka fotowoltaiczna, Wydawnictwo Ekonomia i Środowisko, Białystok, 1999.

2. Lewandowski W., Proekologiczne źródła energii odnawialnej, WNT, Warszawa, 2001.

3. Marecki J., Podstawy przemian energii, WNT, Warszawa, 1995.

4. Luque A., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003.

5. O'Hayre R., Fuel Cell Fundamentals, John Wiley & Sons, 2006.

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 50: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

50

GGG OOO SSS PPP OOO DDD AAA RRR KKK AAA EEE NNN EEE RRR GGG EEE TTT YYY CCC ZZZ NNN AAA III RRR YYY NNN EEE KKK EEE NNN EEE RRR GGG III III

Kod przedmiotu: 06.0 – WE – EEP – GE

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Grzegorz Benysek

Prowadzący: dr hab. inż. Grzegorz Benysek

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

5

W ykład 15 1

IV

zaliczenie na ocenę

Ćwiczenia 15 1 zaliczenie na ocenę

Pro jekt 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1

IV

zaliczenie na ocenę

Ćwiczenia 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie funkcjonowania rynku energii i systemów ochrony środowiska oraz oceny efektywności energetycznej.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie określania wartości skumulowanych wskaźników zużycia energii oraz obliczania wielkości emisji substancji szkodliwych do otoczenia.

C1K. Uświadomienie roli nowoczesnych wysokoefektywnych procesów i metod w realizacji polityki energetycznej ukierunkowanej na gospodarkę niskoemisyjną.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy energetyki cieplnej

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Sytuacja energetyczna Unii Europejskiej i Polski. Krajowy system energetyczny i jego podsystemy: paliw stałych, paliw ciekłych, gazo energetyczny, elektroenergetyczny, cieplno-energetyczny. Systemy dystrybucji nośników i mediów energetycznych. Energetyka a środowisko naturalne. Ograniczenie emisji CO2 przy zachowaniu wysokiego poziomu bezpieczeństwa energetycznego. Skojarzona gospodarka cieplno - energetyczna. Możliwości kojarzenia procesów cieplnych. Sprawności

Page 51: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

51

cząstkowe w procesie skojarzonym. Zasady wykorzystania energii odpadowej - ocena zasobów energii odpadowej, możliwości i efektywności ekonomicznej jej wykorzystania. Zmiana struktury wytwarzania energii w kierunku technologii nisko- i zeroemisyjnych. Źródła odnawialne a energetyka rozproszona, prosumencka.

Zasady racjonalnej gospodarki energetycznej. Procesy inwestycyjne i rachunek kosztów w elektroenergetyce.

Ekonomiczne uzasadnienie inwestycji w elektroenergetyce - rachunek ekonomiczny dla oceny inwestycji elektroenergetycznych.

Regulacje prawne w obrocie energią, monopol naturalny a deregulacja.

Taryfy opłat za energię elektryczną.

Zadania Urzędu Regulacji Energetyki. Rynek energii elektrycznej – obrót.

Rola Operatora Informacji Pomiarowej.

Ćwiczenia

Metody kosztów rocznych i ich obliczanie.

Przybliżone metody wyznaczania strat.

Ocena kosztów materiałowych, implementacyjnych i eksploatacyjnych w zakresie rozwiązań minimalizujących straty.

Metodyka wyznaczania wskaźników energochłonności. Energochłonność skumulowana.

Ocena kosztów materiałowych, implementacyjnych i eksploatacyjnych w zakresie rozwiązań zmniejszających energochłonność. Metody prognozowania zmienności obciążeń.

Bilans energii w układach konwersji energii.

Obliczenia sprawności konwersji energii.

Obliczenia wielkości emisji substancji szkodliwych do atmosfery.

Podsumowanie wiadomości z zakresu gospodarki energetycznej.

Projekt

Projekty w zakresie doboru rozwiązań zmniejszających straty – przegląd i dobór rozwiązań, ocena kosztów przedsięwzięcia. Projekty w zakresie doboru rozwiązań zmniejszających energochłonność – przegląd i dobór rozwiązań, ocena ekonomiczna przedsięwzięcia. Projekty w zakresie systemów prognozowania zmienności obciążenia. Projekty w zakresie systemów rozliczeń danych pomiarowych Operatora Informacji Pomiarowej.

METODY KSZTAŁCENIA:

Wykład: wykład konwersacyjny (multimedialny), wykład problemowy

Ćwiczenia: ćwiczenia rachunkowe, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat funkcjonowania rynku energii, systemów ochrony środowiska oraz indywidualnej przedsiębiorczości, rozumie wagę działań związanych z podnoszeniem efektywności energetycznej

K1P_W18, K1P_W21, K1P_W23, K1P_K02, K1P_K06

Kolokwium pisemne na koniec semestru

W

Student ma zweryfikowaną wiedzę na temat skutków ekonomicznych podejmowanych działań, rozumie również skutki działalności inżynieria energetyka

K1P_U11,

K1P_U13,

K1P_K02

Ocena za wykonane zadania obliczeniowe

Ć

Page 52: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

52

Student potrafi zaprojektować systemy zmniejszające straty oraz energochłonność, spośród elementów dostępnych na rynku potrafi dobrać podstawowe elementy systemów m.in. wg kryterium minimalizacji zużycia energii lub minimalizacji kosztowej, potrafi myśleć kategoriami ekonomicznymi

K1P_U11,

K1P_U13,

K1P_K02

K1P_U06

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Ćwiczenia

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów zadań obliczeniowych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, ćwiczenia 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (W + Ć + P) 45h 27h

Konsultacje 25h 33h

Przygotowanie się do zajęć 15h 25h

Sporządzenie projektów 30h 30h

Czytanie literatury 10h 10h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. M. Bernatek, R. Matla, Gospodarka energetyczna w przemyśle, Wydawnictwa Politechniki Warszawskiej, Warszawa 1980

2. J. Kulczycki, Optymalizacja struktur sieci elektroenergetycznych, Wydawnictwa Naukowo-Techniczne. Warszawa 1990

3. D. Laudyn, Rachunek kosztów w elektroenergetyce, Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa 1999

4. J. Popczyk, Energetyka rozproszona. Od dominacji energetyki w gospodarce do zrównoważonego rozwoju. Od paliw kopalnych do energii odnawialnej i efektywności energetycznej, Polski Klub Ekologiczny Okręg Mazowiecki, Warszawa, 2011 (http://www.cire.pl/pliki/2/e_rozpr_popczyk.pdf)

5. Prezes URE, Polska polityka energetyczna – wczoraj, dziś, jutro, Biblioteka Regulatora,

Warszawa, 2010

LITERATURA UZUPEŁNIAJĄCA:

Page 53: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

53

1. J. Kulczycki (red.), Ograniczanie strat energii elektrycznej w elektroenergetycznych sieciach rozdzielczych, Wyd. Polskie Towarzystwo Przesyłu i Rozdziału Energii Elektrycznej Poznań, 2002

2. Sz. Kujszczyk (red.), Elektroenergetyczne sieci rozdzielcze, Oficyna Politechniki Warszawskiej, 2004 3. J. Machowski, Regulacja i stabilność systemu elektroenergetycznego, Oficyna Wyd. Politech.

Warszawskiej, Warszawa 2007 4. J. Mikielewicz, J.T. Cieśliński, Niekonwencjonalne urządzenia i systemy konwersji energii, Ossolineum,

Wrocław 1999 5. W.M., Lewandowski, Proekologiczne odnawialne źródła energii, WNT, Warszawa 2006 6. W. Ciechanowicz, S. Szczukowski, Transformacja cywilizacji z ery ognia do ekonomii wodoru i

metanolu szansą rozwoju Polski, Oficyna Wydawnicza WIT, Warszawa 2010 7. Wprowadzenie do zrównoważonej gospodarki energetycznej, Przewodnik, Sec Tools, 2008 8. Gospodarka paliwowo-energetyczna w latach 2011, 2012, Główny Urząd Statystyczny, Warszawa

2013 9. J. Marecki, Podstawy przemian energii, WNT, Warszawa, 1995

PROGRAM OPRACOWAŁ:

dr hab. inż. Grzegorz Benysek

[email protected]

Page 54: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

54

HHH III SSS TTT OOO RRR III AAA TTT EEE CCC HHH NNN III KKK III

Kod przedmiotu: 08.3 – WE – EEP – HT

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : prowadzący wykład pracownik Wydziału Humanistycznego

Prowadzący: pracownicy Wydziału Humanistycznego

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

2 W ykład 30 2 II Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 II Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z historią rozwoju cywilizacji opartej na rozwiązaniach technicznych w szczególności obejmujących rozwiązania z dziedziny energetyki.

C1K. Uzmysłowienie roli i wpływu rozwoju technologii energetycznych na losy kraju, kontynentu i świata.

WYMAGANIA WSTĘPNE:

Brak

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do historii techniki. Podstawowe definicje i nazewnictwo.

Rozwój historyczny technik wytwarzania.

Historia metalurgii.

Historia energetyki i elektrotechniki.

Rozwój historyczny przemysłu.

Historia transportu. Transport morski, kolejnictwo, transport drogowy i lotnictwo.

Historia telekomunikacji.

Rozwój techniki wojskowej.

Podbój kosmosu.

Podsumowanie wiadomości na temat rozwoju historycznego techniki.

METODY KSZTAŁCENIA:

Page 55: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

55

Wykład: wykład konwencjonalny z użyciem środków multimedialnych, dyskusja moderowana

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna podstawowe zagadnienia związane z historią rozwoju techniki ze szczególnym uwzględnieniem technologii energetycznych. Ma świadomość roli i wpływu rozwoju technologii energetycznych na historię kraju, kontynentu i świata.

K1P_W21, K1P_U01, K1P_K01, K1P_K07

Kolokwium pisemne na koniec semestru

W

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 2ECTS x (25h / 1ECTS) = 50h

Stacjonarne niestacjonarne

Godziny kontaktowe 30h 18h

Konsultacje 10h 12h

Przygotowanie się do zajęć 10h 20h

Razem 50h 50h

LITERATURA PODSTAWOWA:

[1] Paturi F. R: Kronika Techniki. Wydawnictwo Kronika, Warszawa 1992.

[2] Orłowski B. i inn.: Encyklopedia odkryć i wynalazków. Wiedza Powszechna, Warszawa 1997.

[3] Orłowski B.: Historia techniki polskiej. Wydawnictwo Instytutu Technologii i Eksploatacji - PIB, Radom

2006.

[4] Craughwell Thomas J.: Wielka księga wynalazków. BELLONA, 2010

[5] Gierlotka S.: Historia Elektrotechniki. Wydawnictwo „Śląsk”, 2012

[6] Pater Z.: Wybrane zagadnienia z historii techniki. Politechnika Lubelska, www.bc.pollub.pl

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 56: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

56

III NNN SSS TTT AAA LLL AAA CCC JJJ EEE III UUU RRR ZZZ ĄĄĄ DDD ZZZ EEE NNN III AAA PPP RRR ZZZ EEE MMM YYY SSS ŁŁŁ OOO WWW EEE

Kod przedmiotu: 06.0 – WE – EEP – IUP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Rusiński

Prowadzący: dr inż. Jacek Rusiński,

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2

VI

zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

Pro jekt 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

VI

zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy dotyczącej najczęściej spotykanych urządzeń przemysłowych oraz specyfiki ich zasilania.

C1U. Zrozumienie specyfiki pracy i zasady działania podstawowych urządzeń przemysłowych oraz zasad ich zasilania i sterowania.

C1K. Uświadomienie roli ciągłego udoskonalanie urządzeń przemysłowych pod względem funkcjonalności i energochłonności.

WYMAGANIA WSTĘPNE:

Wiedza ogólna z zakresu elektrotechniki oraz napędów przemysłowych

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Układy zasilania i struktura przemysłowych sieci rozdzielczych. Wiadomości wstępne.

Zasady doboru układów zasilania zakładów przemysłowych i wewnątrzzakładowych sieci rozdzielczych.

Ograniczenia prądów zwarciowych i kompensacja mocy biernej w sieciach przemysłowych.

Charakterystyka odbiorników przemysłowych – energochłonność i wpływ na sieć przemysłową.

Przemysłowe grzejnictwo elektryczne. Podstawowe pojęcia, klasyfikacja, eksploatacja.

Procesy cieplne i sterowanie w przemysłowych układach elektrotermicznych.

Page 57: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

57

Rodzaje układów grzejnych – rezystancyjne, promiennikowe, elektrodowe, łukowe, indukcyjne, pojemnościowe, mikrofalowe itp.

Przemysłowe układy spawalnicze - budowa, zasilanie, sterowanie.

Układy sprężarkowe i systemy sprężonego powietrza – budowa, zasilanie, sterowanie.

Zasilanie obrabiarek przemysłowych i gniazd produkcyjnych.

Systemy pompowe i wentylatorowe.

Przemysłowe układy klimatyzacyjne i chłodnicze.

Systemy transportu bliskiego.

Przemysłowe i uliczne układy oświetleniowe.

Zasady bezpieczeństwa i obsługi sieci i urządzeń przemysłowych.

Podsumowanie wiadomości z zakresu sieci i urządzeń przemysłowych.

Laboratorium

Wprowadzenie do instalacji i urządzeń przemysłowych.

Badanie układu nagrzewania rezystancyjnego.

Badanie układu nagrzewania indukcyjnego

Badanie histerezowego i impulsowego regulatora temperatury.

Badanie układu wentylacyjnego z regulacją dławieniową i przekształtnikową wentylatora.

Badanie właściwości układu sprężarkowego.

Badanie właściwości układu pompowego z regulacją upustową i przekształtnikową.

Podsumowanie wiadomości z zakresu instalacji i urządzeń przemysłowych.

Projekt

Projektowanie układów zasilania wybranego odbiornika przemysłowego.

Projektowanie układów sterowania prostego procesu technologicznego.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat funkcjonowania systemów i instalacji przemysłowych, sposobów ich zasilania i regulacji, jak również energochłonności.

K1P_W19 K1P_U22 K1P_K01

Kolokwium pisemne W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat właściwości podstawowych systemów przemysłowych i sposobów ich sterowania.

K1P_U16, K1P_U17, K1P_K04

Ocena za sprawozdania z zajęć laboratoryjnych

L

Student potrafi zaprojektować prostą instalację przemysłową, dobrać jej podstawowe elementy wg podanych kryteriów, ma świadomość konieczności ciągłego samokształcenia się w związku z postępem technologicznym

K1P_U08, K1P_U21, K1P_U22, K1P_U23, K1P_K01, K1P_K04

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

Page 58: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

58

Warunkiem zaliczenia jest uzyskanie pozytywnych ocen z kolokwiów pisemnych lub ustnych przeprowadzonych co najmniej raz w semestrze.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 33,3%, laboratorium 33,3% i projekt 33,3%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 60h 36h

Konsultacje 10h 25h

Przygotowanie się do zajęć 30h 34h

Sporządzenie sprawozdań 25h 25h

Sporządzenie projektów 25h 30h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. Kochel M., Niestępski S.: Elektroenergetyczne sieci i urządzenia przemysłowe.

2. Strzałka J., Strzałka J.: Projektowanie urządzeń elektroenergetycznych, AGH, 2001.

3. Teresiak Z.: Elektroenergetyka zakładów przemysłowych; Politechnika Wrocławska, 1981.

4. Kujszczyk S.: Elektroenergetyczne sieci rozdzielcze. PWN, Warszawa, 2004

5. Literatura każdorazowo ustalana przez prowadzącego

LITERATURA UZUPEŁNIAJĄCA:

1. Siwik A., Adamczyk K., Ptasiński L.: Laboratorium elektroenergetyki przemysłowej, AGH, 1997.

2. Praca zbiorowa: Poradnik inżyniera elektryka, tom 3, rodz. 3: Sieci elektroenergetyczne, WNT, Warszawa, 2005.

3. Wiatr J., Orzechowski M.: Poradnik projektanta elektryka. Dom wydawniczy „Medium”, Warszawa 2008

PROGRAM OPRACOWAŁ:

dr inż. Jacek Rusiński

[email protected]

Page 59: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

59

III NNN SSS TTT AAA LLL AAA CCC JJJ EEE SSS AAA NNN III TTT AAA RRR NNN EEE III HHH VVV AAA CCC

Kod przedmiotu: 06.0 – WE – EEP – IS

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jan Bernasiński

Prowadzący: dr inż. Jan Bernasiński,

dr inż. Piotr Ziembicki

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

4

W ykład 15 1

V

zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

Pro jekt 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1

V

zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie podstawowych rozwiązań oraz efektywności energetycznej instalacji grzewczych, ciepłej i zimnej wody użytkowej, wentylacyjnych oraz klimatyzacyjnych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru, rozwiązań instalacji HVAC w budynkach oraz ich symulacji wraz z analizą wyników.

C1K. Uświadomienie roli nowoczesnych wysokoefektywnych rozwiązań technicznych w zakresie rozwiązań instalacji HVAC służących podnoszeniu efektywności energetycznej budynków i ich wyposażenia.

WYMAGANIA WSTĘPNE:

Podstawy termodynamiki i mechaniki płynów, podstawy energetyki cieplnej.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Instalacje sanitarne w budynkach. Wymagania, podział, budowa i elementy instalacji ciepłej wody użytkowej.

Systemy podgrzewu ciepłej wody użytkowej.

Wymagania ochrony cieplnej budynków oraz metody obliczeń zapotrzebowania na ciepło.

Page 60: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

60

Systemy ogrzewania budynków. Instalacje centralnego ogrzewania.

Elementy instalacji grzewczych. Źródła ciepła. Automatyka regulacyjna.

Jakość powietrza. Podstawy wymiany i uzdatniania powietrza. Podział i ogólna charakterystyka systemów wentylacyjnych i klimatyzacyjnych.

Wentylacja naturalna. Systemy wentylacji mechanicznej i klimatyzacji.

Odzysk energii i automatyka regulacyjna.

Laboratorium

Analiza symulacyjna pracy instalacji centralnej ciepłej wody użytkowej.

Wyznaczenie mocy źródła ciepła na potrzeby grzewcze budynku.

Wyznaczenie zapotrzebowania chłodu dla instalacji klimatyzacyjnej.

Analiza symulacyjna pracy instalacji grzewczej w budynku.

Projekt

Projektowanie instalacji centralnego ogrzewania wodnego, dwururowego w systemie zamkniętym dla zadanego obiektu.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne (komputery), praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę na temat instalacji grzewczych, ciepłej i zimnej wody użytkowej, wentylacyjnych oraz klimatyzacyjnych, ich energochłonności oraz metod jej zmniejszania z zachowaniem wymagań normatywnych i eksploatacyjnych.

K1P_W19, K1P_W22

K1P_U08, K1P_U16, K1P_U17

K1P_K01, K1P_K04

Kolokwium pisemne na koniec semestru

W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat podstawowych metod symulacyjnych w instlacjach HVAC. Zna metody wyznaczania mocy źródeł ciepła na potrzeby grzewcze budynku.

Ocena za sprawozdania z zajęć laboratoryjnych

L

Student potrafi zaprojektować prostą instalację grzewczą w systemie dwururowym zamkniętym, dobrać jej podstawowe elementy wg kryterium minimalizacji zużycia energii spośród elementów dostępnych na rynku, ma świadomość konieczności ciągłego samokształcenia się w związku z postępem technologicznym w zakresie efektywnych systemów HVAC.

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Page 61: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

61

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 4ECTS x (25h / 1ECTS) = 100h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 45h 27h

Konsultacje 10h 10h

Przygotowanie się do zajęć 10h 23h

Sporządzenie sprawozdań 20h 17h

Sporządzenie projektów 15h 23h

Razem 100h 100h

LITERATURA PODSTAWOWA:

1. H. Koczyk i in., Ogrzewnictwo praktyczne. Projektowanie, montaż, certyfikacja energetyczna, eksploatacja, Wydawnictwo SYSTHERM, 2008

2. A. Pełech, Wentylacja i klimatyzacja, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2008,

3. M. B. Nantka, Instalacje grzewcze i wentylacyjne, Politechnika Śląska, Gliwice 2000

LITERATURA UZUPEŁNIAJĄCA:

1. K. M. Gutkowski, Chłodnictwo i klimatyzacja, WNT, 2013

2. H. Foit, Indywidualne konwencjonalne źródła ciepła, Wydawnictwo Politechniki Śląskiej, Gliwice 2010

PROGRAM OPRACOWAŁ:

dr inż. Jan Bernasiński

Page 62: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

62

III NNN TTT EEE RRR FFF EEE JJJ SSS YYY EEE NNN EEE RRR GGG OOO EEE LLL EEE KKK TTT RRR OOO NNN III CCC ZZZ NNN EEE OOO ZZZ EEE

Kod przedmiotu: 06.0 – WE – EEP – IE

Typ przedmiotu: Obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Zbigniew Fedyczak, prof. UZ

Prowadzący: Pracownicy Instytutu Inżynierii Elektrycznej

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2

IV

Zaliczenie na ocenę

Laborator ium 30 2 Zaliczenie na ocenę

Pro jekt 15 1 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

IV

Zaliczenie na ocenę

Laborator ium 18 2 Zaliczenie na ocenę

Pro jekt 9 1 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z podstawowymi układami i właściwościami przekształtników energoelektronicznych pracujących w charakterze interfejsów OZE C1U. Ukształtowanie umiejętności doboru typu, topologii oraz parametrów interfejsów energoelektronicznych w rozproszonych elektroenergetycznych systemach dystrybucyjnych (ESD). C1K. Uświadomienie znaczenia sposobów i jakości przekształcania energii elektrycznej w ESD.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, Podstawy elektrotechniki i energoelektroniki, Sieci i stacje elektroenergetyczne, Odnawialne i kogeneracyjne źródła energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie. Charakterystyka rozproszonych źródeł energii.

Charakterystyka rozproszonych elektroenergetycznych systemów dystrybucyjnych (ESD) z OZE.

Charakterystyki energetyczne źródeł OZE. Modelowanie OZE.

Sprzęganie źródeł energii elektrycznej OZE z ESD. Układy współpracujące z siecią i układy autonomiczne.

Przekształtniki energoelektroniczne z algorytmami MPPT do sprzęgania OZE prądu stałego (systemy fotowoltaiczne (PV), ogniwa paliwowe (FC) oraz inne).

Przekształtniki energoelektroniczne z algorytmami MPPT do sprzęgania OZE prądu przemiennego (generatory wiatrowe (WG), generatory geotermalne (TG) oraz biogazowe).

Page 63: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

63

Interfejsy energoelektroniczne ze sprzężeniem typu DC Bus.

Interfejsy energoelektroniczne ze sprzężeniem typu HFAC.

Przekształtniki sieciowe interfejsów energoelektronicznych OZE.

Interfejsy energoelektroniczne OZE z dwukierunkowym przepływem energii.

Podsumowanie i trendy rozwojowe interfejsów energoelektronicznych OZE.

Laboratorium

Wprowadzenie, program i zagadnienia formalne laboratorium z interfejsów energoelektronicznych OZE.

Badania właściwości funkcjonalnych i energetycznych regulatorów PWM do systemów PV.

Badania właściwości funkcjonalnych i energetycznych regulatorów MPPT do systemów PV.

Badania właściwości dwukierunkowego przekształtnika AC/DC.

Badanie właściwości interfejsu energoelektronicznego w układzie typu Grid Tied współpracującego z siecią elektroenergetyczną.

Badania właściwości interfejsu energoelektronicznego w układzie typu Off Grid do systemów autonomicznych.

Badanie właściwości interfejsu w układzie hybrydowym do systemów z zasobnikiem energii i systemem PV

Projekt

Dobór topologii i parametrów przekształtnika DC/DC do sprzęgania baterii fotowoltaicznej z obwodem DC wyposażonym w zasobnik energii.

Dobór topologii i parametrów przekształtnika DC/AC do sprzęgania obwodów DC baterii fotowoltaicznej z instalacją zmiennonapięciową.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach.

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę o na temat właściwości podstawowych przekształtników energoelektronicznych typu AC/DC, DC/DC, AC/AC i DC/AC.

K1P_W19,

K1P_W22,

K1P_U08,

K1P_U16,

K1P_U17,

K1P_K01,

K1P_K03,

K1P_K04.

- kolokwia pisemne,

- sprawozdanie z zajęć laboratoryjnych,

- dokumentacja (raport) projektowa,

- zaliczenie w formie rozmowy dotyczącej przedmiotu.

W,

L,

P.

Student ma podstawową wiedzę o funkcjach układów energoelektronicznych w dystrybucyjnych systemach elektroenergetycznych z OZE.

Student potrafi określić podstawowe właściwości sprzęgów energoelektronicznych oraz ma świadomość ich znaczenia w dystrybucyjnych systemach elektroenergetycznych z OZE.

Student ma świadomość znaczenia sposobów i jakości przekształcania energii elektrycznej w dystrybucyjnych systemach elektroenergetycznych z OZE.

Page 64: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

64

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwiów z wagą 75%; ocena z odpowiedzi na zliczeniu z wagą 25%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za przedstawione projekty.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana, jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 60%, projekt 20%, laboratorium 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6 ECTS x (25 h / 1 ECTS) = 150 h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 75 h 45 h

Konsultacje 15 h 15 h

Przygotowanie się do zajęć 30 h 60 h

Sporządzenie sprawozdań 30 h 30 h

Razem 150 h 150 h

LITERATURA PODSTAWOWA:

1. Kramer W., Chakraborty S., Kroposki B., Thomas H.: Advanced power electronics interfaces for distributed energy systems. Part I, Systems and topologies. NREL National Renewable Energy Laboratory, NREL/TP-581-42672, 2003. Available electronically at http://www.osti.gov/bridge.

2. Chakraborty S., Kroposki B., Kramer W.: Advanced power electronics interfaces for distributed energy systems. Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter. NREL/TP-550-44313, 2008. . Available electronically at http://www.osti.gov/bridge.

3. Grażyna Jastrzębska, Odnawialne źródła energii i pojazdy proekologiczne. WNT, Warszawa, 2011.

4. Tunia H., Smirnow A., Nowak M., Barlik R.: Układy energoelektroniczne. WNT 1990.

5. Piróg S.: Energoelektronika. AGH, Uczelniane Wyd. Nauk.-Dydakt., Kraków 1998.

LITERATURA UZUPEŁNIAJĄCA:

1. Kahl T. "Sieci elektroenergetyczne"; Warszawa WNT 1984.

2. Mohan N.: Power Electronics: Converters, Applications, and Design. John Wiley & Sons, 1998. 3. Holms D. G., Lipo T. A.: Pulse width modulation for power converters. Principle and practice. IEEE

press. New York. 4. Mikołajuk K.: Podstawy analizy obwodów energoelektronicznych. Warszawa, PWN 1998.

PROGRAM OPRACOWALI:

Dr hab. inż. Zbigniew Fedyczak, prof. UZ

[email protected]

Dr inż. Marcin Jarnut

[email protected]

Page 65: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

65

III NNN ŻŻŻ YYY NNN III EEE RRR III AAA MMM AAA TTT EEE RRR III AAA ŁŁŁ OOO WWW AAA WWW EEE NNN EEE RRR GGG EEE TTT YYY CCC EEE

Kod przedmiotu: 06.7 – WE – EEP – IM

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Adam Kempski, dr inż. Jacek Rusiński

Prowadzący: dr hab. inż. Adam Kempski, dr inż. Jacek Rusiński,

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

3

W ykład 30 2 III

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 III

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy dotyczącej zjawisk fizycznych występujących w materiałach stosowanych w elektrotechnice i energetyce.

C1U. Zrozumienie podstawowych własności materiałów stosowanych w elektrotechnice i energetyce.

C1K. Uświadomienie studentom kluczowej roli inżynierii materiałowej dla rozwoju techniki.

WYMAGANIA WSTĘPNE:

Wiedza ogólna z zakresu fizyki i chemii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawy teorii budowy i klasyfikacja materiałów elektrotechnicznych.

Wiązania międzyatomowe. Ciała stałe krystaliczne i amorficzne. Budowa kryształów.

Podstawy teorii pasmowej ciał stałych. Stałe materiałowe w równaniach elektrodynamiki klasycznej.

Klasyfikacja materiałów elektrotechnicznych.

Materiały przewodzące. Przewodnictwo elektryczne metali.

Obróbka cieplna materiałów. Stopy metali i ich własności. Przegląd własności materiałów przewodzących.

Materiały przewodowe, oporowe, stykowe, termoelektryczne, spoiwa i luty.

Materiały elektroizolacyjne. Zjawiska przewodzenia i polaryzacji w dielektrykach. Wytrzymałość dielektryczna. Starzenie materiałów dielektrycznych.

Podział materiałów izolacyjnych. Materiały izolacyjne gazowe i ciekłe. Szkła i materiały ceramiczne.

Page 66: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

66

Przegląd tworzyw sztucznych stosowanych w elektrotechnice. Materiały termokurczliwe.

Materiały magnetyczne. Mechanizmy polaryzacji magnetycznej. Podział materiałów magnetycznych.

Elektrotechniczne blachy magnetyczne. Ferryty. Stopy magnetyczne. Magnetodielektryki.

Nadprzewodnictwo. Nadprzewodnictwo wysokotemperaturowe. Tendencje rozwojowe w elektrotechnologii.

Nanotechnologie. Materiały optoelektroniczne. Ochrona antyelektrostatyczna.

Podsumowanie wiadomości z zakresu Inżynierii materiałowej w energetyce

Laboratorium

Wprowadzenie do pomiarów w inżynierii materiałowej.

Pomiar przenikalności elektrycznej i współczynnika strat dielektrycznych tg dielektryków stałych.

Badanie pętli histerezy materiałów magnetycznych.

Pomiar rezystywności stałych materiałów dielektrycznych.

Badanie właściwości materiałów stykowych.

Badanie zjawisk termoelektrycznych w metalach – zjawisko Peltiera.

Badanie odporności na prądy pełzające materiałów izolacyjnych stałych.

Pomiar rezystywności ciekłych materiałów dielektrycznych.

Badanie wpływu właściwości materiałów magnetycznych na reluktancję obwodu magnetycznego.

Badanie zjawisk termoelektrycznych w metalach – zjawisko Seebecka.

Badanie właściwości materiałów przewodzących.

Badanie przewodnictwa cieplnego materiałów konstrukcyjnych.

Badania wytrzymałości dielektrycznej powietrza dla różnych układów elektrod.

Podsumowanie wiadomości z zakresu inżynierii materiałowej.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat podstawowych właściwości materiałów stosowanych w energetyce, a w szczególności materiałów przewodzących, magnetycznych i dielektrycznych. Posiada również podstawową wiedzę na temat kierunków rozwoju inżynierii materiałowej.

K1P_W06,

K1P_U17 Kolokwium pisemne W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat podstawowych parametrów materiałów przewodzących, dielektrycznych i magnetycznych stosowanych w elektrotechnice, ma świadomość konieczności ciągłego samokształcenia się w związku z dynamicznym postępem technologicznym w zakresie materiałów stosowanych w elektroenergetyce.

K1P_U17, K1P_K01

Ocena za sprawozdania z zajęć laboratoryjnych

L

Page 67: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

67

WARUNKI ZALICZENIA:

Wykład

Warunkiem zaliczenia jest uzyskanie pozytywnych ocen z kolokwiów pisemnych lub ustnych przeprowadzonych co najmniej raz w semestrze.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 14h

Przygotowanie się do zajęć 5h 10h

Sporządzenie sprawozdań 10h 15h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Celiński Z.: Materiałoznawstwo elektrotechniczne, Oficyna PW, Warszawa, 2005.

2. Blicharski M.: Wstęp do inżynierii materiałowej, WNT, Warszawa, 2004.

3. Kolbiński K, Słowikowski J.: Materiałoznawstwo elektrotechniczne, WNT, Warszawa, 1988.

4. Soiński M.: Materiały magnetyczne w technice, COSiW SEP, Warszawa, 2001.

LITERATURA UZUPEŁNIAJĄCA:

1. Grabski M.W., Kozubowski J.A.: Inżynieria Materiałowa. Oficyna Wyd. Politechniki Warszawskiej, 2003.

2. Kostrubiec F.: Podstawy fizyczne materiałoznawstwa dla elektryków, Wyd. Politechniki Łódzkiej, Łódź, 1999.

3. Regis Ed.: Nanotechnologia, Prószyński i s-ka, Warszawa, 2001.

4. Grabski M., Kozubowski J.: Inżynieria materiałowa. Geneza, istota, perspektywy, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2003.

5. Jurczyk M.: Nanomateriały. Wybrane zagadnienia, Wydawnictwo Politechniki Poznańskiej, Poznań 2001.

PROGRAM OPRACOWAŁ:

dr inż. Jacek Rusiński

[email protected]

Page 68: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

68

JJJ AAA KKK OOO ŚŚŚ ĆĆĆ DDD OOO SSS TTT AAA WWW YYY EEE NNN EEE RRR GGG III III EEE LLL EEE KKK TTT RRR YYY CCC ZZZ NNN EEE JJJ

Kod przedmiotu: 06.0 – WE – EEP – JDE

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Zbigniew Fedyczak, prof. UZ

Prowadzący: dr hab. inż. Zbigniew Fedyczak, prof. UZ; dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

5

W ykład 30 2 VI

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 VI

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie oddziaływania przetworników i przekształtników energii oraz innych elementów systemu na parametry jakościowe procesów dostawy energii elektrycznej.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie określania parametrów jakościowych dostawy energii elektrycznej oraz doboru technik ich poprawy.

C1K. Uświadomienie roli oraz wpływu technologii przetwarzania i przekształcania energii elektrycznej na jakość i niezawodność dostawy energii elektrycznej w wysokoefektywnych systemach energetycznych.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy elektrotechniki i energoelektroniki, systemy elektromaszynowe, układy energoelektroniczne w energetyce

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do jakości dostawy energii elektrycznej.

Charakterystyka wielkości i parametrów określających jakość dostawy energii elektrycznej wg wymagań normatywnych.

Parametry jakości dostawy energii w obwodach w prądami i napięciami sinusoidalnymi. Współczynnik przesunięcia DPF, współczynnik mocy PF, zapady i podskoki napięcia, asymetria prądów i napięć.

Parametry jakości dostawy energii elektrycznej w obwodach z prądami i napięciami odkształconymi. Interpretacja prądów i napięć odkształconych w dziedzinie częstotliwości – przekształcenie Fouriera. Współczynnik odkształcenia THD, współczynnik mocy PF.

Page 69: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

69

Mechanizm powstawania odkształceń prądów i napięć. Źródła odkształceń prądów i napięć i skutki ich występowania.

Moce w obwodach z prądami i napięciami odkształconymi. Metody wyznaczania składowych mocy. Metody całkowe, metody bazujące na teorii mocy chwilowej.

Wpływ impedancji sieci na parametry jakości dostawy energii w warunkach zaburzeniowych. Określanie kryteriów instalacji odbiorników i źródeł z uwzględnieniem minimalizacji wpływu ich charakterystyki pracy na parametry dostawy energii.

Kompensacja mocy biernej. Regulacja napięcia za pomocą mocy biernej. Kompensatory statyczne SVC.

Kompensatory przełączające. Układy odtwarzania napięć przemiennych DVR. Topologie i metody sterowania układów DVR.

Kompensatory przełączające do kompensacji składowych nieaktywnych prądu.

Sterowniki rozpływu mocy – układy UPFC. Zintegrowane układy kondycjonowania energii.

Ciągłość i niezawodność dostawy energii. Wymagania formalne i wskaźniki ciągłości dostawy energii.

Układy rezerwowego zasilania.

Układy gwarantowanego zasilania.

Podsumowanie wiadomości z zakresu jakości dostawy energii elektrycznej.

Laboratorium

Wprowadzenie do techniki pomiarowej w zakresie jakości dostawy energii elektrycznej. Analizatory jakości zasilania.

Badanie wpływu odbiorników nieliniowych na odkształcenia napięcia w sieci dystrybucyjnej oraz straty wiroprądowych w transformatorach rozdzielczych. Pomiar i wyznaczanie współczynnika THD odkształceń prądu i napięcia.

Badanie wpływu sposobu obciążania transformatora rozdzielczego na parametry napięcia wtórnego i prądu pierwotnego. Wyznaczanie współczynnika sprawności i współczynnika redukcji mocy obciążeniowej transformatora rozdzielczego.

Badanie oddziaływania przekształtników ze sterowaniem fazowym na parametry jakości dostawy energii elektrycznej. Pomiar mocy biernej, mocy odkształcenia oraz współczynnika mocy.

Badanie wpływu procesów komutacyjnych przekształtników energoelektronicznych o komutacji sieciowej na powstawanie załamań napięcia w sieci dystrybucyjnej.

Badanie wpływu odbiorników o udarowym charakterze pracy na wahania napięcia w sieci. Pomiar i wyznaczanie krótkookresowego współczynnika migotania światła Pst.

Badanie wpływu procesów komutacyjnych baterii kondensatorów na powstawanie zjawisk rezonansowych w sieci dystrybucyjnej z rezystancyjno-indukcyjnym charakterem impedancji.

Podsumowanie wiadomości na temat przyczyn i skutków złej jakości dostawy energii elektrycznej.

Badanie wielostopniowej baterii kondensatorów w układzie kompensatora SVC.

Badanie kompensatora ze stałym kondensatorem i regulowanym induktorem typu FCTCR.

Badanie kompensatora przełączającego do kompensacji składowych nieaktywnych prądu.

Badanie układu odtwarzania napięć przemiennych typu DVR.

Badanie kompensatora statycznego typu STATCOM.

Badanie układu gwarantowanego zasilania z podwójną konwersją typu on-line.

Podsumowanie wiadomości na temat sposobów poprawy jakości dostawy energii elektrycznej.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat oddziaływania układów służących poprawie efektywności energetycznej na

K1P_W22, Kolokwium pisemne 2 razy w

semestrze W

Page 70: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

70

parametry określające jakość dostawy energii elektrycznej, zna podstawowe topologie i metody sterowania urządzeń do poprawy jakości dostawy energii elektrycznej

Student ma zweryfikowaną laboratoryjnie wiedzę na temat urządzeń służących do poprawy jakości zasilania, umie dobrać urządzenia i ich nastawy wg kryterium poprawy efektywności energetycznej procesów oraz minimalizacji ich negatywnego oddziaływania na system elektroenergetyczny, ma świadomość rozwoju technologii w zakresie układów przekształtnikowych i metod ich sterowania charakteryzujących się zmniejszonym oddziaływaniem na sieć dystrybucyjną

K1P_U08, K1P_U17 K1P_K01, K1P_K04

Ocena za sprawozdanie z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z 2 kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 15h 29h

Przygotowanie się do zajęć 20h 30h

Sporządzenie sprawozdań 30h 30h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. Zbigniew Hanzelka, Jakość dostawy energii elektrycznej. Zaburzenia wartości skutecznej napięcia, Wydawnictwa AGH

2. Angelo Baggini, Handbook of Power Quality, John Wiley & Sons

3. Antonio Moreno-Muñoz, Power Quality: Mitigation Technologies in a Distributed Environment, Springer Science & Business Media

4. Grzegorz Benysek, Improvement in the Quality of Delivery of Electrical Energy using Power Electronics Systems, Springer Science & Business Media

LITERATURA UZUPEŁNIAJĄCA:

1. Ryszard Strzelecki, Współczynnik mocy w systemach zasilania prądu przemiennego i metody jego poprawy, Oficyna Wydawnicza PW

Page 71: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

71

2. Grzegorz Benysek, Marian Pasko, Power Theories for Improved Power Quality, Springer Science & Business Media

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 72: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

72

KKK OOO MMM PPP AAA TTT YYY BBB III LLL NNN OOO ŚŚŚ ĆĆĆ EEE LLL EEE KKK TTT RRR OOO MMM AAA GGG NNN EEE TTT YYY CCC ZZZ NNN AAA

Kod przedmiotu: 06.0 – WE – EEP – KE

Typ przedmiotu: wybieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Adam Kempski, prof. UZ, dr hab. inż. Robert Smoleński

Prowadzący: dr hab. inż. Adam Kempski, prof. UZ, dr hab. inż. Robert Smoleński, mgr inż. Piotr Leżyński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2 VI

egzamin

Laborator ium 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 VI

egzamin

Laborator ium 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie z zasadami doboru maszyn i urządzeń do procesów przetwarzania energii z uwzględnieniem ich oddziaływania na środowisko elektromagnetyczne.

C1U. Nabycie umiejętności analizy i porównywania rozwiązań projektowych elementów i układów energetycznych w kontekście ich kompatybilności elektromagnetycznej.

C2U. Przekazanie umiejętności doboru typowych części maszyn i urządzeń w aspekcie ich oddziaływania na środowisko elektromagnetyczne.

C1K. Wykazanie rozwoju technologicznego i zmian w regulacjach oraz wynikającej stąd potrzeby uczenia się przez całe życie i konieczności prac w grupach eksperckich z podziałem ról i kompetencji

WYMAGANIA WSTĘPNE:

Fizyka techniczna, Inżynieria materiałowa w energetyce, Podstawy elektroenergetyki, Podstawy elektrotechniki i energoelektroniki

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do zagadnień kompatybilności elektromagnetycznej (EMC).

Pojęcia podstawowe. Terminologia EMC. Normalizacja EMC.

Pojęcia odporności i emisyjności urządzeń.

Page 73: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

73

Źródła zaburzeń - intencjonalne i nieintencjonalne.

Pola elektromagnetyczne i mechanizmy sprzężeń: pojęcia pola bliskiego i dalekiego.

Zaburzenia przewodzone i promieniowane.

Podstawowe mechanizmy sprzężeń i propagacji zaburzeń elektromagnetycznych: galwaniczne, przez pole bliskie i pole dalekie.

Rozprzestrzenianie się zaburzeń w liniach transmisyjnych.

Podstawy analizy sygnałów zaburzających.

Znormalizowane pomiary emisji zaburzeń przewodzonych i promieniowanych.

Znormalizowane pomiary odporności na zaburzenia elektromagnetyczne.

Metody zapewniania kompatybilności systemów elektroenergetycznych.

Projektowanie filtrów zaburzeń elektromagnetycznych.

Praktyczne zalecenia dotyczące ekranowania i uziemiania urządzeń.

Oznakowanie CE urządzeń i instalacji elektroenergetycznych.

Laboratorium

Prezentacja laboratorium kompatybilności elektromagnetycznej i jakości energii elektrycznej.

Testy odporności urządzeń elektrycznych na wyładowania elektrostatyczne zgodnie z normą PN-EN 61000-4-2.

Testy odporności urządzeń elektrycznych na udary napięciowe zgodne z normami: PN-EN 61000-4-4, PN-EN 61000-4-5.

Kalibracja komory GTEM do badań odporności na pole elektryczne o częstotliwości radiowej.

Testy odporności urządzeń elektrycznych na pole elektryczne o częstotliwości radiowej zgodne z normą PN-EN 61000-4-3.

Pomiary emisji zaburzeń przewodzonych napędu przekształtnikowego zgodnie z normą PN-EN 61800-3.

Pomiary emisji zaburzeń przewodzonych zasilaczy komputerowych zgodnie z normą PN-EN 55022.

Pomiary parametrów pasożytniczych elementów filtrów w.cz.

Pomiar parametrów jakości energii elektrycznej zgodnie z normą PN EN 50160.

Pomiary rozkładu natężeń pól elektromagnetycznych.

Zjawiska falowe w liniach długich.

Testy odporności na pola magnetyczne.

Pomiar rozkładu składowej elektrycznej i magnetycznej pola pod liniami wysokich napięć.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Zna zasady doboru maszyn i urządzeń do procesów przetwarzania energii z uwzględnieniem ich oddziaływania na środowisko elektromagnetyczne

K1P_W12 Dyskusja, sprawdzian, egzamin W

Potrafi przeanalizować i porównać rozwiązania projektowe elementów i układów energetycznych w kontekście ich kompatybilności elektromagnetycznej

K1P_U08 Dyskusja, sprawdzian, egzamin,

bieżąca kontrola na zajęciach W, L

Potrafi dobrać typowe części maszyn i urządzeń w aspekcie ich oddziaływania na środowisko elektromagnetyczne

K1P_U17 Dyskusja, sprawdzian, egzamin,

bieżąca kontrola na zajęciach W, L

Obserwując rozwój technologiczny oraz zmiany w regulacjach, rozumie potrzebę uczenia się przez całe życie oraz

K1P_K01 K1P_K04

Dyskusja, bieżąca kontrola na zajęciach

W, L

Page 74: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

74

konieczność prac w grupach eksperckich z podziałem ról i kompetencji

WARUNKI ZALICZENIA:

Wykład

Egzamin złożony z dwóch części pisemnej i ustnej; warunkiem przystąpienia do części ustnej jest uzyskanie 30% punktów z części pisemnej.

Laboratorium

Na ocenę końcową z laboratorium składają się oceny z przygotowania do zajęć (50%) oraz oceny sprawozdań z ćwiczeń (50%).

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 28h 52h

Przygotowanie się do zajęć 20h 20h

Zapoznanie się z literaturą 20h 20h

Sporządzenie sprawozdań 22h 22h

Przygotowanie do egzaminu 25h 25h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Machczyński W.: Wprowadzenie do kompatybilności elektromagnetycznej, Wydawnictwo Politechniki Poznańskiej, Poznań, 2004.

2. Więckowski T.W.: Badania kompatybilności elektromagnetycznej urządzeń elektrycznych i elektronicznych, Wydawnictwa Politechniki Wrocławskiej, Wrocław, 2001.

3. Charoy A.: Zakłócenia w urządzeniach elektronicznych, WNT W-wa, 1999.

4. Kempski A.: Elektromagnetyczne zaburzenia przewodzone w układach napędów przekształtnikowych, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra, 2005.

5. Weston D.A.: Electromagnetic Compatibility. Principles and Applications. Marcel Dekker Inc., 1991.

6. Williams T., Armstrong K.: EMC for systems and Installations, Newnes, 2000.

7. Smolenski R.: Conducted Electromagnetic Interference (EMI) in Smart Grids, Springer-Verlag, London, 2012.

PROGRAM OPRACOWAŁ:

dr hab. inż. Robert Smoleński

Page 75: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

75

KKK OOO MMM UUU NNN III KKK OOO WWW AAA NNN III EEE SSS III ĘĘĘ WWW BBB III ZZZ NNN EEE SSS III EEE

Kod przedmiotu: 15.9 – WE – EEP – KB

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr Bartosz Seiler

Prowadzący: dr Bartosz Seiler

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

2

W ykład 15 1 I

zaliczenie na ocenę

Ćwiczenia 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 I

zaliczenie na ocenę

Ćwiczenia 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W: Przekazanie wiedzy dotyczącej procesu komunikowania się społecznego, jego komponentów i typów C1U: Ukształtowanie u studentów umiejętności związanych z komunikowaniem się w małych grupach zadaniowych (zespołach), prowadzeniem zebrań zespołowych, komunikowaniem się w sytuacjach konfliktowych oraz wystąpieniami i prezentacjami publicznymi C1K: Rozwinięcie u studentów kompetencji w zakresie komunikowania się werbalnego, niewerbalnego, pisemnego i wizualnego związanych z funkcjonowaniem w różnych sytuacjach i kontekstach społecznych, w szczególności biznesowym.

WYMAGANIA WSTĘPNE:

brak

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Komunikacja, komunikowanie, komunikowanie się. Znaczenie komponentów komunikowania się dla skutecznego porozumiewania się.

Komunikowanie się werbalne – wady i zalety; retoryka.

Słuchanie – proces słuchania, typy, zasady; uwarunkowania skutecznego słuchania

Komunikowanie się niewerbalne: proksemiczne, kinezyjne i paralingwistyczne.

Percepcja, jej wyznaczniki i rola w skutecznym komunikowaniu się. Bariery komunikowania się.

Metody usprawniania komunikowania się.

Komunikowanie się w organizacji: wertykalne i horyzontalne; zarządzanie tymi procesami.

Ćwiczenia

Page 76: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

76

Komunikacja, komunikowanie, komunikowanie się.

Skuteczne komunikowanie się w grupach zadaniowych

Skuteczne komunikowanie się w grupach zadaniowych-c.d.

Prowadzenie zebrań zespołu

Komunikowanie się w sytuacjach konfliktowych; negocjowanie

Komunikowanie się w sytuacjach konfliktowych; negocjowanie-c.d.

Komunikowanie publiczne; sztuka wystąpień i prezentacji.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny, wykład problemowy, prezentacja multimedialna

Ćwiczenia: pogadanka, metoda projektu, symulacja, gry dydaktyczne, praca w grupach, case study

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student posiada wiedzę dotyczącą procesów komunikowania się interpersonalnego. Zna prawidłowości i zakłócenia jakie mogą wystąpić w tym

zakresie.

K1P_W21 Dyskusja, bieżąca kontrola na

zajęciach, kolokwium C, W

Student stosuje różne formy komunikowania się w organizacji. Potrafi porozumiewać się w sposób skuteczny i spójny przy użyciu wielu kanałów i technik komunikacyjnych. Ponadto analizuje i interpretuje problemy związane z komunikowaniem się w organizacji.

K1P_U01 K1P_U02

Dyskusja, bieżąca kontrola na

zajęciach, projekt C

Student jest świadomy znaczenia sprawnego komunikowania się w organizacji. Dokonuje samooceny własnych kompetencji w zakresie komunikowania się i doskonali umiejętności w tym zakresie.

K1P_K02

K1P_K03 Bieżąca kontrola na zajęciach C

Student potrafi współdziałać w grupie K1P_K07 Bieżąca kontrola na zajęciach C

WARUNKI ZALICZENIA:

Wykłady

Na ocenę końcową składają się: ocena z kolokwium z wagą 80% i ocena z aktywności na wykładach z wagą 20%. Kolokwium obejmie swoją treścią tematy realizowane podczas wykładów; lista pytań z zakresem tematycznym zostanie przesłana studentom z miesięcznym wyprzedzeniem, pytania otwarte z progami punktowymi, studenci udzielają odpowiedzi na 4 pytania wybrane przez prowadzącego; progi punktowe dla poszczególnych ocen z kolokwium: 8-7,5 punktów – 5,0; 7 punktów – 4,5; 6,5 – 6,0 punktów – 4,0; 5,5 punktów – 3,5; 5,0 – 4,5 punktów – 3,0.

Ćwiczenia

Warunkiem zaliczenia ćwiczeń jest: obecność i aktywność studenta na zajęciach oraz zaliczenie na ocenę pozytywną kolokwium. Na ocenę końcową składają się następujące elementy:

1. Obecność i aktywny udział w ćwiczeniach (40%): studenci zobowiązani są do aktywnego i systematycznego uczestnictwa w zajęciach. W przypadku nieobecności wynikłych z ważnych przyczyn należy uzgodnić z prowadzącym sposób odrobienia zaległych ćwiczeń. W celu usprawiedliwienia nieobecności na zajęciach student przedstawia stosowne zaświadczenie w ciągu

Page 77: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

77

7 dni. Ocena będzie odbywała się poprzez systematyczną obserwację wykonania zadań przewidzianych programem ćwiczeń oraz aktywnego udział w zajęciach.

2. Ocena z projektu zaliczeniowego (60%):

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, ćwiczenia 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 2ECTS x (25h / 1ECTS) = 50h

stacjonarne niestacjonarne

Godziny kontaktowe (W + C) 30h 18h

Studiowanie literatury 4h 16h

Przygotowanie się do zaliczenia 6h 6h

Przygotowanie projektu 10h 10h

Razem 50h 50h

LITERATURA PODSTAWOWA:

1. Stankiewicz J., Komunikowanie się w organizacji, Wydawnictwo ASTRUM, Wrocław 2006.

2. Sobkowiak B., Interpersonalne i grupowe komunikowanie się w organizacji, FORUM, Poznań-Wrocław 2005.

3. Jamrożek B., Sobczak J., Komunikacja interpersonalna, Oficyna Ekonomiczna Wydawnictwa eMPiZ, Poznań 2000.

LITERATURA UZUPEŁNIAJĄCA:

1. Stewart J. (red.), Mosty zamiast murów, PWN, Warszawa 2003.

2. McKay M., Davis M., Fanning P., Sztuka skutecznego porozumiewania się, GWP, Gdańsk 2002.

3. Tokarz M., Argumentacja, perswazja, manipulacja, GWP, Gdańsk 2006.

4. Mackin D., Budowanie zespołu. Zestaw narzędzi, Rebis, Poznań 2011.

5. Morreale S. P., Spitzberg B.H., Barge J.K., Komunikacja między ludźmi, PWN, Warszawa 2007.

6. Steele P., Murphy J., Russill R., Jak odnieść sukces w negocjacjach, Oficyna Ekonomiczna, Kraków

2005.

PROGRAM OPRACOWAŁ:

dr Bartosz Seiler

Page 78: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

78

MMM EEE CCC HHH AAA NNN III KKK AAA OOO GGG ÓÓÓ LLL NNN AAA III WWW YYY TTT RRR ZZZ YYY MMM AAA ŁŁŁ OOO ŚŚŚ ĆĆĆ MMM AAA TTT EEE RRR III AAA ŁŁŁ ÓÓÓ WWW

Kod przedmiotu: 06.1 – WE – EEP – MO

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : prof. dr hab. inż. Edward Walicki;

Prowadzący:

prof. dr hab. inż. Edward Walicki;

dr inż. Paweł Jurczak;

dr inż. Jarosław Falicki

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

5

W ykład 30 2 II

Zaliczenie na ocenę

Laborator ium 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 II

Zaliczenie na ocenę

Laborator ium 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie podstaw mechaniki, wytrzymałości materiałów i podstawowych zasad doboru materiałów wykorzystywanych w instalacjach energetycznych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie rozwiązywania problemów technicznych w oparciu o prawa mechaniki i wytrzymałości materiałów. Wykształcenie umiejętności posługiwania się aparaturą pomiarową stosowaną w zagadnieniach mechaniki i wytrzymałości materiałów.

C1K. Uświadomienie potrzeby podnoszenia swoich kwalifikacji przez całe życie.

WYMAGANIA WSTĘPNE:

Znajomość matematyki i fizyki

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe pojęcia i zasady statyki. Płaski i przestrzenny układ sił zbieżnych. Równowaga płaskiego i przestrzennego układu sił zbieżnych. Podstawy redukcji układu sił, a w tym: moment siły względem punktu i osi, siły równoległe, para sił i jej moment, redukcja i równowaga układu par sił. Płaskie układy sił bez tarcia (redukcja płaskiego układu sił, równowaga dowolnego płaskiego układu sił, równowaga układów złożonych z ciał sztywnych). Tarcie i prawa tarcia. Dowolny przestrzenny układ sił. Redukcja przestrzennego układu sił. Układ sił równoległych w przestrzeni. Podstawowe pojęcia i określenia kinematyki. Kinematyka punktu: ruch punktu, prędkość i przyspieszenie, ruch prostoliniowy, krzywoliniowy i po okręgu, przyspieszenie styczne i normalne. Podstawowe pojęcia ruchu ciała sztywnego (metody wyznaczania prędkości punktów, ruch postępowy i obrotowy). Ruch złożony (prędkość i przyspieszenie w

Page 79: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

79

ruchu złożonym, przyspieszenie Coriolisa na powierzchni Ziemi). Podstawy dynamiki punktu materialnego. Równania dynamiki ciała sztywnego.

Podstawowe pojęcia wytrzymałości materiałów. Przedmiot i zadania wytrzymałości materiałów. Rodzaje obciążeń i ich podział. Rodzaje odkształceń. Siły wewnętrzne, zasada de Saint Venanta. Rozciąganie i ściskanie materiałów. Prawo Hooke'a, moduł Younga, liczba Poissona. Zasada superpozycji. Naprężenia dopuszczalne, współczynnik bezpieczeństwa. Statycznie wyznaczalne i statycznie niewyznaczalne układów prętów rozciąganych lub ściskanych. Analiza naprężeń i odkształceń w punkcie; jedno- i dwukierunkowe stany naprężeń i odkształceń. Składowe ogólne i składowe główne stanu naprężeń. Koło Mohra w dwukierunkowym stanie naprężeń; uogólnione prawo Hooke'a. Ścinanie czyste i technologiczne. Momenty statyczne i momenty bezwładności figur płaskich. Wzory Steinera. Osie główne i momenty główne bezwładności; koło Mohra dla momentów bezwładności. Skręcanie prętów prostych o przekroju kołowym. Analiza odkształceń i naprężeń przy skręcaniu. Obliczanie sprężyn. Siły wewnętrzne w prętach i belkach. Zginanie prętów prostych i zakrzywionych. Zginanie z udziałem sił poprzecznych.

Laboratorium

Wyznaczanie wartości statycznego współczynnika tarcia ślizgowego, Wyznaczanie charakterystyki i sztywności sprężyny, Stroboskopowe metody pomiaru częstotliwości ruchów okresowych, Wyznaczanie masowego momentu bezwładności ciała sztywnego, Pomiar momentu tarcia w łożyskach wirnika silnika elektrycznego, Wyznaczanie kinetycznego współczynnika tarcia ślizgowego za pomocą drgań samowzbudnych, Wyznaczanie charakterystyki i sztywności układu sprężyn, Pomiary twardości metodą Brinella, Pomiary twardości metodą Rockwella, Pomiary twardości metodą Vickersa, Statyczna próba rozciągania metali, Statyczna próba ściskania metali, Statyczna próba zginania, Udarowa próba zginania,

METODY KSZTAŁCENIA:

Wykłady konwencjonalne z wykorzystaniem środków audiowizualnych. Ćwiczenia rachunkowe. Praca z książką. Praca zespołowa w trakcie wykonania ćwiczeń laboratoryjnych; prezentacja rozwiązań, analiza i dyskusja nad uzyskanymi wynikami.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna podstawy mechaniki i

wytrzymałości materiałów i rozumie

podstawowe zasady doboru materiałów i

konstrukcji maszyn, ma podstawową wiedzę

na temat materiałów wykorzystywanych w

instalacjach energetycznych. Student potrafi

rozwiązywać proste zagadnienia procesów

energetycznych opisując przebieg procesów

fizycznych z wykorzystaniem praw

mechaniki, elektrotechniki i termodynamiki

K1P_W06

K1P_U15,

Kolokwium pisemne na koniec semestru

W

Student potrafi dobrać typowe części maszyn

i urządzeń oraz określić ich własności w tym

ich wytrzymałość, oddziaływanie na

środowisko oraz energochłonność. Student

rozumie potrzebę uczenia się przez całe

życie, przede wszystkim w celu podnoszenia

swoich kompetencji zawodowych i

osobistych.

K1P_U17 K1P_K01

Ocena za sprawozdania z zajęć laboratoryjnych

L

Page 80: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

80

WARUNKI ZALICZENIA:

Wykład

otrzymanie oceny pozytywnej z zaliczenia.

Laboratorium

otrzymanie ocen pozytywnych z raportów z przeprowadzonych ćwiczeń laboratoryjnych.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 5h 9h

Przygotowanie się do zajęć 45h 65h

Sporządzenie sprawozdań 15h 15h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. Misiak J., Mechanika ogólna – Statyka i kinematyka, 1993 WNT wydanie IV

2. Leyko J., Mechanika ogólna. t. I, 1980 PWN wydanie VII,

3. J. Nizioł, Metodyka rozwiązywania zadań z mechaniki, WNT, Warszawa 2002

4. Walicki E., Smak T., Falicki J., Mechanika. Wprowadzenie teoretyczne do laboratorium. 2005, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego,

5. Walicki E., Smak T., Falicki J., Mechanika. Materiały pomocnicze do ćwiczeń laboratoryjnych. 2005, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego

6. Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Wytrzymałość materiałów / T. 1: Podręcznik akademicki. Teoria, wzory i tablice do ćwiczeń laboratoryjnych. - Zielona Góra : Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2008

7. Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Wytrzymałość materiałów T. 2: Ćwiczenia laboratoryjne – Materiały pomocnicze.. - Zielona Góra : Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2008.

8. Niezgodziński M. E., Niezgodziński T., Wytrzymałość materiałów, 1979 PWN wyd. XI,

9. Gubrynowiczowa J., Wytrzymałość materiałów, 1968 PWN.

10. Banasiak M., Grossman K., Trombski M., Zbiór zadań z wytrzymałości materiałów, 1998, PWN.

LITERATURA UZUPEŁNIAJĄCA:

1. Leyko J., Zbiór zadań z mechaniki ogólnej. t. I, 1978 PWN wydanie IV

2. Misiak J., Zadania z mechaniki ogólnej. Statyka, 1994 WNT wydanie V

3. Misiak J., Zadania z mechaniki ogólnej. Kinematyka, 1994 WNT wydanie V,

4. Rżysko J., Statyka i wytrzymałość materiałów, 1979 PWN,

5. Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, 1984 WNT,

PROGRAM OPRACOWALI:

prof. dr hab. inż Edward Walicki - [email protected]

Page 81: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

81

MMM EEE TTT OOO DDD YYY NNN UUU MMM EEE RRR YYY CCC ZZZ NNN EEE

Kod przedmiotu: 11.9 – WE – EEP – MN

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : prof. dr hab. Roman Gielerak

Prowadzący: prof. dr hab. . Roman Gielerak, dr inż. Marek Sawerwain

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

5

W ykład 30 2 II

Egzamin pisemny

Laborator ium 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 II

Egzamin pisemny

Laborator ium 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1U.Zapoznanie studentów z podstawami modelowania matematycznego i tworzenia symulacji komputerowej w oparciu o sformułowany model matematyczno-fizyczny.

C2U.Zapoznanie studentów ze specyfiką komputerowego przetwarzania danych w szczególności z zagrożeniami zwiazanym z niestabilnościami numerycznymi.

C3U.Zapoznanie studentów z podstawami obsługi skryptowego środowiska

zaawansowanego przetwarzania numerycznego Matlab oraz obsługi jego zasobów.

C1K.Przedstawienie podstawowych algorytmów numerycznych do rozwiązywania równań przestępnych, rozwiązywania wybranych zadań z Algebry Liniowej a także równań różniczkowych zwyczajnych.

C1K.Przedstawienie podstawowych metod dopasowywania przebiegów funkcyjnych do danych wejściowych w oparciu o metody interpolacji i aproksymacji.

C1W.Poznanie ogólne podstawowych technik przetwarzania trudnych obliczeniowo zadań w oparciu o techniki sztucznej inteligiencji obliczeniowej takie jak algorytmy genetyczne i przetwarzanie danych za pomocą sieci neuronowych.

WYMAGANIA WSTĘPNE:

Analiza matematyczna , Algebra liniowa z geometrią, Fizyka Techniczna.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład Rys historyczny rozwoju maszyn liczących. Model matematyczno-fizyczny, jego ograniczenia i możliwości symulacji. Arytmetyka komputerowa: konwersje arytmetyczne, reprezentacje zmienno-przecinkowe, standardy

Page 82: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

82

IIIE754 liczb pojedynczej i liczb podwójnej precyzji Arytmetyka zmienno-przecinkowa. Analiza błędów obcięć i błędów przybliżeń. Problemy stabilne numerycznie i problemy niestabilne numeryczne. Algorytmy numeryczne: ich pseudokod, analiza złożoności obliczeniowych i stabilności numerycznej. Problemy dobrze i żle uwarunkowane numerycznie, przykłady. Rozwiązywanie skalarnych równań nieliniowych-metody geometryczne , algorytmy bisekcji , reguła Falsi ,algorytm Newtona , algorytm Newtona-Raphsona. Rozwiazywanie skalarnych równań nieliniowych-metody oparte o koncepcję punktu stałego. Porównanie wydajności obliczeniowej zaprezentowanych algorytmów. Zagadnienia Algebry liniowej –podstawy rachunku macierzowego, Układy równań liniowych, tw. Croneckera-Capelli, tw. Cramera Zagadnienia Algebry Liniowej: rozwiązywanie układów kwadratowych, metody eliminacji Gaussa,problem wyboru elementu głównego. Układy równań liniowych-metody iteracyjne ;metoda Jacobiego , metoda Gaussa-Seidela. Uwarunkowanie numeryczne układów liniowych.. Zagadnienia interpolacji: konstrukcje wielomianów interpolacyjnych ( metoda Lagrange’a , metoda Newtona) Zagadnienia interpolacji: metoda sklejanych funkcji kubicznych Zagadnienia aproksymacji średniokwadratowych, aproksymacje dyskretne wielomianowe. Aproksymacje ciągłe, wielomiany ortogonalne Równania różniczkowe zwyczajne –zagadnienia początkowe, algorytmy Eulera, algorytmy typu Runge_Kuty Zastosowania do zadan optymalizacji globalnej-zagadnienia liniowe i zagadnienia wypukłe. Algorytm genetyczny, sieci neuronowe.

Laboratorium

Wprowadzenie do środowiska Matlab: obliczenia skalarne

Wprowadzenie do środowiska Matlab: obliczenia macierzowe

Wprowadzenie do środowiska Matlab: Programowanie środowiskowe

Wprowadzenie do środowiska Matlab: programowanie w języku Matlab

Silniki graficzne Matlaba .GNU. Plot

Arytmetyka zmienno-przecinkowa, błędy obliczeń komputerowych

Skalarne równania nieliniowe; testowanie zasobów środowiska Matlab.

Skalarne równania nieliniowe: adaptacje i testowanie poznanych algorytmów numerycznych

Układy równań liniowych: adaptacja i testowanie poznanych algorytmów

Zagadnienia interpolacji

Zagadnienia aproksymacji średniokwadratowej

Całkowanie numeryczne

Równania różniczkowe zwyczajne

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat podstawowych algorytmów numerycznych do rozwiązywania podstawowych zadań obliczeniowych wymagających mocy komputerowych

K1P-W03,

K1P_W17

K1P_U07

K1P_U14

Kolokwia pisane w trakcie zajęć laboratoryjnych oraz egzamin

końcowy W i L

Student ma umiejętność posługiwania K1P_U07 Kolokwia i sprawozdania L

Page 83: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

83

się zasobami pakietu Matlab do rozwiązywania podstawowych zagadnień obliczeniowych oraz umiejętność przygotowywania samodzielnie skryptów wykonywalnych w środowisku Matlab

K1P_U14 laboratoryjne

Student ma wstępne kompetencje w zakresie modelowania i symulacji komputerowych prostych procesów i zadań.

K1P_U07

K1P_U14

K1P_KO1

Egzamin końcowy i sprawozdania laboratoryjne

W i L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu końcowego z wagą 80%; ocena z aktywności na zajęciach laboratoryjnych z wagą 20%.

Brak zaliczenia Laboratorium automatycznie nie daje możliwości przystąpienia do egzaminu.

Nadzwyczajna aktywność na zajęciach laboratoryjnych może spowodować zwolnienie z egzaminu. .

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych oraz wyników kolokwiów.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 10h 10h

Przygotowanie się do zajęć 30h 54h

Sporządzenie sprawozdań 25h 25h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. Fortuna Z., Macukow B., Wąsowski J., Metody Numeryczne, Wydawnictwa Naukowo-Techniczne, Warszawa 1982.

2. Stachurski M., Metody numeryczne w programie Matlab, Wydawnictwo. MIKOM, Warszawa 2003

3. Ralston A, Wstęp do analizy numerycznej, Wydawnictwo PWN, Warszawa 1975.

4. Rutkowska D., Piliński M.,Rutkowski L.; Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN, Warszawa 1999.

LITERATURA UZUPEŁNIAJĄCA:

1. Dahlquist G.,Bjorck A.; Metody Numeryczne, Wydawnictwo PWN, Warszawa 1983. 2. Stoer J.; Wstęp do metod numerycznych, Wydawnictwo PWN, Warszawa 1990.

PROGRAM OPRACOWAŁ:

prof. dr hab. Roman Gielerak

Page 84: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

84

MMM III KKK RRR OOO SSS III EEE CCC III III SSS YYY SSS TTT EEE MMM YYY PPP RRR OOO SSS UUU MMM EEE NNN CCC KKK III EEE

Kod przedmiotu: 06.0 – WE – EEP – MSP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Marcin Jarnut

Prowadzący: dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

7

W ykład 15 1

VII

egzamin

Laborator ium 15 1 zaliczenie na ocenę

Pro jekt 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1

VII

egzamin

Laborator ium 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie miejscowego wytwarzania i sterowania rozpływem energii w instalacjach lokalnych i mikrosieciach niskich napięć.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie wymiarowania mikrosystemów energetycznych oraz sterowania rozpływem mocy w lokalnych systemach energetycznych.

C1K. Uświadomienie roli mikrosystemów energetycznych w procesach poprawy efektywności energetycznej krajowego systemu energetycznego.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy elektrotechniki i energoelektroniki, systemy elektromaszynowe, sieci i stacje elektroenergetyczne, odnawialne i kogeneracyjne źródła energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do mikrosieci energetycznych. Bilans mocy i energii. Systemy wieloźródłowe.

Formalne warunki pracy mikrosieci i systemów prosumenckich. Systemy taryfowe.

Profile czasowo-mocowe odbiorców, źródeł i systemów. Metody profilowania.

Struktury i elementy mikrosieci prądu stałego DC. Sterowanie bilansem mocy mikrosieci DC.

Page 85: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

85

Struktury i elementy mikrosieci prądu przemiennego. Sterowanie bilansem mocy mikrosieci AC.

Metody i systemy sterowania rozpływem energii w mikrosieciach i systemach prosumenckich. Infrastruktura Sieci Domowej (ISD). Systemy typu Building Management System (BMS) i Energy Management System (EMS).

Podsumowanie wiadomości z zakresu mikrosieci energetycznych.

Laboratorium

Wprowadzenie do mikrosieci. Pomiar rozpływu mocy i energii w systemach wieloźródłowych.

Badanie rozpływu mocy w mikrosieci z systemem bezpośredniego zarządzania mocą odbiorów typu Direct Load Control oraz grafikowaniem pracy.

Badanie rozpływu mocy w mikrosieci z mikroźródłem współpracującym z indywidualnym przekształtnikiem DC/AC w trybie wyspowym (off grid).

Badanie rozpływu mocy w mikrosieci z mikroźródłem wpółpracującym z indywidualnym przekształtnikiem DC/AC w trybie synchronicznym (grid connected).

Badanie rozpływu mocy w mikrosieci z mikroźrółem, magazynem energii i centralnym przekształtnikiem hybrydowym (hybrid inverter).

Badanie rozpływu mocy w systemie prosumenckim z dedykowanym sterownikiem centralnym typu Energy Management System.

Podsumowanie wiadomości z zakresu sterowania rozpływem energii w mikrosieciach.

Projekt

Dobór struktury mikrosieci ze źródłem fotowoltaicznym, zadanym profilem obciążenia oraz strukturą taryf wg kryterium ekonomicznego.

Dobór elementów mikrosieci pracującej w zadanej strukturze i wg zadanego kryterium sterowania.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: praca z dokumentem, metoda projektu

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat budowy mikrosieci energetycznych i systemów prosumenckich, metod sterowania rozpływem energii wg kryteriów ekonomicznego i optymalnego uzysku energetycznego, zna elementy mikrosieci i ich zasady ich współpracy w ramach mikrosystemu energetycznego

K1P_W19, K1P_W22

Egzamin pisemny W, L

Student ma zweryfikowaną laboratoryjnie wiedzę na temat rozpływu mocy i energii w mikrosieciach prądu stałego i przemiennego oraz możliwości intencjonalnego sterowania tych rozpływów z wykorzystaniem nowoczesnych urządzeń energoelektronicznych i techniki teleinformatycznej.

K1P_U08, K1P_U17 K1P_K01, K1P_K04

Ocena za sprawozdanie z zajęć laboratoryjnych

L, P

WARUNKI ZALICZENIA:

Wykład

Page 86: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

86

W skład oceny końcowej wchodzą: ocena z egzaminu pisemnego

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia ważona z ocen ze wszystkich form przedmiotu przy czym waga oceny z wykładu wynosi 50% natomiast z laboratorium i projektu po 25%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 45h 27h

Konsultacje 15h 10h

Przygotowanie się do zajęć 50h 50h

Sporządzenie sprawozdań 30h 30h

Przygotowanie projektów 30h 53h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Mirosław Parol, Mikrosieci niskiego napięcia, Oficyna Wydawnicza Politechniki Warszawskiej

2. S. Chowdhury, P. Crossley, Microgrids and Active Distribution Networks, Institution of Engineering and Technology

3. Piotr Kacejko, Generacja rozproszona w systemie elektroenergetycznym, Wydawnictwa Politechniki Lubelskiej

4. Marcin Jarnut, Grzegorz Benysek, Energooszczędne i aktywne systemy budynkowe: techniczne i eksploatacyjne aspekty implementacji miejscowych źródeł energii elektrycznej, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego

LITERATURA UZUPEŁNIAJĄCA:

1. Piotr Biczel, Integracja rozproszonych źródeł energii w mikrosieci prądu stałego, Oficyna Wydawnicza Politechniki Warszawskiej

2. Nikos Hatziargyriou, Microgrids: Architectures and Control, John Wiley & Sons

3. Shin’ya Obara, Fuel Cell Micro-grids, Springer Science & Business Media

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 87: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

87

NNN AAA PPP ĘĘĘ DDD YYY PPP RRR ZZZ EEE KKK SSS ZZZ TTT AAA ŁŁŁ TTT NNN III KKK OOO WWW EEE

Kod przedmiotu: 06.0 – WE – EEP – NP

Typ przedmiotu: obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Robert Smoleński

Prowadzący:

dr hab. inż. Robert Smoleński dr inż Paweł Szcześniak dr inż. Jacek Kaniewski mgr inż. Piotr Leżyński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

V

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

egzamin

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie z topologiami i technikami sterowania napędów przekształtnikowych w efektywnych procesach przemian energetycznych z uwzględnieniem sterowania miejscowego i zdalaczynnego, przekazanie podstawowej wiedzy dotyczącej zarządzania i sterowania pracą napędów przekształtnikowych ze szczególnym uwzględnieniem kryteriów sprawności, energochłonności i kosztów eksploatacyjnych.

C1U. Nabycie umiejętności analizy i porównania napędów przekształtnikowych ze względu na zadane kryteria użytkowe i ekonomiczne.

C2U. Nabycie umiejętności doboru odpowiedniego napędu, metody sterowania i regulacji oraz określania oddziaływania na środowisko oraz energochłonności.

C1K. Zrozumienie, na podstawie rozwoju technik napędowych, potrzeby uczenia się przez całe życie oraz nabycie umiejętności odpowiedniego określenia priorytetów służących realizacji określonego przez siebie lub innych zadania.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, fizyka techniczna, podstawy elektrotechniki i energoelektroniki, systemy elektromaszynowe

ZAKRES TEMATYCZNY PRZEDMIOTU:

Page 88: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

88

Wykład

Klasyfikacja napędów elektrycznych. Dynamika napędów elektrycznych.

Kwadranty pracy maszyny elektrycznej i przekształtnika. Moment bierny (reakcyjny) i czynny (potencjalny).

Napędy przekształtnikowe jedno-, dwu- i czterokwadrantowe z przekształtnikami AC-DC.

Napędy przekształtnikowe jedno-, dwu- i czterokwadrantowe z przekształtnikami DC-DC.

Dwu- i czterokwadrantowe napędy asynchroniczne i synchroniczne.

Miękki rozruch napięciowy i częstotliwościowy.

Sterowanie skalarne. Sterowanie polowo zorientowane (Field Oriented Control - FOC).

Bezpośrednie sterowanie momentem (Direct Torque Control - DTC).

Napędy przekształtnikowe z silnikami reluktancyjnymi (Switched Reluctance Motor - SRM).

Silniki bezszczotkowe prądu stałego (Brushless DC - BLDC).

Wysokosprawne przekształtniki energoelektroniczne i maszyny elektryczne.

Serwonapędy nadążne i przestawne.

Dynamika zamkniętych układów napędowych.

Rekomendacje układów napędowych w kontekście wymagań technicznych i ekonomicznych.

Oddziaływanie napędów przekształtnikowych na system elektroenergetyczny.

Laboratorium

Badanie układ łagodnego rozruchu silnika asynchronicznego klatkowego.

Sterowanie skalarne silnika asynchronicznego.

Sterowanie polowo zorientowane silnika asynchronicznego.

Bezpośrednie sterowanie momentem silnika asynchronicznego.

Sterowanie silnika prądu stałego za pomocą prostownika tyrystorowego.

Sterowanie silnika prądu stałego za pomocą cztero-kwadrantowego przekształtnika DC-DC.

Badanie bezszczotkowego silnika prądu stałego.

Badanie napędu przekształtnikowego z silnikami reluktancyjnymi.

Badanie serwonapędu

Badanie oddziaływania napędów przekształtnikowych na sieć elektroenergetyczną.

Projekt

Zasymulować pracę napędu z falownikiem trój-poziomowym

Zasymulować napęd prądu stałego z prostownikiem sterowanym

Zasymulować napęd prądu stałego z przekształtnikiem DC/DC

Projektowanie napędów asynchronicznych ze sterowaniem częstotliwościowym

Dobór parametrów przekształtnikowego napędu asynchronicznego dla typowych charakterystyk obciążenia

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Zna topologie i techniki sterowania napędów przekształtnikowych w efektywnych procesach przemian energetycznych z uwzględnieniem

K1P_W19, K1P_W22

Dyskusja, sprawdzian, egzamin bieżąca kontrola na zajęciach

W

Page 89: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

89

sterowania miejscowego i zdalaczynnego, ma podstawową wiedzę dotyczącą zarządzania i sterowania pracą napędów przekształtnikowych ze szczególnym uwzględnieniem kryteriów sprawności, energochłonności i kosztów eksploatacyjnych

Potrafi przeanalizować i porównać napędy przekształtnikowe ze względu na zadane kryteria użytkowe i ekonomiczne potrafi dobrać odpowiedni napęd, metody sterowania i regulacji oraz określić oddziaływanie na środowisko oraz energochłonność

K1P_U08, K1P_U16, K1P_U17

Dyskusja, sprawdzian, egzamin bieżąca kontrola na zajęciach, ocena

za sprawozdania z zajęć laboratoryjnych

L, P

Obserwując rozwój technologiczny oraz zmiany w regulacjach, rozumie potrzebę uczenia się przez całe życie oraz potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania

K1P_K01, K1P_K04

Bieżąca kontrola na zajęciach, ocena za wykonane zadania projektowe

L, P

WARUNKI ZALICZENIA:

Wykład

Egzamin złożony z dwóch części pisemnej i ustnej; warunkiem przystąpienia do części ustnej jest uzyskanie 30% punktów z części pisemnej.

Laboratorium

Na ocenę końcową z laboratorium składają się oceny z przygotowania do zajęć (50%) oraz oceny sprawozdań z ćwiczeń (50%).

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 10h 34h

Przygotowanie się do zajęć 20h 20h

Zapoznanie się z literaturą 18h 18h

Sporządzenie sprawozdań 12h 22h

Przygotowanie do egzaminu 25h 25h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Zawirski K., Deskur J., Kaczmarek T. Automatyka napędu elektrycznego, Wydawnictwo Politechniki Poznańskiej, Poznań 2012

2. Koczara W. Wprowadzenie do napędu elektrycznego, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2012

Page 90: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

90

3. Tunia H., Kaźmierkowski M. P.: Automatyka napędu przekształtnikowego, PWN 1987

4. Orłowska-Kowalska T. Bezczujnikowe układy napędowe z silnikami indukcyjnymi, Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław 2003

LITERATURA UZUPEŁNIAJĄCA: 1. Łastowiecki J., Duszczyk K., Przybylski J., Ruda A., Sidorowicz J., Szulc Z.: Laboratorium

podstaw napędu elektrycznego w robotycem WPW, Warszawa, 2001.

2. Grzbiela C., Machowski A. Maszyny, urządzenia elektryczne i automatyka w przemyśle, Wydawnictwo Naukowe, Katowice 2010.

3. Kaźmierkowski M. P., Blaabjerg F., Krishnan R.: Control in Power Electronics, Selected Problems, Elsevier, 2002.

4. Boldea I., Nasar S.A, Electric Drives, CRC Press, 1999

PROGRAM OPRACOWAŁ:

dr hab. inż. Robert Smoleński dr inż Paweł Szcześniak dr inż. Jacek Kaniewski mgr inż. Piotr Leżyński

Page 91: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

91

OOO CCC EEE NNN AAA ZZZ GGG OOO DDD NNN OOO ŚŚŚ CCC III WWW SSS YYY SSS TTT EEE MMM AAA CCC HHH EEE NNN EEE RRR GGG EEE TTT YYY CCC ZZZ NNN YYY CCC HHH

Kod przedmiotu: 06.0 – WE – EEP – OZ

Typ przedmiotu: obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Robert Smoleński

Prowadzący: dr hab. inż. Robert Smoleński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

7

W ykład 15 1 VII

egzamin

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII

egzamin

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie z aktami legislacyjnymi regulującymi niezawodność i bezpieczeństwo eksploatacji maszyn i urządzeń, oraz wymaganiami dotyczącymi oddziaływania na środowisko naturalne i elektromagnetyczne.

C1U. Nabycie umiejętności analizy rozwiązań projektowych elementów i układów energetycznych w kontekście oceny zgodności.

C1K. Nabycie kompetencji w rozstrzyganiu dylematów związanych z wykonywaniem zawodu za pomocą aktualnych, odnośnych regulacji.

WYMAGANIA WSTĘPNE:

Fizyka techniczna, Inżynieria materiałowa w energetyce, Podstawy elektroenergetyki, Podstawy elektrotechniki i energoelektroniki

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Ustawa o systemie oceny zgodności.

Dyrektywy Nowego Podejścia będące w kompetencjach Ministra Gospodarki. Dyrektywa niskonapięciowa LVD. Dyrektywa maszynowa MD

Dyrektywa hałasowa. Dyrektywa dot. materiałów wybuchowych do użytku cywilnego. Dyrektywa dot. przyrządów pomiarowych.

Rozporządzenia WE dot. efektywności energetycznej. Etykietowanie energetyczne. Dyrektywa ATEX.

Dyrektywa ogólnego bezpieczeństwa produktów. Dyrektywa dotycząca odpowiedzialności za

Page 92: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

92

produkty wadliwe

Deklaracja zgodności. Oznakowanie zgodności.

Laboratoria akredytowane. Wymagania stawiane laboratoriom akredytowanym i prawa klientów. Systemy zarządzania jakością w laboratoriach akredytowanych na przykładzie „Laboratorium Kompatybilności Elektromagnetycznej i Jakości Energii Elektrycznej” przy Instytucie Inżynierii Elektrycznej.

Projekt

Opracowanie programu badań dla wybranego elementu systemu elektroenergetycznego.

Opracowanie raportu z badań zgodnych z normami zharmonizowanymi.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Zna akty legislacyjne regulujące niezawodność i bezpieczeństwo maszyn i urządzeń, oraz wymagania dotyczące oddziaływania na środowisko naturalne i elektromagnetyczne

K1P_W12 Dyskusja, sprawdzian, egzamin,

bieżąca kontrola na zajęciach W, P

Potrafi przeanalizować rozwiązania projektowe elementów i układów energetycznych oraz dobrać typowe części maszyn i urządzeń w kontekście ich zgodności z wymaganiami oceny zgodności

K1P_U08, K1P_U17

Dyskusja, sprawdzian, egzamin, bieżąca kontrola na zajęciach

W, P

Rozumie konieczność zmian legislacyjnych związanych z rozwojem technologii energooszczędnych, w rozstrzyganiu dylematów związanych z wykonywaniem zawodu posługuje się aktualnymi odnośnymi regulacjami

K1P_K01, K1P_K05

Dyskusja, sprawdzian, egzamin, bieżąca kontrola na zajęciach

W, P

WARUNKI ZALICZENIA:

Wykład

Egzamin złożony z dwóch części pisemnej i ustnej; warunkiem przystąpienia do części ustnej jest uzyskanie 30% punktów z części pisemnej.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50% i projekt 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + P) 45h 27h

Konsultacje 43h 61h

Page 93: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

93

Przygotowanie się do zajęć 20h 20h

Zapoznanie się z literaturą 20h 20h

Przygotowanie projektu 22h 22h

Przygotowanie do egzaminu 25h 25h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Dyrektywy Nowego Podejścia (dostępne na stronie: http://ec.europa.eu/index_pl.htm).

2. Normy zharmonizowane. (dostępne w Regionalnym Ośrodku Informacji Normalizacyjnej i Patentowej – Biblioteka UZ).

PROGRAM OPRACOWAŁ:

dr hab. inż. Robert Smoleński

Page 94: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

94

OOO CCC HHH RRR OOO NNN AAA WWW ŁŁŁ AAA SSS NNN OOO ŚŚŚ CCC III III NNN TTT EEE LLL EEE KKK TTT UUU AAA LLL NNN EEE JJJ

Kod przedmiotu: 10.9 – WE – EEP – OWI

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Rusiński

Prowadzący: dr inż. Jacek Rusiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

3 W ykład 30 2 I zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 I zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy związanej z podstawowymi zagadnieniami etycznymi, prawnymi i ekonomicznymi związanymi z wykonywaniem zawodu inżyniera.

C1U. Ukształtowanie wśród studentów umiejętności prawidłowej identyfikacji i rozstrzygania problemów związanych z zagadnieniami własności intelektualnej.

C1K. Uświadomienie wagi i rozumienia społecznych skutków działalności inżynierskiej, potrzeby przekazywania informacji odnośnie osiągnięć technicznych i działania inżyniera, przygotowanie do permanentnego uczenia się i podnoszenia posiadanych kompetencji.

WYMAGANIA WSTĘPNE:

Brak

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe pojęcia i unormowania prawne dotyczące własności intelektualnej.

Porozumienia międzynarodowe dotyczące ochrony własności intelektualnej

Prawo autorskie. Prawo własności przemysłowej.

Patent. Prawo ochronne. Prawo z rejestracji.

Warunki do uzyskania patentu na wynalazek.

Ochrona wzorów użytkowych, wzorów przemysłowych, topografii układów scalonych. Ochrona znaków towarowych i usługowych.

Licencje w obrocie prawami własności przemysłowej.

Komercjalizacja własności intelektualnej.

Procedura postępowania przed Urzędem Patentowym RP.

Wymagania odnośnie dokumentacji zgłoszeniowej wynalazku, wzoru użytkowego, wzoru przemysłowego,

Page 95: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

95

znaku towarowego.

Klasyfikacja patentowa, INID kody.

Informacja patentowa. Badania patentowe. Badanie stanu techniki.

Ochrona własności intelektualnej w Internecie.

Ochrona konkurencji i konsumentów. Czyny nieuczciwej konkurencji.

Sankcje karne za naruszenia praw autorskich.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna i rozumie podstawowe pojęcia i zasady z zakresu ochrony własności przemysłowej i prawa autorskiego, potrafi korzystać z zasobów informacji patentowej ma podstawową wiedzę niezbędną do rozumienia społecznych, prawnych i innych pozatechnicznych uwarunkowań działalności inżynierskiej, potrafi ocenić aspekty pozatechniczne analizowanych rozwiązań technicznych, ma świadomość etycznych aspektów działań podejmowanych w czasie pracy

K1P_W23, K1P_U01, K1P_K01, K1P_K05

Kolokwium pisemne na koniec semestru, ocena sprawozdania z

poszukiwań w literaturze patentowej rozwiązań związanych z tematem

pracy dyplomowej studenta

W

WARUNKI ZALICZENIA:

Wykład

Warunkiem zaliczenia jest uzyskanie pozytywnych ocen z kolokwiów pisemnych lub ustnych przeprowadzonych co najmniej raz w semestrze oraz sprawozdania z poszukiwań w literaturze patentowej rozwiązań związanych z tematem pracy dyplomowej studenta.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

stacjonarne niestacjonarne

Godziny kontaktowe (W) 30h 18h

Konsultacje 10h 12h

Przygotowanie sprawozdania 15h 20h

Przygotowanie się do zajęć 20h 25h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Kotarba W.: Ochrona własności przemysłowej w gospodarce polskiej w dostosowaniu do wymogów Unii Europejskiej i Światowej Organizacji Handlu. Wyd. Instytut Organizacji i Zarządzania we Przemyśle „ORGMASZ”, Warszawa 2000.

2. Sobczak J.: Prawo autorskie i prawa pokrewne, Wyd. Polskie Wydawnictwo Prawnicze Warszawa - Poznań 2000.

Page 96: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

96

3. Miklasiński Z.: Prawo własności przemysłowej, komentarz. Wyd. UPRP Warszawa 2001.

LITERATURA UZUPEŁNIAJĄCA:

1. Pyrża A.: Poradnik wynalazcy. Procedury zgłoszeniowe w systemie krajowym, europejskim, międzynarodowym. Wyd. Urząd Patentowy RP, Warszawa 2008

2. Konrdrat M., Dreszer-Lichańska H.: Własność przemysłowa w Unii Europejskiej. Znaki towarowe, patenty, SPC, wzory przemysłowe, oznaczenia geograficzne - poradnik. Wyd. Ośrodek Doradztwa i Doskonalenia Kadr Sp. z o.o. Gdańsk 2004

3. Antoniuk J.: Ochrona znaków towarowych w Internecie, Wyd. LexisNexis, Warszawa, 2006

PROGRAM OPRACOWAŁ:

dr inż. Jacek Rusiński

[email protected]

Page 97: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

97

OOO DDD NNN AAA WWW III AAA LLL NNN EEE III KKK OOO GGG EEE NNN EEE RRR AAA CCC YYY JJJ NNN EEE ŹŹŹ RRR ÓÓÓ DDD ŁŁŁ AAA EEE NNN EEE RRR GGG III III

Kod przedmiotu: 06.0 – WE – EEP – OK

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Grzegorz Benysek, prof. UZ

Prowadzący: dr hab. inż. Grzegorz Benysek, prof. UZ dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

VI

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

VI

egzamin

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie rozproszonych układów wytwarzania energii elektrycznej i cieplnej ze szczególnym uwzględnieniem źródeł odnawialnych i kogeneracyjnych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru typu i wymiarowania układów miejscowego wytwarzania energii elektrycznej i ciepła.

C1K. Uświadomienie roli nowoczesnych wysokoefektywnych rozwiązań technicznych w działaniach służących realizacji polityki energetycznej ukierunkowanej na gospodarkę niskoemisyjną.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, fizyka techniczna, chemia, podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do generacji rozproszonej. Cele polityki energetycznej RP i UE w zakresie wzrostu udziału energii ze źródeł odnawialnych. Legislacja krajowa i europejska w zakresie odnawialnych i kogeneracyjnych źródeł energii.

Energetyka odnawialna. Podstawowe definicje. Techniczne, środowiskowe i formalne warunki implementacji źródeł odnawialnych.

Układy kogeneracyjne i trójgeneracyjne. Skojarzone wytwarzanie energii elektrycznej i ciepła w układach z

Page 98: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

98

silnikami gazowymi, turbinami gazowymi, silnikami Stirlinga i turbinami ORC. Sprężarki absorpcyjne.

Energetyka wodna. Elektrownie przepływowe, szczytowo-pompowe, pływowe i „tidalne”. Wykorzystanie energii fal.

Energetyka wiatrowa. Turbiny, mikrosiłownie i farmy wiatrowe.

Energetyka słoneczna I. Cieplne i cieplno-elektryczne systemy solarne. Systemy biwalentne.

Energetyka słoneczna II. Ogniwa, panele, mikrosiłownie i farmy fotowoltaiczne.

Biomasa. Wykorzystanie biomasy do generacji energii cieplnej i elektrycznej.

Biogaz. Wytwarzanie i dystrybucja biogazu. Biogazowe układy kogeneracyjne.

Energetyka aerotermalna i geotermalna. Małe elektrownie i ciepłownie geotermalne. Pompy ciepła.

Ogniwa paliwowe. Wytwarzanie i wykorzystanie wodoru.

Miejscowe systemy wieloźródłowe. Systemy autonomiczne i systemy prosumenckie. Współpraca generacji rozproszonej z magazynami energii, koordynacja pracy źródeł rozproszonych. Elektrownia wirtualna (Virtual Power Plant)

Rekuperacja. Odzyskiwania energii odpadowej w budownictwie i przemyśle.

Mikroźródła. Pozyskiwanie energii z otoczenia.

Podsumowanie wiadomości z zakresu energetyki rozproszonej z OZE.

Laboratorium

Wprowadzenie do źródeł odnawialnych i kogeneracyjnych.

Badanie właściwości energetycznych ogniw fotowoltaicznych.

Badanie wpływu temperatury i częściowego zacienienia na właściwości energetyczne paneli fotowoltaicznych i systemów fotowoltaicznych.

Badanie właściwości energetycznych mikrosiłowni wiatrowej z turbiną o pionowej osi obrotu.

Badanie właściwości energetycznych mikrosiłowni wiatrowej z turbiną o poziomej osi obrotu.

Badanie właściwości regulacyjnych generatorów synchronicznych do zastosowań w układach kogeneracyjnych.

Badanie właściwości energetycznych ogniwa paliwowego.

Badanie właściwości energetycznych mikroturbiny wodnej.

Badanie właściwości ogniwa termoelektrycznego.

Badanie właściwości przetwornika piezoelektrycznego.

Badanie właściwości energetycznych przekształtników generatorowych z regulacją typu Maksimum Power Point Tracking (MPPT).

Badanie właściwości funkcjonalnych i energetycznych układów energoelektronicznych do sprzęgania mikroźródeł w trybie pracy synchronicznej z siecią.

Badanie właściwości funkcjonalnych i energetycznych układów energoelektronicznych do sprzęgania mikroźródeł w trybie pracy autonomicznej.

Badanie właściwości układu automatyki zabezpieczeniowej źródeł synchronicznych. Zabezpieczenie antywyspowe.

Podsumowanie wiadomości z zakresu miejscowych źródeł energii.

Projekt

Ocena potencjału energetycznego źródeł odnawialnych w określonej lokalizacji.

Wyznaczanie współczynników oszczędności energii pierwotnej i wykorzystania paliw pierwotnych w układach kogeneracyjnych.

Dobór elementów układu miejscowego wytwarzania energii wg zadanego kryterium i zadanego potencjału energetycznego w określonej lokalizacji.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

Page 99: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

99

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat metod wytwarzania energii elektrycznej i cieplnej w źródłach odnawialnych (OZE), zna podstawy działania systemów kogeneracyjnych i wieloźródłowych.

K1P_W19, K1P_W20, K1P_W22, K1P_K01, K1P_K04

Kolokwium pisemne 2 razy w semestrze

W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat charakterystyk energetycznych i regulacyjnych miejscowych źródeł energii o raz układów ich sprzęgania z zawodowymi systemami energetycznymi.

K1P_W19, K1P_W20, K1P_W22

Ocena za sprawozdanie z zajęć laboratoryjnych

L

Student potrafi ocenić potencjał energetyczny OZE w określonym miejscu, umie zaprojektować prosty system z odnawialnym lub ko generacyjnym źródłem energii. Ma świadomość wpływu nowych, bardziej efektywnych technologii w zakresie generacji rozproszonej na oszczędność energii pierwotnej i wpływ na środowisko naturalne,

K1P_U08, K1P_U16, K1P_U17, K1P_U18, K1P_K01, K1P_K04

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 25% i projekt 25%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 10h 36h

Przygotowanie się do zajęć 25h 25h

Sporządzenie sprawozdań 25h 30h

Sporządzenie projektów 25h 30h

Razem 175h 175h

Page 100: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

100

LITERATURA PODSTAWOWA:

1. Klugmann E., Klugmann-Radziemska E., Alternatywne źródła energii. Energetyka fotowoltaiczna, Wydawnictwo Ekonomia i Środowisko, Białystok, 1999.

2. Lewandowski W., Proekologiczne źródła energii odnawialnej, WNT, Warszawa, 2001.

3. Marecki J., Podstawy przemian energii, WNT, Warszawa, 1995.

4. Luque A., Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003.

5. O'Hayre R., Fuel Cell Fundamentals, John Wiley & Sons, 2006.

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 101: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

101

PPP OOO DDD SSS TTT AAA WWW YYY AAA UUU DDD YYY TTT III NNN GGG UUU EEE NNN EEE RRR GGG EEE TTT YYY CCC ZZZ NNN EEE GGG OOO

Kod przedmiotu: 06.0 – WE – EEP – PAE

Typ przedmiotu: obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Marcin Jarnut

Prowadzący: dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

3

W ykład 15 1 VII

zaliczenie na ocenę

Ćwiczenia 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII

zaliczenie na ocenę

Ćwiczenia 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie sposobu i metod wykonywania audytu energetycznego.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie określania wskaźników energochłonności i charakterystyki energetycznej obiektów.

C1K. Uświadomienie roli oceny energetycznej obiektów w gospodarce niskoemisyjnej.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy energetyki cieplnej, systemy elektromaszynowe, instalacje sanitarne i HVAC, odnawialne i kogeneracyjne źródła energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do audytingu energetycznego. Wymagania w zakresie podnoszenia efektywności gospodarki.

Efektywność energetyczna w aktach legislacyjnych RP i UE. Dyrektywy PE, Ustawa o efektywności energetycznej, rozporządzenia.

Mechanizmy wsparcia przedsięwzięć służących poprawie efektywności energetycznej. Systemy białych certyfikatów.

Charakterystyki energetyczne obiektów. Metodyka sporządzania charakterystyki energetycznej obiektów budowlanych. Energia końcowa i energia pierwotna.

Audyt energetyczny w przemyśle. Metody określania energochłonności obiektów przemysłowych.

Monitorowanie zużycia energii i mediów. Systemy zarządzania energią.

Page 102: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

102

Podsumowanie wiadomości z zakresu auditingu energetycznego. Uprawnienia audytorskie w zakresie efektywności energetycznej.

Ćwiczenia

Wyznaczanie sprawności i energochłonności urządzeń i systemów technologicznych.

Wyznaczanie charakterystyki energetycznej obiektu budowlanego.

Wyznaczanie wskaźnika oszczędności energii pierwotnej i współczynnika redukcji emisji w działaniach racjonalizacyjnych służących poprawie efektywności energetycznej

Wyznaczanie wskaźników ekonomicznych w działaniach racjonalizacyjnych służących poprawie efektywności energetycznej

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Ćwiczenia: praca z dokumentem, ćwiczenia rachunkowe

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę na temat metod określania energochłonności urządzeń, obiektów budowlanych i systemów technologicznych, zna metody wyznaczania charakterystyki energetycznej i wykonywania audytów energetycznych.

K1P_W16, K1P_W22

Kolokwium pisemne na koniec semestru

W, C

Student potrafi określić podstawowe wskaźniki związane z redukcją energochłonności urządzeń, obiektów budowlanych i systemów technologicznych, umie oszacować redukcję kosztów energii związaną z zaproponowanym działaniem racjonalizacyjnym w zakresie poprawy efektywności energetycznej, ma świadomość wpływu postępu technologicznego w zakresie technologii energetycznych na redukcję zużycia energii w gospodarce.

K1P_U11 K1P_K01, K1P_K04

Ocena za wykonane sprawozdanie z ćwiczeń

W, C

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium pisemnego

Ćwiczenia

Ocena końcowa jest średnią arytmetyczną ze sprawozdań z ćwiczeń opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia ważona z ocen ze wszystkich form przedmiotu przy czym wagi ocen z wykładu i ćwiczeń wynoszą po 50%.

Page 103: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

103

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

stacjonarne niestacjonarne

Godziny kontaktowe (W + P) 30h 18h

Konsultacje 12h

Przygotowanie się do zajęć 15h 15h

Przygotowanie sprawozdań 30h 30h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Jan Górzyński, Audyting energetyczny, NAPE S.A.

2. Aleksander Panek, Maciej Robakiewicz, Audyty efektywności energetycznej. Przepisy – zasady –

zastosowania, Fundacji Poszanowania Energii

3. Albert Thumann, William J. Younger, Terry Niehus, Handbook of Energy Audits, The Fairmont Press

4. Moncef Krarti, Energy Audit of Building Systems: An Engineering Approach, Second Edition, CRC

Press

5. Wayne C. Turner, Steve Doty, Energy Management Handbook, The Fairmont Press

6. D. Yogi Goswami, Frank Kreith, Energy Management and Conservation Handbook, CRC Press

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 104: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

104

PPP OOO DDD SSS TTT AAA WWW YYY AAA UUU TTT OOO MMM AAA TTT YYY KKK III

Kod przedmiotu: 06.0 – WE – EEP – PA

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Wojciech Paszke

Prowadzący: dr hab. inż. Wojciech Paszke

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 IV

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 IV

egzamin

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie podstawowych metod analizy i projektowania liniowych układów dynamicznych.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie zapewnienia odpowiednich wymagań jakościowych w układach regulacji automatycznej.

C1K. Uświadomienie znaczenia technik regulacji automatycznej w zapewnieniu optymalnego sterowania układami i systemami.

WYMAGANIA WSTĘPNE:

Fizyka techniczna, podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do układów regulacji automatycznej.

Układy regulacji automatycznej z zamkniętą pętlą sprzężenia zwrotnego.

Matematyczne podstawy regulacji automatycznej. Wprowadzenie do metod analizy opartych na transformacie Laplace’a

Transmitancja operatorowa układów. Wyznaczanie transmitancji operatorowej wybranych układów elektrycznych i elektronicznych.

Odwrotna transformata Laplace’a i jej zastosowanie do wyznaczania odpowiedzi skokowej i impulsowej układów.

Modele w przestrzeni stanów. Analiza układów i systemów metodami przestrzeni stanów.

Układy pierwszego i drugiego rzędu. Wyznaczanie charakterystyk czasowych i częstotliwościowych.

Page 105: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

105

Analiza stabilności układów dynamicznych.

Uchyb w stanie ustalonym. Metoda kształtowania odpowiedzi częstotliwościowej.

Kompensator wyprzedzający i metody doboru jego parametrów.

Kompensator opóźniający i metody doboru jego parametrów.

Kompensator opóźniająco-wyprzedzający.

Regulator PID i podstawowe metody strojenia tego regulatora.

Metody doboru wzmocnień poszczególnych członów w regulatorze PID na podstawie wskaźników jakościowych regulacji.

Podsumowanie wiadomości z zakresu teorii sterowania.

Laboratorium

Wprowadzenie do środowiska obliczeń inżynierskich Matlab.

Podstawy analizy systemów dynamicznych.

Modelowanie sygnałów i systemów w dziedzinie częstotliwości cz.1.

Modelowanie sygnałów i systemów w dziedzinie częstotliwości cz.2.

Modelowanie sygnałów i systemów w dziedzinie czasu cz.1.

Modelowanie sygnałów i systemów w dziedzinie czasu cz.2.

Obliczanie wzmocnienia i stałej czasowej układów rzędu pierwszego.

Wyznaczanie wartości wskaźników jakościowych regulacji układów rzędu drugiego.

Badanie stabilności układów dynamicznych z użyciem metody Routh’a.

Zastosowanie metoda linii pierwiastkowych do analizy stabilności układów dynamicznych.

Wyznaczanie wartości uchybu w stanie ustalonym.

Projektowanie kompensatorów wyprzedzających.

Projektowanie kompensatorów opóźniających.

Strojenie regulatora PID

Podsumowanie metod projektowania kompensatorów i regulatorów

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat układów regulacji automatycznej, i metod ich analizowania oraz projektowania z zachowaniem założonych wymagań jakościowych regulacji.

K1P_W11, K1P_W19, K1P_W22, K1P_K01, K1P_K04

Egzamin pisemny na koniec semestru

W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat analizowania i projektowania układów regulacji automatycznej z użyciem numerycznych środowisk inżynierskich.

K1P_W11, K1P_W19, K1P_W22, K1P_U10

Ocena za sprawozdania z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu z wagą 90%; ocena z aktywności na zajęciach z wagą 10%.

Laboratorium

Page 106: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

106

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonanie przez studentów zadań rachunkowych oraz sprawozdań.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 15h 36h

Przygotowanie się do zajęć 15h 18h

Sporządzenie sprawozdań 30h 30h

Przygotowanie się do egzaminu 30h 30h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. T. Kaczorek, A. Dzieliński, W. Dąbrowski, R. Łopatka, Podstawy teorii sterowania, wydanie 3, WNT, Warszawa, 2013.

2. J. Brzózka, Regulatory i układy automatyki, Wydawnictwo MIKOM, Warszawa, 2004.

3. T. Kaczorek, Teoria sterowania i systemów, Wydawnictwo Naukowe PWN, Warszawa, 1999.

4. K.J. Åström, R.M. Murray, Feedback systems: an introduction for scientists and engineers, Princeton University Press, Princeton 2010. Dostępne na: http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page

LITERATURA UZUPEŁNIAJĄCA:

1. R.C. Dorf, R.H. Bishop, Modern control system, Pearson Education, Inc. London, 2008.

2. K. Ogata, Modern Control Engineering, Prentice-Hall, Inc., Upper Saddle River, New Jersey, 2002

3. D. Xue, Y.-Q. Chen, D.P. Atherton, Linear Feedback Control. Analysis and Design with MATLAB. SIAM, Society for Industrial and Applied Mathematics, Philadelphia 2007.

PROGRAM OPRACOWAŁ:

dr hab. inż. Wojciech Paszke

[email protected]

Page 107: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

107

PPP OOO DDD SSS TTT AAA WWW YYY EEE LLL EEE KKK TTT RRR OOO EEE NNN EEE RRR GGG EEE TTT YYY KKK III

Kod przedmiotu: 06.2 – WE – EEP – PEL

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Grzegorz Benysek

Prowadzący: dr hab. inż. Grzegorz Benysek

dr inż. Jacek Rusiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 III

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 III

egzamin

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z podstawowymi problemami elektroenergetyki.

C1U. Ukształtowanie podstawowych umiejętności w zakresie wyznaczania charakterystyk energetycznych.

C1K. Przygotowanie do permanentnego uczenia się i podnoszenia posiadanych kompetencji.

C2K. Wyrobienie umiejętności kreatywnego myślenia.

WYMAGANIA WSTĘPNE:

Fizyka techniczna, termodynamika i mechanika płynów.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Rola energii we współczesnej cywilizacji. Surowce energetyczne i nośniki energii. Charakterystyki energetyczne, energochłonność gospodarki, bilanse energetyczne. Wytwarzanie energii elektrycznej – podstawy. Zasady działania i rodzaje elektrowni parowych konwencjonalnych i wodnych. Elektrownie jądrowe. Skojarzone oraz skojarzone-rozproszone wytwarzanie energii. Niekonwencjonalne źródła energii elektrycznej i cieplnej. Energetyka wiatrowa i słoneczna. Wykorzystanie energii odpadowej. System elektroenergetyczny: scentralizowany i rozproszony. Budowa i rodzaje sieci elektroenergetycznych: sieci przesyłowe, sieci rozdzielcze i sieci dystrybucyjne. Sieci napowietrzne i kablowe. Metody bilansowania systemu elektroenergetycznego.

Page 108: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

108

Wpływ generacji rozproszonej na pracę systemu elektroenergetycznego. Układy sterowania rozpływem mocy. Układy połączeń, rozwiązania konstrukcyjne. Urządzenia rozdzielcze i pomiarowe: rodzaje, zasada działania, przeznaczenie.

Praca punktu gwiazdowego sieci elektroenergetycznej.

Laboratorium

Wprowadzenie do zagadnień związanych z elektroenergetyką. Pomiary wysokich napięć w sieciach przemiennych. Budowa i wyposażenie stacji energetycznych w stacjach WN i SN. Badanie skuteczności zerowania.

Badanie przekaźników prądowych i napięciowych.

Podsumowanie wiadomości z zakresu elektroenergetyki. Badania eksploatacyjne urządzeń uziemiających. Badania profilaktyczne transformatorów. Operacje łączeniowe w stacjach elektroenergetycznych. Podsumowanie wiadomości z zakresu elektroenergetyki.

METODY KSZTAŁCENIA:

Wykład: wykład konwersatoryjny, wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat wytwarzania, magazynowania, rozdziału i przesyłu energii oraz funkcjonowania scentralizowanego i rozproszonego systemu elektroenergetycznego

K1P_W13, K1P_W14, K1P_W20, K1P_K01, K1P_K04

Egzamin pisemny na koniec semestru W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat elementów i układów energetycznych, zna technologie energetyki konwencjonalnej i rozproszonej

K1P_W13, K1P_W20, K1P_U08, K1P_U20

Ocena za sprawozdania z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu z wagą 90%; ocena z aktywności na zajęciach z wagą 10%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 60% i laboratorium 40%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 15h 24h

Page 109: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

109

Przygotowanie się do zajęć 30h 30h

Sporządzenie sprawozdań 15h 30h

Czytanie literatury 30h 30h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. W. Mielczarski, Rynki energii elektrycznej - wybrane aspekty techniczne i ekonomiczne, ARE i EP-C, Warszawa, 2000

2. Polskie Sieci Elektroenergetyczne: Regulamin rynku bilansującego, Warszawa, 2001

LITERATURA UZUPEŁNIAJĄCA:

1. J. Arrillaga, N. Watson, Power System Harmonics, John Wiley & Sons, 2003

2. J. Machowski, et all, Power System Dynamics and Stability, John Wiley & Sons, 1997

PROGRAM OPRACOWAŁ:

dr hab. inż. Grzegorz Benysek

[email protected]

Page 110: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

110

PPP OOO DDD SSS TTT AAA WWW YYY EEE LLL EEE KKK TTT RRR OOO TTT EEE CCC HHH NNN III KKK III III EEE NNN EEE RRR GGG OOO EEE LLL EEE KKK TTT RRR OOO NNN III KKK III

Kod przedmiotu: 06.0 – WE – EEP – PEE

Typ przedmiotu: Obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Zbigniew Fedyczak, prof. UZ; dr hab. inż. Radosław Kłosiński

Prowadzący: pracownicy Instytutu Inżynierii Elektrycznej pracownicy Instytutu Metrologii Elektrycznej

Forma za jęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 III

Egzamin

Laborator ium 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 III

Egzamin

Laborator ium 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie podstawowej wiedzy z elektrotechniki w zakresie pojęć, metod opisu i właściwości pola elektrycznego i magnetycznego, elementów obwodu oraz podstawowych praw i metod analizy obwodów elektrycznych. C2W. Zapoznanie studentów z właściwościami zaciskowymi oraz parametrami granicznymi podstawowych łączników energoelektronicznych oraz topologiami i właściwościami podstawowych przekształtników energoelektronicznych typu AC/DC, DC/DC, AC/AC i DC/AC. C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie analizy obwodów elektrycznych prądu stałego, prądu sinusoidalnie zmiennego, prądów niesinusoidalnych, obwodów trójfazowych oraz pomiaru podstawowych wielkości i parametrów w tych obwodach. C2U. Ukształtowanie umiejętności w zakresie doboru rodzaju przekształtnika energoelektronicznego w obszarze elektroenergetyki. C1K. Uświadomienie potrzeby podnoszenia swoich kompetencji oraz współpracy w grupie w celu realizacji określonych zadań. C2K. Uświadomienie znaczenia sposobów i jakości przekształcania energii elektrycznej.

WYMAGANIA WSTĘPNE:

Analiza matematyczna, Algebra liniowa z geometrią analityczną, Fizyka techniczna.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Podstawowe wielkości opisujące zjawiska i właściwości pola elektromagnetycznego.

Pojęcia podstawowe: ładunek elektryczny, prąd, potencjał, napięcie, obwód elektryczny, rezystor, cewka

Page 111: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

111

indukcyjna, kondensator, źródła napięcia i prądu, źródła sterowane, połączenie szeregowe i równoległe, przekształcenie trójkąt-gwiazda.

Podstawowe prawa obwodów elektrycznych: prawo Ohma, prawa Kirchhoffa, twierdzenia Thevenina i Nortona, zasada superpozycji, zasada wzajemności.

Metody analizy obwodów: równania Kirchhoffa, metoda potencjałów węzłowych, metoda prądów oczkowych, metoda superpozycji, metoda dwójnika zastępczego.

Podstawowe zagadnienia dotyczące stanów nieustalonych w obwodach RL, RC i RLC.

Obwody prądu sinusoidalnie zmiennego. Metoda symboliczna, impedancja zespolona, wykresy wektorowe, moc czynna bierna i pozorna, rezonans, obwody sprzężone magnetycznie.

Podstawy teorii i metod analizy obwodów trójfazowych.

Kryteria i parametry do oceny jakości przekształcania energii elektrycznej.

Charakterystyka ogólna energoelektroniki i podstawowych typów przekształtników energoelektronicznych.

Właściwości zaciskowe i zdolność obciążeniowa podstawowych łączników energoelektronicznych.

Topologie, opis działania i podstawowe właściwości wybranego z jedno-, dwu-, trój-, sześcio-, i wielopulsowych przekształtników typu AC/DC niesterowanych.

Topologie, opis działania i podstawowe właściwości wybranego przekształtnika typu DC/DC.

Topologie, opis działania i podstawowe właściwości wybranego z jedno- i trójfazowych przekształtników DC/AC.

Topologie, opis działania i właściwości wybranego przekształtnika AC/AC.

Podsumowanie i trendy rozwojowe elektrotechniki i energoelektroniki w elektroenergetyce.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę z elektrotechniki w zakresie pojęć, metod opisu i właściwości pola elektrycznego i magnetycznego, elementów obwodu oraz podstawowych praw i metod analizy obwodów elektrycznych.

K1P_W07,

K1P_W15,

K1P_U05,

K1P_U07,

K1P_U10,

K1P_K01,

K1P_K03,

K1P_K04.

- kolokwia pisemne,

- sprawozdanie z zajęć laboratoryjnych,

- sprawdziany z przygotowania teoretycznego

- egzamin końcowy.

W

L

Potrafi stosować prawa i metody analizy obwodów elektrycznych w stanie ustalonym prądu stałego i sinusoidalnie zmiennego oraz odkształconego.

Student ma podstawową wiedzę o właściwościach zaciskowych i parametrach granicznych podstawowych łączników energoelektronicznych oraz topologiach i właściwościach przekształtników energoelektronicznych typu AC/DC, DC/DC, AC/AC i DC/AC.

Student potrafi dobrać rodzaj przekształtnika energoelektronicznego do zastosowań w obszarze elektroenergetyki oraz ma świadomość znaczenia sposobów i jakości przekształcania energii elektrycznej.

Page 112: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

112

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwiów z wagą 50%; ocena z odpowiedzi na egzaminie z wagą 50%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 80%, laboratorium 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25 h / 1ECTS) = 150 h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L ) 60 h 36 h

Konsultacje 15 h 18 h

Przygotowanie się do zajęć 45 h 66 h

Sporządzenie sprawozdań 30 h 30 h

Razem 150 h 150 h

LITERATURA PODSTAWOWA:

1. Cichowska Z., Pasko M., Zadania z elektrotechniki teoretycznej, Skrypt PŚ Gliwice 1994

2. Cichowska Z., Pasko M., Wykłady z elektrotechniki teoretycznej. Cz. I Działy podstawowe. Cz. II Prądy sinusoidalnie zmienne. Wydawnictwo Politechniki Śląskiej Gliwice 1998.

3. Mikołajuk K., Trzaska Z., Zbiór zadań z elektrotechniki teoretycznej. PWN Warszawa 1976.

4. 4Bolkowski S., Brociek W., Rawa H., Teoria obwodów elektrycznych – zadania, WNT Warszawa 2006.

5. Kłosiński R., Chełchowska L., Chojnacki D., Siwczyńska Z., Rożnowski E.: Instrukcje do ćwiczeń laboratoryjnych, materiały niepublikowane, Zielona Góra 1988 - 2014

6. Osiowski J., Szabatin J.: Podstawy teorii obwodów. Tom I i II, WNT Warszawa wydania od 1993 r.

7. Krakowski M.: Elektrotechnika teoretyczna, T I, Obwody liniowe i nieliniowe, PWN, Warszawa, 1983

8. Tunia H., Smirnow A., Nowak M., Barlik R.: Układy energoelektroniczne. WNT 1990.

9. Tunia H., Barlik R.: Teoria przekształtników. Wydawnictwa Politechniki Warszawskiej, Warszawa 1992.

10. Piróg S.: Energoelektronika. AGH, Uczelniane Wyd. Nauk.-Dydakt., Kraków 1998.

LITERATURA UZUPEŁNIAJĄCA:

1. Mikołajuk K.: Podstawy analizy obwodów energoelektronicznych. Warszawa, PWN 1998.

2. Mohan N.: Power Electronics: Converters, Applications, and Design. John Wiley & Sons, 1998.

3. Trzynadlowski A.: Introduction to modern power electronics. John Wiley & Sons, 1998.

PROGRAM OPRACOWALI:

dr hab. inż. Radosław Kłosiński

[email protected]

dr hab. inż. Zbigniew Fedyczak, prof. UZ

[email protected]

Page 113: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

113

PPP OOO DDD SSS TTT AAA WWW YYY EEE NNN EEE RRR GGG EEE TTT YYY KKK III CCC III EEE PPP LLL NNN EEE JJJ

Kod przedmiotu: 06.0 – WE – EEP – PEC

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Piotr Ziembicki

Prowadzący: dr inż. Piotr Ziembicki, dr inż. Jan Bernasiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

4

W ykład 30 2 III

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 III

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie systemów ciepłowniczych, produkcji i dystrybucji ciepła, a także eksploatacji oraz efektywności energetycznej takich rozwiązań.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru rozwiązań sieci ciepłowniczych, a także metod symulacyjnych w ciepłownictwie.

C1K. Uświadomienie roli nowoczesnych wysokoefektywnych rozwiązań technicznych w zakresie gospodarki cieplnej służących realizacji polityki energetycznej ukierunkowanej na gospodarkę niskoemisyjną.

WYMAGANIA WSTĘPNE:

Podstawy termodynamiki i mechaniki płynów, fizyka techniczna, podstawy energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Nośniki energii i zasoby energii pierwotnej. Rynek ciepła w Polsce.

Bilanse i analizy energetyczne procesów cieplnych.

Układy skojarzonego wytwarzania energii elektrycznej i cieplnej.

Elektrociepłownie z turbinami parowymi, gazowymi i gazowo-parowymi.

Lokalne źródła ciepła. Mini i mikrokogeneracja.

Wybrane elementy źródeł ciepła (kotły, pompy ciepła, armatura zabezpieczając i regulacyjna itd.)

Magazynowanie paliw i instalacje odprowadzania spalin.

Page 114: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

114

Odnawialne i hybrydowe źródła ciepła. Magazynowanie energii cieplnej.

Klasyfikacja i układy sieci ciepłowniczych.

Bilanse i wykresy rocznego zapotrzebowania na ciepło.

Podstawy hydrauliki i regulacji sieci ciepłowniczych. Zasady budowy i eksploatacji sieci.

Klasyfikacja i budowa węzłów cieplnych.

Urządzenia pomiarowe i automatyka regulacyjna węzłów.

Analizy i charakterystyki energetyczne ekonomiczne i ekologiczne systemów ciepłowniczych.

Wybrane aspekty prawne gospodarki cieplnej.

Laboratorium

Wprowadzenie do analizy symulacyjnej systemów ciepłowniczych.

Zapoznanie z oprogramowaniem komputerowym do symulacji.

Stworzenie modelu symulacyjnego zadanej sieci ciepłowniczej.

Symulacja sieci ciepłowniczej oraz analiza i interpretacja wyników.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne (komputery), praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat systemów ciepłowniczych, systemów produkcji i dystrybucji ciepła, podstawowych metod zmniejszania energochłonności takich układów przy zachowaniu wymagań normatywnych i eksploatacyjnych.

K1P_W14,K1P_W20

Kolokwium pisemne na koniec semestru

W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat podstawowych wytycznych dotyczących doboru rozwiązań produkcji i dystrybucji ciepła, a także wykorzystania metod symulacyjnych w tym zakresie.

K1P_U08, K1P_U20

Ocena za sprawozdania z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 4ECTS x (25h / 1ECTS) = 100h

Page 115: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

115

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 10h 18h

Przygotowanie się do zajęć 20h 28h

Sporządzenie sprawozdań 10h 18h

Razem 100h 100h

LITERATURA PODSTAWOWA:

1. J. Marecki, Podstawy przemian energetycznych, WNT 1995

2. J. Szargut, A Ziębik, Podstawy energetyki cieplnej, PWN 2000

3. A. Szkarowski, L. Łatowski, Ciepłownictwo, WNT, Warszawa 2013

LITERATURA UZUPEŁNIAJĄCA:

1. P. Sekret, Efekty środowiskowe systemów zaopatrzenia budynków w energię, Oficyna Wydawnicza Politechniki Częstochowskiej, 2012

2. K. Mizielińska, J. Olszak, Parowe źródła ciepła, WNT 2008

3. S. Gumuła, Energetyka cieplna. Obsługa i eksploatacja urządzeń instalacji i sieci, Wydawnictwo „EUROPEX”, 2003

PROGRAM OPRACOWAŁ:

dr inż. Piotr Ziembicki

Page 116: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

116

PPP OOO DDD SSS TTT AAA WWW YYY PPP RRR ZZZ EEE DDD SSS III ĘĘĘ BBB III OOO RRR CCC ZZZ OOO ŚŚŚ CCC III

Kod przedmiotu: 04.0 – WE – EEP – PP

Typ przedmiotu: Obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : prowadzący wykład pracownik Wydziału Ekonomii i Zarządzania

Prowadzący: pracownicy Wydziału Ekonomii i Zarządzania

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

2 W ykład 15 1 VII zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie zagadnień związanych z tworzeniem i prowadzeniem indywidualnej przedsiębiorczości.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie analizy wrażliwości i ryzyka.

C1K. Uświadomienie wagi pozatechnicznych aspektów działalności inżynierskiej.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy energetyki cieplnej, gospodarka energetyczna i rynek energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Pojęcie przedsiębiorcy i firmy. Formy organizacyjno – prawne prowadzenia działalności gospodarczej. Istota i zakres funkcjonowania przedsiębiorstwa. Potencjał przedsiębiorstwa. Organizacyjne i produkcyjne aspekty działalności przedsiębiorstwa.

Podstawy gospodarki finansowej przedsiębiorstwa.

Wybrane metody zarządzania przedsiębiorstwem. Metody oceny opłacalności rynkowej, inwestycyjnej i finansowej.

Auditing energetyczny. Analiza wrażliwości. Analiza ryzyka.

Spotkania z menadżerami odpowiedzialnymi za funkcjonowanie i zarządzanie firmą w sektorze energetycznym. Analiza specyfiki działania firmy. Dyskusja.

Page 117: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

117

METODY KSZTAŁCENIA:

Wykład: wykład konwersacyjny (multimedialny), wykład problemowy

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma teoretyczną i praktyczną wiedzę na temat zasad funkcjonowania przedsiębiorstwa oraz rozumie wagę pozatechnicznych aspektów działalności inżynierskiej.

K1P_W18, K1P_W21, K1P_W23, K1P_U11, K1P_U13, K1P_K02, K1P_K06

Kolokwium pisemne na koniec semestru

W

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 2ECTS x (25h / 1ECTS) = 50h

stacjonarne niestacjonarne

Godziny kontaktowe (W) 15h 9h

Konsultacje 20h 21h

Przygotowanie się do zajęć 10h 15h

Czytanie literatury 5h 5h

Razem 50h 50h

LITERATURA PODSTAWOWA:

1. M. Brzeziński, Wprowadzenie do nauki o przedsiębiorstwie, DIFIN, Warszawa 2007 2. J. Moczydłowska, I. Pacewicz, Przedsiębiorczość, Wydawnictwo Oświatowe, Rzeszów 2007 3. F. Bławat, Przedsiębiorca w teorii przedsiębiorczości i praktyce małych firm, Gdańskie

Towarzystwo Naukowe, Gdańsk 2003 4. P. Drucker, Innowacje i przedsiębiorczość, Polskie Wydawnictwo Ekonomiczne, Warszawa

1992

LITERATURA UZUPEŁNIAJĄCA:

1. M. Bernatek, R. Matla, Gospodarka energetyczna w przemyśle, Wydawnictwa Politechniki

Warszawskiej, Warszawa 1980 2. D. Laudyn, Rachunek kosztów w elektroenergetyce, Oficyna Wydawnicza Politechniki Warszawskiej.

Warszawa 1999 3. W. Ciechanowicz, S. Szczukowski, Transformacja cywilizacji z ery ognia do ekonomii wodoru i

metanolu szansą rozwoju Polski, Oficyna Wydawnicza WIT, Warszawa 2010 4. Wprowadzenie do zrównoważonej gospodarki energetycznej, Przewodnik, Sec Tools, 2008 5. Gospodarka paliwowo-energetyczna w latach 2011, 2012, Główny Urząd Statystyczny, Warszawa

2013

PROGRAM OPRACOWAŁ:

dr hab. inż. Grzegorz Benysek

[email protected]

Page 118: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

118

PPP OOO MMM III AAA RRR YYY EEE KKK SSS PPP LLL OOO AAA TTT AAA CCC YYY JJJ NNN EEE III OOO DDD BBB III OOO RRR CCC ZZZ EEE

Kod przedmiotu: 06.0 – WE – EEP – PEO

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Paweł Szcześniak

Prowadzący: dr inż. Paweł Szcześniak, dr inż. Jacek Kaniewski, dr inż. Jacek Rusiński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

3

W ykład 15 1 VII

Zaliczenie na ocenę

Laborator ium 15 1 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII

Zaliczenie na ocenę

Laborator ium 9 1 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z wymaganiami technicznymi oraz metodami pomiarów eksploatacyjnych i odbiorczych w urządzeniach i sieciach energetycznych.

C1U. Wyrobienie umiejętności dokonywania pomiarów eksploatacyjnych i odbiorczych w urządzeniach i sieciach energetycznych.

C1K. Uświadomienie wpływu pracy inżynierskiej na bezpieczeństwo funkcjonowania instalacji energetycznych oraz bezpieczeństwo ludzi i innych istot żywych.

WYMAGANIA WSTĘPNE:

Podstawy elektrotechniki i energoelektroniki, Podstawy elektroenergetyki, Techniki pomiarowe w energetyce.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wymagania dotyczące sprawdzań w instalacjach elektrycznych niskiego napięcia. Dokładność wykonywania pomiarów.

Zakres wykonywania okresowych sprawdzań instalacji. Częstość wykonywania pomiarów i badań okresowych.

Dokumentowanie wykonywanych prac kontrolno pomiarowych.

Pomiar rezystancji izolacji. Pomiar rezystancji i impedancji pętli zwarciowej.

Wykonywanie pomiarów w instalacjach z wyłącznikami różnicowoprądowymi.

Page 119: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

119

Pomiar rezystancji uziomu.

Pomiary jakości dostarczania energii elektrycznej.

Pomiary natężenia oświetlenia.

Laboratorium

Pomiar rezystancji i impedancji pętli zwarciowej.

Pomiar rezystancji izolacji.

Pomiary w instalacjach z wyłącznikami różnico prądowymi.

Pomiary jakości dostaw energii elektrycznej.

Pomiary bezpieczeństwa urządzeń elektrycznych.

Pomiar rezystancji uziomu.

Pomiary natężenia oświetlenia.

Pomiary natężenia pól elektromagnetycznych.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna wymagania prawne, metody i techniki pomiarów eksploatacyjnych oraz odbiorczych dokonywanych w instalacjach i urządzeniach elektrycznych.

K1P_W16, K1P_W22

Kolokwium pisemne na koniec semestru

W

Student potrafi przeprowadzić pomiary podstawowych parametrów elektrycznych i mechanicznych w systemach i urządzeniach elektrycznych.

K1P_U18, K1P_U19, K1P_K01, K1P_K05

Ocena za sprawozdania z zajęć laboratoryjnych oraz bieżąca kontrola

na zajęciach L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych oraz ocen z przygotowania do zajęć na podstawie bieżącej kontroli na zajęciach.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 30h 18h

Konsultacje 12h

Page 120: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

120

Przygotowanie się do zajęć 25h 25h

Sporządzenie sprawozdań 20h 20h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Orlik W., Badanie i pomiary elektroenergetyczne dla praktyków, Wydawnictwo „KaBe”, Krosno 2011.

2. Orlik W., Egzamin kwalifikacyjny elektryka w pytaniach i odpowiedziach, Wydawnictwo „KaBe”, Krosno 2009.

3. Strzyżewski J., Wojnarski J., Przepisy i normy elektryczne Kontrola instalacji elektrycznych i czasookresy sprawdzeń, Wydawnictwo Wiedza i Praktyka, Warszawa 2014.

4. Strzałka J., Instalacje elektryczne i teletechniczne. Poradnik montera i inżyniera elektryka, Wydawnictwo Verlag Dashofer, Warszawa 2011.

5. Łasak Ł., Wykonywanie odbiorczych i okresowych sprawdzań instalacji niskiego napięcia oraz wykonywanie innych pomiarów Zeszyty dla elektryków - nr 7 wydanie II poprawione, Wydawca: Grupa Medium, 2014.

LITERATURA UZUPEŁNIAJĄCA:

1. Laskowski J., Nowy poradnik elektroenergetyka przemysłowego, - Wyd. popr. i rozsz. - COSIW - Centralny Ośrodek Szkolenia i Wydawnictw SEP, Warszawa 2005.

2. Marzec S., Ślirz W., Kruczek P., Badanie oświetlenia elektrycznego we wnętrzach, Wydawnictwo DASL Systems 2011.

3. Danielski L., Osiński S., Budowa, Stosowanie i badania wyłączników różnicoprądowych, COSIW - Centralny Ośrodek Szkolenia i Wydawnictw SEP, Warszawa 2008.

PROGRAM OPRACOWAŁ:

dr inż. Paweł Szcześniak

[email protected]

Page 121: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

121

PPP RRR OOO JJJ EEE KKK TTT WWW DDD RRR OOO ŻŻŻ EEE NNN III OOO WWW YYY

Kod przedmiotu: 06.0 – WE – EEP – PW

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Grzegorz Benysek

Prowadzący: Pracownicy Instytutu Inżynierii Elektrycznej

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

5 Pro jekt 30 2 VII zaliczenie na ocenę

Studia niestacjonarne

Projekt 18 2 VII zaliczenie na ocenę

CEL PRZEDMIOTU:

C1U. Ukształtowanie umiejętności w zakresie implementacji poznanej wiedzy i narzędzi do symulacji, projektowania i weryfikacji praktycznej zintegrowanych systemów energetycznych.

C1K. Student potrafi pracować w grupie określając priorytety służące realizacji określonego zadania.

C2K. Student rozumie potrzebę uczenia przez całe życie.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy energetyki cieplnej, podstawy elektrotechniki i energoelektroniki, efektywne systemy oświetleniowe, energooszczędne napędy elektryczne, generacja rozproszona z OZE

ZAKRES TEMATYCZNY PRZEDMIOTU:

Projekt

Zintegrowane projekty w zakresie napędów energooszczędnych. Zintegrowane projekty w zakresie efektywnych systemów oświetleniowych. Zintegrowane projekty w zakresie systemów HVAC. Zintegrowane projekty w zakresie systemów monitoringu i zarządzania energią. Zintegrowane projekty w zakresie systemów prosumenckich. Zintegrowane projekty w zakresie systemów z OZE.

METODY KSZTAŁCENIA:

Projekt: metoda projektu, praca z dokumentem

Page 122: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

122

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student potrafi zaimplementować poznaną wiedzę i narzędzia w celu symulacji, projektowania i weryfikacji praktycznej zintegrowanych systemów energetycznych, rozumiejąc specyfikę pracy w grupie i priorytety służące realizacji określonego zadania

K1P_U03,

K1P_U07,

K1P_U09,

K1P_U17,

K1P_U21,

K1P_U23,

K1P_U25,

K1P_K01,

K1P_U03,

K1P_U04

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: projekt 100%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (P) 30h 18h

Konsultacje 35h 27h

Przygotowanie się do zajęć 10h 15h

Sporządzenie projektów 40h 55h

Czytanie literatury 10h 10h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. M. Bernatek, R. Matla, Gospodarka energetyczna w przemyśle, Wydawnictwa Politechniki

Warszawskiej, Warszawa 1980 2. J. Kulczycki, Optymalizacja struktur sieci elektroenergetycznych, Wydawnictwa Naukowo-Techniczne.

Warszawa 1990 3. D. Laudyn, Rachunek kosztów w elektroenergetyce, Oficyna Wydawnicza Politechniki Warszawskiej.

Warszawa 1999 4. J. Popczyk, Energetyka rozproszona. Od dominacji energetyki w gospodarce do

zrównoważonego rozwoju. Od paliw kopalnych do energii odnawialnej i efektywności energetycznej, Polski Klub Ekologiczny Okręg Mazowiecki, Warszawa, 2011

(http://www.cire.pl/pliki/2/e_rozpr_popczyk.pdf)

5. Prezes URE, Polska polityka energetyczna – wczoraj, dziś, jutro, Biblioteka Regulatora, Warszawa, 2010

6. W. Mielczarski, Rynki energii elektrycznej - wybrane aspekty techniczne i ekonomiczne, ARE i EP-C, Warszawa, 2000

Page 123: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

123

7. Polskie Sieci Elektroenergetyczne: Regulamin rynku bilansującego, Warszawa, 2001

8. Y. Song, A. Johns, Flexible AC transmission systems (FACTS), IEE Power and Energy Series 30, TJ International Ltd, Padstow, Cornwall, 1999

9. G. Benysek, Improvement in the quality of delivery of electrical energy using power electronics systems, Springer-Verlag Ltd, Londyn, 2007

10. W. Lewandowski, Proekologiczne źródła energii odnawialnej, WNT, Warszawa, 2001

11. A. Luque, Handbook of photovoltaic science and engineering, John Wiley & Sons, 2003

12. R. O'Hayre, Fuel Cell fundamentals, John Wiley & Sons, 2006

LITERATURA UZUPEŁNIAJĄCA:

1. J. Kulczycki (red.), Ograniczanie strat energii elektrycznej w elektroenergetycznych sieciach rozdzielczych, Wyd. Polskie Towarzystwo Przesyłu i Rozdziału Energii Elektrycznej Poznań, 2002

2. Sz. Kujszczyk (red.), Elektroenergetyczne sieci rozdzielcze, Oficyna Politechniki Warszawskiej, 2004 3. J. Machowski, Regulacja i stabilność systemu elektroenergetycznego, Oficyna Wyd. Politech.

Warszawskiej, Warszawa 2007 4. J. Mikielewicz, J.T. Cieśliński, Niekonwencjonalne urządzenia i systemy konwersji energii, Ossolineum,

Wrocław 1999 5. W.M., Lewandowski, Proekologiczne odnawialne źródła energii, WNT, Warszawa 2006 6. W. Ciechanowicz, S. Szczukowski, Transformacja cywilizacji z ery ognia do ekonomii wodoru i

metanolu szansą rozwoju Polski, Oficyna Wydawnicza WIT, Warszawa 2010 7. Wprowadzenie do zrównoważonej gospodarki energetycznej, Przewodnik, Sec Tools, 2008 8. Gospodarka paliwowo-energetyczna w latach 2011, 2012, Główny Urząd Statystyczny, Warszawa

2013 9. J. Marecki, Podstawy przemian energii, WNT, Warszawa, 1995 10. J. Arrillaga, N. Watson, Power System Harmonics, John Wiley & Sons, 2003

11. J. Machowski, et all, Power System Dynamics and Stability, John Wiley & Sons, 1997

PROGRAM OPRACOWAŁ:

dr hab. inż. Grzegorz Benysek

[email protected]

Page 124: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

124

PPP RRR OOO JJJ EEE KKK TTT OOO WWW AAA NNN III EEE III WWW YYY KKK OOO NNN AAA WWW SSS TTT WWW OOO SSS YYY SSS TTT EEE MMM ÓÓÓ WWW ZZZ OOO ZZZ EEE

Kod przedmiotu: 06.0 – WE – EEP – PWS

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Paweł Szcześniak

Prowadzący: dr inż. Paweł Szcześniak, dr inż. Marcin Jarnut, dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tac jonarne

4

W ykład 15 1 VI

Zaliczenie na ocenę

Ćwiczenia 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VI

Zaliczenie na ocenę

Ćwiczenia 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z podstawową wiedzą w zakresie technologii i typów systemów solarnych, elektrowni wodnych i wiatrowych, systemów geotermalnych, systemów zasilanych biomasą.

C2W. Ugruntowanie podstawowej wiedzy z zakresu pracy i eksploatacji mikro instalacji OZE.

C1U. Ukształtowanie umiejętności oceny miejscowego potencjału energetycznego oraz doboru podstawowych elementów systemów energetycznych z OZE.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy elektrotechniki i energoelektroniki, Aparaty i urządzenia elektryczne.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Systematyka odnawialnych źródeł energii (OZE). Znaczenie OZE w bilansie energetycznym Polski, UE i Świata. Podstawowe unormowania prawne w procesie projektowania i wykonawstwa systemów OZE.

Konwencjonalne układy sprzęgania odnawialnych źródeł energii z instalacjami elektrycznymi. Układy typu Off Grid, Grid Tied oraz hybrydowe.

Magazyny energii elektrycznej.

Siłownie wiatrowe. Ocena potencjału energetycznego wiatru.

Siłownie fotowoltaiczne. Obliczanie potencjału energetycznego słońca.

Małe elektrownie wodne. Ocena potencjału energetycznego przepływu wody.

Page 125: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

125

Instalacje wykorzystujące biogaz i biomasę.

Instalacje z kolektorami słonecznymi.

Ćwiczenia

Systemy komputerowego wspomagania projektowania systemów OZE

Dobór magazynów energii elektrycznej do instalacji OZE

Ocena potencjału energetycznego wiatru.

Dobór elementów i konfiguracja układu elektrycznego siłowni wiatrowych.

Dobór układów sterowania, pomiarowego, rozliczania i magazynowania energii w systemach wiatrowych.

Ocena potencjału energetycznego słońca.

Dobór elementów i konfiguracja układu elektrycznego siłowni fotowoltaicznych.

Dobór układów sterowania, pomiarowego, rozliczania i magazynowania energii w systemach fotowoltaicznych.

Dobór elementów i konfiguracja układów solarnych z kolektorami słonecznymi.

Ocena potencjału energetycznego przepływu wody.

Dobór elementów i konfiguracja układu elektrycznego małych elektrowni wodnych.

Dobór elementów i konfiguracja instalacji z pompami ciepła.

Dobór elementów i konfiguracja instalacji kogeneracyjnych.

Dobór elementów i konfiguracja instalacji z kotłami gazowymi.

Mikroinstalacje z Silnikami Stirlinga.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Ćwiczenia: ćwiczenia obliczeniowe, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna technologie pozyskiwania energii z OZE, ma wiedzę z zakresu przyłączania do sieci elektroenergetycznej i przesyłu energii elektrycznej z OZE oraz umie zdefiniować poprawne warunki eksploatacji i doboru elementów OZE.

K1P_W19, K1P_W22,

K1P_K01, K1P_K04

Kolokwium pisemne na koniec semestru

W

Student potrafi zorganizować i przeprowadzić projekt instalacji OZE, opracować dokumentacje techniczną z projektowanego zadania, porównać technologię i oszacować kosztorys realizowanego zadania oraz korzystać z norm, standardów i dokumentów prawnych.

K1P_U03, K1P_U16, K1P_U17, K1P_U21, K1P_U22, K1P_U23, K1P_K01, K1P_K04

Ocena za sprawozdania z zajęć ćwiczeniowych oraz bieżąca kontrola

na zajęciach C

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Ćwiczenia

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane zajęć ćwiczeniowych oraz ocen z przygotowania do zajęć na podstawie bieżącej kontroli na zajęciach.

Page 126: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

126

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, ćwiczenia 60%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 4ECTS x (25h / 1ECTS) = 100h

stacjonarne niestacjonarne

Godziny kontaktowe (W + C) 45h 27h

Konsultacje 13h

Przygotowanie się do zajęć 35h 40h

Sporządzenie sprawozdań 20h 20h

Razem 100h 100h

LITERATURA PODSTAWOWA:

1. Benysek G., Jarnut M., Energooszczędne i aktywne systemy budynkowe. Techniczne i eksploatacyjne aspekty implementacji miejscowych źródeł energii elektrycznej, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra 2013.

2. Klugmann-Radziemska E., Odnawialne źródła energii. Przykłady obliczeniowe, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2011.

3. Łotocki H., ABC systemów fotowoltaicznych sprzężonych z siecią energetyczną. Poradnik dla instalatorów, Wydawnictwo KaBe, Krosno 2011.

4. Keyhani A., Marwali M. N., Dai M., (2010): Integration of Green and Renewable Energy in Electric Power Systems, John Wiley and Sons, Inc., Publication.

LITERATURA UZUPEŁNIAJĄCA:

1. Lubośny Z., Farmy wiatrowe w systemie elektroenergetycznym, Wydawnictwa Naukowo-Techniczne, Warszawa 2009.

2. Lewandowski W.M., Proekologiczne odnawialne źródła energii, Wydawnictwa Naukowo-Techniczne, Warszawa 2007.

3. Tytko R., Odnawialne źródła energii: wybrane zagadnienia, Wydawnictwo OWG, Warszawa 2009.

4. Jastrzębska G.: Odnawialne źródła energii i pojazdy elektryczne, Wydawnictwa Naukowo-Techniczne, Warszawa 2009.

PROGRAM OPRACOWAŁ:

dr inż. Paweł Szcześniak

[email protected]

Page 127: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

127

PPP RRR ZZZ EEE DDD SSS III ĘĘĘ BBB III OOO RRR SSS TTT WWW OOO EEE NNN EEE RRR GGG EEE TTT YYY CCC ZZZ NNN EEE NNN AAA RRR YYY NNN KKK UUU

Kod przedmiotu: 04.0 – WE – EEP – PE

Typ przedmiotu: obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : prowadzący wykład pracownik Wydziału Ekonomii i Zarządzania

Prowadzący: pracownicy Wydziału Ekonomii i Zarządzania

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

2 W ykład 15 1 VII zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie zagadnień związanych z tworzeniem i prowadzeniem przedsiębiorstwa energetycznego.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie analizy wrażliwości i ryzyka.

C1K. Uświadomienie wagi pozatechnicznych aspektów działania inżyniera energetyka.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy energetyki cieplnej, gospodarka energetyczna i rynek energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Pojęcie przedsiębiorstwa. Organizacyjno – prawne formy prowadzenia działalności gospodarczej. Organizacyjne i produkcyjne aspekty działalności przedsiębiorstwa.

Podstawy gospodarki finansowej przedsiębiorstwa energetycznego.

Specyfika sektora energetycznego a zarządzanie przedsiębiorstwem. Metody oceny opłacalności rynkowej, inwestycyjnej i finansowej.

Auditing energetyczny. Analiza wrażliwości. Analiza ryzyka.

Spotkania z menadżerami odpowiedzialnymi za funkcjonowanie i zarządzanie firmą w sektorze energetycznym. Analiza specyfiki działania firmy. Dyskusja.

Page 128: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

128

METODY KSZTAŁCENIA:

Wykład: wykład konwersacyjny (multimedialny), wykład problemowy

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma teoretyczną i praktyczną wiedzę na temat zasad funkcjonowania przedsiębiorstwa energetycznego na rynku oraz rozumie wagę pozatechnicznych aspektów działania inżyniera energetyka.

K1P_W18, K1P_W21, K1P_W23, K1P_U11, K1P_U13, K1P_K02, K1P_K06

Kolokwium pisemne na koniec semestru

W

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 2ECTS x (25h / 1ECTS) = 50h

stacjonarne niestacjonarne

Godziny kontaktowe (W) 15h 9h

Konsultacje 10h 11h

Przygotowanie się do zajęć 10h 15h

Czytanie literatury 15h 15h

Razem 50h 50h

LITERATURA PODSTAWOWA:

1. M. Brzeziński, Wprowadzenie do nauki o przedsiębiorstwie, DIFIN, Warszawa 2007 2. J. Moczydłowska, I. Pacewicz, Przedsiębiorczość, Wydawnictwo Oświatowe, Rzeszów 2007 3. F. Bławat, Przedsiębiorca w teorii przedsiębiorczości i praktyce małych firm, Gdańskie

Towarzystwo Naukowe, Gdańsk 2003 4. P. Drucker, Innowacje i przedsiębiorczość, Polskie Wydawnictwo Ekonomiczne, Warszawa

1992 5. R. Griffin, Podstawy zarządzania organizacjami, PWN, Warszawa 2004 6. M. Bernatek, R. Matla, Gospodarka energetyczna w przemyśle, Wydawnictwa Politechniki

Warszawskiej, Warszawa 1980

LITERATURA UZUPEŁNIAJĄCA:

1. D. Laudyn, Rachunek kosztów w elektroenergetyce, Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa 1999

2. W. Ciechanowicz, S. Szczukowski, Transformacja cywilizacji z ery ognia do ekonomii wodoru i metanolu szansą rozwoju Polski, Oficyna Wydawnicza WIT, Warszawa 2010

3. Wprowadzenie do zrównoważonej gospodarki energetycznej, Przewodnik, Sec Tools, 2008 4. Gospodarka paliwowo-energetyczna w latach 2011, 2012, Główny Urząd Statystyczny, Warszawa

2013

PROGRAM OPRACOWAŁ:

dr hab. inż. Grzegorz Benysek

[email protected]

Page 129: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

129

SSS EEE MMM III NNN AAA RRR III UUU MMM DDD YYY PPP LLL OOO MMM OOO WWW EEE

Kod przedmiotu: 06.0 – WE – EEP – SD

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Grzegorz Benysek

Prowadzący: Pracownicy samodzielni WEIT

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

10 Pro jekt 30 2 VII zaliczenie na ocenę

Studia niestacjonarne

Projekt 18 2 VII zaliczenie na ocenę

CEL PRZEDMIOTU:

C1U. Ukształtowanie umiejętności prezentowania i dyskutowania wyników pracy dyplomowej.

C2K. Uzmysłowienie roli właściwej prezentacji wyników pracy w rozwoju zawodowym.

WYMAGANIA WSTĘPNE:

Techniki informacyjne, treści związane z przygotowaniem zawodowym zawarte w programach przedmiotów kierunkowych i specjalnościowych

ZAKRES TEMATYCZNY PRZEDMIOTU:

Projekt

Przedstawienie wymagań formalnych obowiązujących na WEIT, dotyczących realizacji pracy dyplomowej

Przedstawienie wytycznych dotyczących określania zakresu oraz formułowania planu pracy dyplomowej

Przedstawienie wytycznych do poprawnej prezentacji wyników pracy dyplomowej

Bieżąca kontrola postępów w realizacji pracy dyplomowej

Dyskusja na temat zawartości merytorycznej oraz układu pracy

Ocena stopnia wykonania założeń pracy

METODY KSZTAŁCENIA:

Projekt: dyskusja

Page 130: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

130

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student potrafi odpowiednio zaprezentować wyniki swojej pracy z wykorzystaniem technik multimedialnych, potrafi przestawić tezy pracy oraz przeprowadzić dyskusję w kierunku ich interpretacji.

K1P_U01, K1P_U02, K1P_U04, K1P_K01, K1P_K04

Ocena za prezentację multimedialną wyników pracy oraz dyskusję na jej

temat P

WARUNKI ZALICZENIA:

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów prezentacji multimedialnych oraz dyskusji przedstawiających postępy w pracy dyplomowej.

Ocena końcowa

Ocena końcowa przedmiotu jest oceną końcową z projektu.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 10ECTS x (25h / 1ECTS) = 250h

stacjonarne niestacjonarne

Godziny kontaktowe (P) 30h 18h

Konsultacje 50h 52h

Przygotowanie się do zajęć 120h 130h

Sporządzenie projektów 40h 40h

Czytanie literatury 10h 10h

Razem 250h 250h

LITERATURA PODSTAWOWA:

Materiały wydziałowe, weit.uz.zgora.pl

PROGRAM OPRACOWAŁ:

dr hab. inż. Grzegorz Benysek

[email protected]

Page 131: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

131

SSS III EEE CCC III III SSS TTT AAA CCC JJJ EEE EEE LLL EEE KKK TTT RRR OOO EEE NNN EEE RRR GGG EEE TTT YYY CCC ZZZ NNN EEE

Kod przedmiotu: 06.0 – WE – EEP – OK

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Adam Kempski, dr inż. Jacek Rusiński

Prowadzący: dr hab. inż. Adam Kempski, dr inż. Jacek Rusiński,

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2

V

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy dotyczącej zjawisk zachodzących w sieciach i stacjach elektroenergetycznych.

C1U. Zrozumienie specyfiki pracy stacji elektroenergetycznych oraz sieci przesyłowych i rozdzielczych.

C1K. Uświadomienie roli ciągłego rozwoju technologii przesyłu energii elektrycznej w celu dostosowania sieci do potrzeb rynku i zwiększania niezawodności zasilania.

WYMAGANIA WSTĘPNE:

Wiedza ogólna z zakresu elektrotechniki oraz podstaw elektroenergetyki

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Struktura sieci elektroenergetycznej. Wiadomości wstępne.

Budowa podstawowych elementów sieci elektroenergetycznych i ich schematy zastępcze.

Linie napowietrzne.

Linie kablowe.

Rozpływy prądów, spadki napięć, straty mocy i energii.

Regulacja częstotliwości i napięcia w sieciach elektroenergetycznych.

Page 132: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

132

Kompensacja mocy biernej.

Zakłócenia i zwarcia w sieciach elektroenergetycznych.

Podział i funkcje aparatów elektrycznych, rozdzielnic i rozdzielni.

Stacje elektroenergetyczne.

Podział łączników elektroenergetycznych, ich parametry, konstrukcja i kryteria doboru.

Przekładniki prądowe i napięciowe.

Układy przesyłowe prądu stałego.

Układy FACTS

Podsumowanie wiadomości z zakresu sieci i stacji elektroenergetycznych.

Laboratorium

Wprowadzenie do sieci elektroenergetycznych.

Badanie stanu izolacji kabli energetycznych.

Badanie układów różnicowoprądowych.

Badanie układu kompensacji mocy biernej.

Badanie przekładnika prądowego nn.

Badanie transformatora trójfazowego.

Badanie strat energii w przewodach elektroenergetycznych.

Podsumowanie wiadomości z zakresu sieci elektroenergetycznych.

Badanie wpływu odbiorników nieliniowych na napięcie w sieciach rozdzielczych.

Badanie wpływu odbiorników udarowych na napięcie w sieciach rozdzielczych.

Badanie wpływu zwarć na pracę sieci elektroenergetycznych.

Badanie rozpływu mocy w sieciach elektroenergetycznych.

Badanie układu automatyki SPZ.

Badanie układu automatyki SZR.

Podsumowanie wiadomości z zakresu sieci i stacji elektroenergetycznych.

Projekt

Projekt modernizacji fragmentu sieci elektroenergetycznej - oszacowanie kosztów i zysków.

Dobór urządzeń i elementów fragmentu sieci elektroenergetycznej.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat podstaw przesyłu i rozdziału energii elektrycznej, jak również sposobów regulacji podstawowych jej parametrów w systemie elektroenergetycznym.

K1P_W19 K1P_U22 K1P_K01

Kolokwium pisemne W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat parametrów podstawowych elementów sieci i stacji elektroenergetycznych, zna wpływ zakłóceń na pracę sieci elektroenergetycznej.

K1P_U16, K1P_U17, K1P_K04

Ocena za sprawozdania z zajęć laboratoryjnych

L

Student potrafi zaprojektować prostą sieć elektroenergetyczną, dobrać jej

K1P_U08, K1P_U16,

Ocena za wykonane zadania projektowe

P

Page 133: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

133

podstawowe elementy wg podanych kryteriów, ma świadomość konieczności ciągłego samokształcenia się w związku z postępem technologicznym w zakresie przesyłu energii elektrycznej oraz wzrostem wymagań formalnych i normatywnych w tym zakresie

K1P_U17, K1P_K01, K1P_K04

WARUNKI ZALICZENIA:

Wykład

Warunkiem zaliczenia jest uzyskanie pozytywnych ocen z kolokwiów pisemnych lub ustnych przeprowadzonych co najmniej raz w semestrze.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 33,3%, laboratorium 33,3% i projekt 33,3%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 36h

Przygotowanie się do zajęć 25h 25h

Sporządzenie sprawozdań 15h 15h

Sporządzenie projektów 20h 20h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. Kahl T.: Sieci elektroenergetyczne, WNT, Warszawa, 1981.

2. Popczyk J., Żmuda K.: Sieci elektroenergetyczne, Politechnika Śląska, Gliwice, 1991.

3. Kujszczyk S.: Elektroenergetyczne sieci rozdzielcze. PWN, Warszawa, 2004

LITERATURA UZUPEŁNIAJĄCA:

1. Arrillaga J., Watson N.: Power System Harmonics, John Wiley & Sons, 2003.

2. Machowski J., et all: Power System Dynamics and Stability, John Wiley & Sons, 1997

PROGRAM OPRACOWAŁ:

dr inż. Jacek Rusiński

[email protected]

Page 134: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

134

SSS III EEE CCC III KKK OOO MMM PPP UUU TTT EEE RRR OOO WWW EEE III SSS III EEE CCC III PPP RRR ZZZ EEE MMM YYY SSS ŁŁŁ OOO WWW EEE

Kod przedmiotu: 06.5 – WE – EEP – SKP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : Emil Michta

Prowadzący: Pracownicy IME

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 III

Egzamin

Laborator ium 30 2 Zaliczenie

Studia niestacjonarne

W ykład 18 2 III

Egzamin

Laborator ium 18 2 Zaliczenie

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z podstawami technicznymi sieci komputerowych i przemysłowych, ich technologiami i funkcjonowaniem oraz przykładowymi obszarami zastosowań.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie podstaw projektowania, budowy i zarządzania sieci komputerowych i przemysłowych. .

C1K. Uświadomienie roli sieci komputerowych i przemysłowych w podnoszeniu efektywności energetycznej.

WYMAGANIA WSTĘPNE:

Podstawy informatyki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do sieci komputerowych: Klasyfikacja sieci komputerowych. Elementy sprzętowe i programowe hostów sieciowych. Model komunikacyjny OSI. Model odniesienia TCP/IP. Warstwa fizyczna. Elektronika i sygnały, nośniki, połączenia, topologie fizyczne, urządzenia sieciowe warstwy fizycznej. Warstwa łączenia danych. Koncepcje, technologie, topologie logiczne, segmentowanie sieci LAN. Urządzenia sieciowe warstwy łączenia danych. Standardy sieci LAN. Fast Ethernet, Gigabit Ethernet i 10 Gigabit Ethernet. Sieci bezprzewodowe IEEE 802.11x. Sieci wirtualne VLAN

Warstwa sieciowa. Routowanie i adresowanie, urządzenia warstwy sieciowej. Podstawy zarządzanie adresami IP. Warstwa transportowa. Funkcje i protokoły transportowe TCP, UDP.

Warstwa sesji, prezentacji i aplikacji: funkcje i protokoły. Podstawy projektowania sieci LAN: Zasady projektowania i dokumentowania sieci LAN. Okablowanie strukturalne. Wybór MDF i IDF. Zasady zasilania

Page 135: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

135

sieci komputerowych.

Podstawy techniczne Internetu. Internet, Intranet i Extranet. Podstawy sieci WAN: Technologie sieci WAN. Urządzenia sieci WAN. Protokół PPP. Dostęp do sieci Internet. Technologie łączy dostępowych.

Adresowanie w Internecie. Schemat adresowania i hierarchia adresów. IPv4. IPv6. Bezpieczeństwo sieci. Polityka bezpieczeństwa. Zapory sieciowe. Wirtualne sieci prywatne. Podstawowe aplikacje internetowe. Trendy w technologiach sieciowych i sposobach wykorzystania Internetu. Podstawy sieci przemysłowych. Ewolucja sieci przemysłowych. Architektury sieciowych systemów pomiarowo - sterujących. Standardy warstwy fizycznej sieci przemysłowych.

Protokoły komunikacyjne sieci przemysłowych. Charakterystyka wybranych, standardowych protokołów komunikacyjnych: Modbus, PROFIBUS.

Protokoły komunikacyjne sieci przemysłowych CAN. LonWorks i KNX.

Ethernet przemysłowy. Integracja, konfigurowanie i zarządzanie systemami pomiarowo – sterującymi.

Technologie internetowe w systemach pomiarowo - sterujących. Dedykowane serwery WWW. Przykładowe rozwiązania dedykowanych serwerów WWW. Internet rzeczy (IoT). Bezprzewodowe systemy pomiarowo – sterujące. Protokoły komunikacyjne bezprzewodowych systemów pomiarowo - sterujących. Standardy komunika-cyjne IEEE 802.15.x. Bezprzewodowe sieci czujników.

Podstawy projektowania i analiza efektywności komunikacyjnej i parametrów czasowych systemu pomiarowo – sterującego. Kryteria wyboru protokołu komunikacyjnego. Przykłady systemów pomiarowo – sterujących o rozproszonej inteligencji.

Wybrane obszary zastosowań sieci przemysłowych np.: automatyka mieszkań i budynków, smart metering, smart city. Podsumowanie wiadomości z zakresu sieci przemysłowych.

Laboratorium

Wprowadzenie do sieci komputerowych. Urządzenia sieciowe i hosty.

Budowa prostej sieci komputerowej i jej uruchomienie.

Podstawy konfigurowania routerów.

Zarządzanie adresami IP.

Budowa sieci bezprzewodowej. Konfigurowanie punktu dostępowego.

Integracja sieci komputerowych przewodowej i bezprzewodowej.

Wprowadzenie do sieci przemysłowych. Standardy warstwy fizycznej.

Sieci przemysłowe w standardzie Modbus.

Sieci przemysłowe w standardzie Profibus.

Sieci przemysłowe w standardzie CAN.

Sieci przemysłowe w standardzie LonWorks.

Ethernet przemysłowy.

Podsumowanie wiadomości z zakresu sieci komputerowych i sieci przemysłowych.

METODY KSZTAŁCENIA:

Wykład - wykład konwencjonalny z wykorzystaniem wideoprojektora.

Laboratorium - zajęcia praktyczne w laboratorium sieci komputerowych i sieci przemysłowych.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Ma elementarną wiedzę w zakresie podstaw technicznych sieci komputerowych i sieci przemysłowych

K1P_W04 Egzamin pisemny W

Zna i rozumie podstawy metodyki konfigurowania urządzeń sieci komputerowych i przemysłowych

K1P_W04 Egzamin pisemny W

Potrafi zaprojektować, zbudować i skonfigurować prostą sieć komputerową i przemysłową

K1P_U01

K1P_U09

K1P_U22

Sprawdzian praktyczny L

Page 136: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

136

Ma świadomość roli sieci komputerowych i przemysłowych w podnoszeniu efektywności energetycznej

K1P_K01 Egzamin pisemny W

WARUNKI ZALICZENIA:

Wykład - egzamin w formie pisemnej i/lub ustnej, realizowany na koniec semestru.

Laboratorium – ocena końcowa stanowi sumę ważoną ocen uzyskanych za realizację

poszczególnych ćwiczeń laboratoryjnych.

Ocena końcowa = 50 % oceny zaliczenia z formy zajęć wykład + 50 % oceny zaliczenia z formy

zajęć laboratorium.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 18h

Przygotowanie się do zajęć 30h 33h

Zapoznanie się ze wskazaną literaturą 30h 33h

Przygotowanie się do egzaminu 30h 30h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. Comer D.E.: Sieci komputerowe i intersieci. Helion, Gliwice, 2012.

2. Graziani R., Vachon B.: Akademia sieci Cisco. CCNA Exploration. Sieci WAN – zasady dostępu. PWN, Warszawa, 2013

3. Kowalik R., Pawlicki C.: Podstawy komunikacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2006.

4. Kurose J. F., Ross K.W.: Sieci komputerowe. Helion, Gliwice, 2010.

5. Nawrocki W.: Rozproszone systemy pomiarowe. WKŁ, Warszawa, 2006

LITERATURA UZUPEŁNIAJĄCA:

1. Piotrowski P.: Aspekty elektryczne sieci komputerowych. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa, 2009.

2. Strojny J.: Instalacja elektryczna w systemie KNX/EIB. SEP-COSiW, Warszawa, 2006.

3. Networld. Miesięcznik. www.networld.pl.

4. Pomiary, Automatyka, Kontrola. Miesięcznik. www.pak.pl.

PROGRAM OPRACOWAŁ:

doc. dr inż. Emil Michta

Page 137: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

137

SSS TTT AAA CCC JJJ OOO NNN AAA RRR NNN EEE III MMM OOO BBB III LLL NNN EEE MMM AAA GGG AAA ZZZ YYY NNN YYY EEE NNN EEE RRR GGG III III

Kod przedmiotu: 06.0 – WE – EEP – SMM

Typ przedmiotu: obieralny

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Kaniewski

Prowadzący: dr inż. Jacek Kaniewski, dr inż. Marcin Jarnut

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

3

W ykład 15 1 VII

zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 VII

zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie działania i eksploatacji stacjonarnych i mobilnych magazynów energii.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru typu i parametrów magazynów energii do zastosowań w aplikacjach mobilnych i stacjonarnych.

C1K. Uświadomienie roli magazynowania energii w energetyce i transporcie.

WYMAGANIA WSTĘPNE:

Podstawy elektroenergetyki, podstawy elektrotechniki i energoelektroniki, chemia, systemy elektromaszynowe, odnawialne i kogeneracyjne źródła energii

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe zagadnienia magazynowania energii. Sposoby magazynowania energii. Parametry definiujące magazyny energii.

Magazynowanie energii w wodzie. Elektrownie szczytowo-pompowe. Zasobniki grawitacyjne.

Elektrochemiczne magazyny energii. Ogniwa pierwotne i wtórne. Eksploatacja ogniw wtórnych. Techniki ładowania zasobników regenerowalnych.

Magazynowanie energii w gazach. Zasobniki wodorowe. Zasobniki energii ze sprężonym powietrzem typu CAES, turbo ekspandery w systemach gazu ziemnego.

Kinetyczne zasobniki energii. Wysokoobrotowe koła zamachowe typu „fly wheel”

Page 138: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

138

Magazynowanie energii w polu elektrycznym i magnetycznym. Superkondensatorowe zasobniki energii. Cewki nadprzewodzące typu SMES.

Podsumowanie wiadomości z zakresu magazynowania energii.

Laboratorium

Badanie właściwości energetycznych magazynów elektrochemicznych. Badanie właściwości energetycznych i regulacyjnych systemów ładowania magazynów elektrochemicznych.

Badanie systemu magazynowania energii w wodorze.

Badanie właściwości energetycznych i funkcjonalnych zasobnika superkondensatorowego.

Badanie właściwości energetycznych i funkcjonalnych zasobnika kinetycznego.

Badanie właściwości energetycznych i funkcjonalnych zasobnika grawitacyjnego.

Badanie właściwości energetycznych zasobnika energii ze sprężonym powietrzem.

Podsumowanie wiadomości z zakresu właściwości energetycznych zasobników energii.

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę na temat sposobów magazynowania energii w aplikacjach stacjonarnych i przenośnych, zna zasady eksploatacji ogniw wtórnych.

K1P_W21 Kolokwium pisemne na koniec

semestru W, L

Student potrafi dobrać typ i parametry magazynu energii do aplikacji stacjonarnej i mobilnej, ma świadomość rozwoju technologicznego w zakresie nowoczesnych systemów magazynowania energii

K1P_U19, K1P_U21 K1P_K01

Ocena za wykonane sprawozdanie z ćwiczeń laboratoryjnych

W, L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium pisemnego

Laboratorium

Ocena końcowa jest średnią arytmetyczną ze sprawozdań z ćwiczeń laboratoryjnych wykonanych przez studenta w trakcie semestru

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia ważona z ocen ze wszystkich form przedmiotu przy czym wagi ocen z wykładu i laboratorium wynoszą po 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

stacjonarne niestacjonarne

Godziny kontaktowe (W + P) 30h 18h

Konsultacje 10h 22h

Page 139: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

139

Przygotowanie się do zajęć 15h 15h

Przygotowanie sprawozdań 20h 20h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Czerwiński Andrzej, Akumulatory, baterie, ogniwa, Wydawnictwa Komunikacji i Łączności WKŁ

2. Robert A. Huggins, Energy Storage, Springer Science & Business Media

3. R. M. Dell, David Anthony James Rand, Understanding Batteries, Royal Society of Chemistry

4. David Linden, Thomas B. Reddy, Handbook of batteries, McGraw-Hill

5. David Linden, Handbook of batteries and fuel cells, McGraw-Hill

PROGRAM OPRACOWAŁ:

dr inż. Marcin Jarnut

[email protected]

Page 140: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

140

SSS TTT EEE RRR OOO WWW NNN III KKK III PPP RRR OOO GGG RRR AAA MMM OOO WWW AAA LLL NNN EEE

Kod przedmiotu: 06.0 – WE – EEP – SP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Kaniewski

Prowadzący: dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

V

egzamin

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

egzamin

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy i zapoznanie studentów z podstawowymi pojęciami i problematyką sterowników programowalnych, sterowników PLC, układów automatyki przemysłowej oraz systemów wizualizacji procesów sterowania z uwzględnieniem aspektów ekonomicznych

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie programowania i projektowania oraz eksploatacji układów sterowania z wykorzystaniem sterowników programowalnych przemysłowej z uwzględnieniem zagadnień efektywności energetycznej

C1K. Uświadomienie potrzeby rozwoju układów sterowania bazujących na sterownikach programowalnych, rozwój kreatywnego i analitycznego myślenia oraz uświadomienie konieczności ciągłego rozwoju i podnoszenia posiadanych kompetencji

WYMAGANIA WSTĘPNE:

Analiza matematyczna, metody numeryczne, sieci komputerowe i przemysłowe, teoria sterowania, automatyzacja procesów technologicznych

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do sterowników programowalnych, rys historyczny i trendy rozwojowe

Podstawowe zagadnienia dotyczące sterowników programowalnych

Sterowniki PLC – wprowadzenie, rodzaje, budowa, właściwości i zasada działania sterowników PLC, moduły rozszerzeń, osprzęt

Page 141: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

141

Metody programowania sterowników PLC, podstawowe funkcje i operacje, protokoły komunikacyjne stosowane w automatyce przemysłowej

Przykłady realizacji regulatorów dwustanowych i ciągłych za pomocą sterowników programowalnych, protokoły komunikacyjne w automatyce

Układy sterowania oraz sposoby realizacji regulacji prędkości, położenia, temperatury, przepływu i innych parametrów za pomocą sterowników programowalnych

Systemy bezpieczeństwa w automatyce

Regulatory programowalne – rodzaje i dobór nastaw regulatorów, mikro sterowniki programowalne

Projektowanie układów automatyki przemysłowej z wykorzystaniem sterowników programowalnych PLC, wizualizacja procesów przemysłowych, programowanie pulpitów operatorskich HMI

Podsumowanie wiadomości z zakresu sterowników programowalnych

Laboratorium

Wprowadzenie do sterowników programowalnych.

Wykorzystanie wejść/wyjść dwustanowych do sterowania urządzeń elektrycznych – pisanie prostych programów i algorytmów sterowania

Zastosowanie timerów w prostych aplikacjach sterowania urządzeń wykonawczych

Zastosowanie liczników w algorytmach sterowania urządzeń wykonawczych

Komparatory i działania na rejestrach – pisanie prostych programów dla sterowników PLC

Wykorzystanie wejść/wyjść analogowych do sterowania urządzeń elektrycznych – pisanie prostych aplikacji

Wykonywanie prostych działań arytmetycznych z zastosowaniem sterowników programowalnych, działania na rejestrach

Wizualizacja procesów przemysłowych, programowanie pulpitów operatorskich HMI

Projekt

Projekt układu regulacji z wykorzystaniem regulatorów dwu- i trójstanowych

Projekt układu sterowania procesem technologicznym z wykorzystaniem regulatorów ciągłych

Projekt układu sterowania z wykorzystaniem sterownika PLC z wej/wyj dyskretnymi

Projekt układu sterowania z wykorzystaniem sterownika PLC z wej/wyj analogowymi

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Zna metody, techniki i możliwości sterowania elektrycznych urządzeń wykonawczych z wykorzystaniem sterowników programowalnych oraz trendy ich rozwoju

K1P_W19, K1P_W22

Kolokwium pisemne na koniec semestru

W

Potrafi posługiwać się poznanymi narzędziami do programowani sterowników programowalnych kontrolujących pracą prostych urządzeń i systemów energetycznych pracujących wg samodzielnie skonstruowanego algorytmu sterowania, potrafi przeanalizować i porównać algorytmy terowania ze względu na zadane im kryteria użytkowe i ekonomiczne

K1P_U08, K1P_U09, K1P_U17

Ocena za sprawozdania z zajęć laboratoryjnych

L

potrafi dobrać sterownik programowalny z osprzętem, typowe części maszyn,

K1P_K01, K1P_K04,

Ocena za wykonane zadania projektowe

P

Page 142: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

142

urządzeń i inne elementy układu sterowania oraz określić ich własności w tym ich wytrzymałość, oddziaływanie na środowisko oraz energochłonność, rozumie potrzebę uczenia się przez całe życie, podnoszenia swoich kompetencji zawodowych i osobistych, potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania

K1P_U08, K1P_U17

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z egzaminu z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7ECTS x (25h / 1ECTS) = 175h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 18h

Przygotowanie się do zajęć 25h 40h

Sporządzenie sprawozdań 30h 30h

Sporządzenie projektów 30h 33h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Kaczorek T. „Teoria sterowania i systemów” PWN, Warszawa 1993

2. Lagierski T, Kasprzyk J., Wyrwał J., Hajda J, „Programowanie sterowników PLC”

3. Flaga S. „Programowanie sterowników PLC w języku drabinkowym”, wydawnictwo BTC, Legionowo, 2010

LITERATURA UZUPEŁNIAJĄCA:

1. Mikulczyński T., Samsonowicz Z. „Automatyzacja dyskretnych procesów produkcyjnych” WNT, Warszawa, 1997

2. Sałat R., Korpysz., K., Obstawski P., „Wstęp do programowania sterowników PLC”, 2010

3. Manuale dostępne na stronach www producentów i dystrybutorów, sterowników programowalnych PLC

PROGRAM OPRACOWAŁ:

dr inż. Jacek Kaniewski

[email protected]

Page 143: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

143

SSS TTT EEE RRR OOO WWW NNN III KKK III PPP RRR OOO GGG RRR AAA MMM OOO WWW AAA LLL NNN EEE WWW BBB UUU DDD YYY NNN KKK AAA CCC HHH III

PPP RRR ZZZ EEE MMM YYY ŚŚŚ LLL EEE

Kod przedmiotu: 06.0 – WE – EEP – SPB

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Kaniewski

Prowadzący: dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2

V

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Pro jekt 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

Pro jekt 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy i zapoznanie studentów z podstawowymi pojęciami i problematyką sterowników programowalnych, sterowników PLC, układów automatyki przemysłowej i budynkowej oraz systemów wizualizacji procesów sterowania w budynkach i przemyśle z uwzględnieniem aspektów ekonomicznych i proefektywnościowych

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie programowania i projektowania oraz eksploatacji układów sterowania z wykorzystaniem sterowników programowalnych w systemach automatyki budynkowej i przemysłowej z uwzględnieniem zagadnień efektywności energetycznej

C1K. Uświadomienie potrzeby rozwoju układów sterowania bazujących na sterownikach programowalnych, rozwój kreatywnego i analitycznego myślenia oraz uświadomienie konieczności ciągłego rozwoju i podnoszenia posiadanych kompetencji

WYMAGANIA WSTĘPNE:

Analiza matematyczna, metody numeryczne, sieci komputerowe i przemysłowe, teoria sterowania, automatyzacja procesów technologicznych

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do sterowników programowalnych w budynkach i przemyśle, rys historyczny i trendy

Page 144: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

144

rozwojowe

Podstawowe zagadnienia dotyczące sterowników programowalnych w automatyce przemysłowej i budynkowej

Sterowniki programowalne – wprowadzenie, rodzaje, budowa, właściwości i zasada działania sterowników PLC, moduły rozszerzeń, osprzęt

Metody programowania sterowników PLC, podstawowe funkcje i operacje, protokoły komunikacyjne stosowane w automatyce przemysłowej i budynkowej

Przykłady realizacji regulatorów dwustanowych i ciągłych za pomocą sterowników i mikrostrowników programowalnych, protokoły komunikacyjne w automatyce budynkowej i przemysłowej

Układy sterowania oraz sposoby realizacji regulacji prędkości, położenia, temperatury, przepływu i innych parametrów za pomocą sterowników programowalnych

Systemy bezpieczeństwa w automatyce przemysłowej i budynkowej

Regulatory programowalne – rodzaje i dobór nastaw regulatorów, mikro sterowniki programowalne do sterowania w systemach automatyki budynkowej i przemysłowej

Projektowanie układów automatyki przemysłowej i budynkowej z wykorzystaniem sterowników programowalnych, wizualizacja procesów przemysłowych, programowanie pulpitów operatorskich HMI

Podsumowanie wiadomości z zakresu sterowników programowalnych

Laboratorium

Wprowadzenie do sterowników programowalnych.

Wykorzystanie wejść/wyjść dwustanowych do sterowania urządzeń elektrycznych – pisanie prostych programów i algorytmów sterowania

Zastosowanie timerów w prostych aplikacjach sterowania urządzeń wykonawczych w systemach automatyki budynkowej i przemysłowej

Zastosowanie liczników w algorytmach sterowania urządzeń wykonawczych w systemach automatyki budynkowej i przemysłowej

Komparatory i działania na rejestrach – pisanie prostych programów dla sterowników PLC

Wykorzystanie wejść/wyjść analogowych do sterowania urządzeń elektrycznych – pisanie prostych aplikacji

Wykonywanie prostych działań arytmetycznych z zastosowaniem sterowników programowalnych, działania na rejestrach

Wizualizacja procesów przemysłowych, programowanie pulpitów operatorskich HMI

Projekt

Projekt układu regulacji z wykorzystaniem regulatorów dwu- i trójstanowych

Projekt układu sterowania parametrami środowiskowymi w obiekcie budowlanym z wykorzystaniem regulatorów ciągłych i mikrosterowników programowalnych

Projekt układu sterowania z wykorzystaniem sterownika PLC z wej/wyj dyskretnymi

Projekt układu sterowania z wykorzystaniem sterownika PLC z wej/wyj analogowymi

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Zna metody, techniki i możliwości sterowania elektrycznych urządzeń wykonawczych w systemach automatyki budynkowej i przemysłowej z wykorzystaniem sterowników programowalnych oraz trendy ich

K1P_W19,

K1P_W22

Kolokwium pisemne na koniec semestru

W

Page 145: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

145

rozwoju

Potrafi posługiwać się poznanymi narzędziami do programowani sterowników programowalnych kontrolujących pracą prostych urządzeń i systemów automatyki pracujących wg samodzielnie skonstruowanego algorytmu sterowania, potrafi przeanalizować i porównać algorytmy sterowania ze względu na zadane im kryteria użytkowe i ekonomiczne, potrafi dobrać sposób regulacji i sterowania dla prostych układów w procesach energetycznych

K1P_U08,

K1P_U09,

K1P_U16

K1P_U17

Ocena za sprawozdania z zajęć laboratoryjnych

L

Potrafi dobrać sterownik programowalny z osprzętem, typowe części maszyn, urządzeń i inne elementy układu sterowania oraz określić ich własności w tym ich wytrzymałość, oddziaływanie na środowisko oraz energochłonność, rozumie potrzebę uczenia się przez całe życie, podnoszenia swoich kompetencji zawodowych i osobistych, potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania

K1P_K01,

K1P_K04,

K1P_U08,

K1P_U17

Ocena za wykonane zadania projektowe

P

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 54h

Konsultacje 10h 18h

Przygotowanie się do zajęć 20h 30h

Sporządzenie sprawozdań 15h 20h

Sporządzenie projektów 15h 28h

Razem 150h 150h

Page 146: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

146

LITERATURA PODSTAWOWA:

1. Kaczorek T. „Teoria sterowania i systemów” PWN, Warszawa 1993

2. Lagierski T, Kasprzyk J., Wyrwał J., Hajda J, „Programowanie sterowników PLC”

3. Flaga S. „Programowanie sterowników PLC w języku drabinkowym”, wydawnictwo BTC, Legionowo, 2010

LITERATURA UZUPEŁNIAJĄCA:

1. Mikulczyński T., Samsonowicz Z. „Automatyzacja dyskretnych procesów produkcyjnych” WNT, Warszawa, 1997

2. Sałat R., Korpysz., K., Obstawski P., „Wstęp do programowania sterowników PLC”, 2010

3. Manuale dostępne na stronach www producentów i dystrybutorów, sterowników programowalnych PLC

PROGRAM OPRACOWAŁ:

dr inż. Jacek Kaniewski

[email protected]

Page 147: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

147

SSS YYY MMM UUU LLL AAA CCC JJJ AAA III MMM OOO DDD EEE LLL OOO WWW AAA NNN III AAA KKK OOO MMM PPP UUU TTT EEE RRR OOO WWW EEE WWW

EEE NNN EEE RRR GGG EEE TTT YYY CCC EEE

Kod przedmiotu: 11.9 – WE – EEP – SMK

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : prof. dr hab. inż. Igor Korotyeyev

Prowadzący: prof. dr hab. inż. Igor Korotyeyev

dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

3

W ykład 30 2 III

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 III

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy i zapoznanie studentów z podstawowymi pojęciami i zagadnieniami dotyczącymi modelowania komputerowego procesów zachodzących w energetyce oraz symulacji w energetyce, zapoznanie z podstawowymi narzędziami do symulacji i modelowania komputerowego w energetyce

C1U. Ukształtowanie u studentów podstawowych umiejętności w tworzeniu i operowaniu na modelach komputerowych i symulacyjnych w energetyce oraz umiejętności w zakresie wykorzystania programów narzędziowych

C1K. Uświadomienie roli modeli komputerowych i analiz symulacyjnych w nowoczesnej energetyce

WYMAGANIA WSTĘPNE:

Metody numeryczne, CAD i grafika inżynierska

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do symulacji i modelowania komputerowego w energetyce

Podstawowe zagadnienia i pojęcia z zakresu symulacji i modelowania procesów energetycznych

Rodzaje modeli matematycznych: ciągłe, dyskretne, statyczne i dynamiczne

Modele matematyczne elementów systemu energetycznego, układów elektromaszynowych (silniki, generatory), modele łączników, elementów biernych, ogniw PV, itp. Charakterystyki statyczne i dynamiczne obiektów

Page 148: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

148

Metody modelowania i analizy matematycznej w energetyce, modelowanie układów nieliniowych, modelowanie układów ze sprzężeniem zwrotnym, układy z PWM, stabilność metod. Metody statystyczne

Charakterystyka programów narzędziowych przeznaczonych do modelowania i symulacji w energetyce. Porównanie możliwości i obszarów zastosowań.

Opis topologiczny układów, zbieżność i dokładność obliczeń, wyznaczanie charakterystyk układów i interpretacja wyników

Opracowywanie wyników, wykresy 2D i 3D

Podsumowanie wiadomości z zakresu symulacji i modelowania komputerowego w energetyce

Laboratorium

Wprowadzenie do symulacji i modelowania komputerowego w energetyce

Symulacyjne modele obwodowe

Analiza stałoprądowa obwodów elektrycznych, parametry sygnałów, charakterystyki statyczne.

Analiza zmiennoprądowa obwodów elektrycznych, parametry sygnałów

Analiza w dziedzinie czasu, analiza częstotliwościowa, widmo sygnałów, charakterystyki częstotliwościowe

Wyznaczanie modeli czwórnikowych obwodów elektrycznych, działania na modelach czwórnikowych

Wyznaczanie modeli i transmitancji operatorowych układów, działania na transmitancji operatorowej

Modelowanie układów zamkniętych, analiza obwodów w stanie nieustalonym, wyznaczanie odpowiedzi podstawowych członów regulacji na wymuszenie skokowe

Modelowanie i analiza pracy źródeł OZE, elektrownia wodna, elektrownia wiatrowa, układ ko generacyjny, ogniwa PV

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę w zakresie metod i możliwości oraz własności obliczeń numerycznych oraz podstawy programowania w zastosowaniu do opisu procesów energetycznych i technologicznych, zna metody i narzędzia wykorzystywane do modelowania i symulacji komputerowej procesów związanych z przemianami energetycznymi

K1P_W02

K1P_W17

K1P_K01,

K1P_K04

Kolokwium pisemne na koniec semestru

W

potrafi wykorzystać poznane metody i modele matematyczne, symulacje komputerowe i narzędzia informatyczne do symulacji, analizy i oceny działania prostych urządzeń, systemów i układów elektrycznych, mechanicznych, i cieplnych

K1P_U07,

K1P_U09,

K1P_U14

Ocena za sprawozdania z zajęć laboratoryjnych

L

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Page 149: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

149

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 60%, laboratorium 40%

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3ECTS x (25h / 1ECTS) = 75h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 18h

Przygotowanie się do zajęć 10h 15h

Sporządzenie sprawozdań 5h 6h

Razem 75h 75h

LITERATURA PODSTAWOWA:

1. Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, WNT, Warszawa 1993

2. R. Szczęsny, Komputerowa symulacja układów energoelektronicznych, Wydawnictwo Politechniki Gdańskiej, Gdańsk 1999

3. J. Kudrewicz, Nieliniowe obwody elektryczne, WNT, Warszawa 1996

LITERATURA UZUPEŁNIAJĄCA:

1. A. Król, J. Moczko., Pspice Symulacja i optymalizacja układów elektronicznych, Wydawnictwo Nakom, Poznań 1998

2. A. Zalewski, A. Cegieła, MATLAB – obliczenia numeryczne i ich zastosowania, Wydawnictwo Nakom, Poznań 1996

3. J. Brzózka, L. Dorobczyński, Programowanie w Matlabie, MIKOM, Warszawa 1998

PROGRAM OPRACOWAŁ:

dr inż. Jacek Kaniewski

[email protected]

Page 150: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

150

SSS YYY SSS TTT EEE MMM YYY ZZZ AAA RRR ZZZ ĄĄĄ DDD ZZZ AAA NNN III AAA EEE NNN EEE RRR GGG III ĄĄĄ III MMM EEE DDD III AAA MMM III

Kod przedmiotu: 06.0 – WE – EEP – SZE

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Jacek Kaniewski

Prowadzący: dr inż. Jacek Kaniewski

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

5

W ykład 30 2

VI

zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

Pro jekt 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

VI

zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie podstawowej wiedzy na temat funkcjonowania systemów zarządzania energią i mediami w budownictwie i przemyśle.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie doboru i konfigurowania elementów systemu zarządzania energią i mediami

C1K. Uświadomienie roli nowoczesnych rozwiązań technicznych w zakresie zarządzania energią i mediami w gospodarce niskoemisyjnej

WYMAGANIA WSTĘPNE:

Fizyka techniczna, podstawy elektrotechniki i energoelektroniki, gospodarka energetyczna i rynek energii, teoria sterowania, podstawy elektroenergetyki, techniki pomiarowe w energetyce

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie do systemów zarządzania energią i mediami. Wymagania normatywne, cele krajowe i wspólnotowe.

Struktura zużycia energii i mediów w budownictwie i przemyśle. Profile zużycia i obciążenia.

Zarządzanie popytem na energię i media. Współczesne systemy taryfowe i programy bodźcowe.

Elementy systemów zarządzania energią w budynkach. Systemy automatyki budynkowej typu Building Management System (BMS).

Infrastruktura Sieci Domowej (ISD) jako element Inteligentnych Sieci Elektroenergetycznych (ISE).

Page 151: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

151

Struktura i algorytmy sterowania.

Systemy Zarządzania Energią (SZE) w przemyśle. Teleinformatyczne systemy monitorowania zużycia energii i mediów.

Mikrosystemy energetyczne z miejscowymi źródłami energii w budownictwie i przemyśle. Sterowanie rozpływem energii.

Podsumowanie wiadomości z zakresu zarządzania energią i mediami

Laboratorium

Wprowadzenie do systemów zarządzania energią i mediami. Zapoznanie z przyrządami pomiarowymi.

Pomiar mocy i energii elektrycznej. Wyznaczanie profili obciążenia i zużycia energii odbiorników.

Badanie właściwości funkcjonalnych systemu monitorowania zużycia energii i mediów.

Badanie właściwości regulacyjnych systemu grafikowania pracy odbiorników.

Badanie właściwości regulacyjnych systemu zarządzania oświetleniem w obiekcie przemysłowym.

Badanie właściwości regulacyjnych systemu sterowania rozpływem energii w mikrosystemie energetycznym z miejscowym źródłem energii.

Podsumowanie wiadomości z zakresu systemów zarządzania energią.

Projekt

Wyznaczanie profili zużycia energii i mediów w wybranym obiekcie budowlanym lub przemysłowym

Dobór elementów systemu zarządzania energią i mediami w obiekcie o zadanym profilu energetycznym

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma podstawową wiedzę na temat systemów monitorowania i zarządzania energią i mediami, zna topologie i metody sterowania systemów budynkowych i przemysłowych wg kryterium redukcji zużycia energii i mediów

K1P_W19,

K1P_W22,

K1P_K01

Kolokwium pisemne na koniec semestru

W

Student posiada umiejętności doboru metod sterowania prostych układów i urządzeń elektrycznych, systemów transportu mediów, potrafi dobrać metody i urządzenia w celu przeprowadzenia pomiarów odpowiednich wielkości w tych układach, potrafi pracować w grupie

K1P_U08,

K1P_U16

K1P_K03

Ocena za sprawozdania z zajęć laboratoryjnych

L

Student rozumie potrzebę ciągłego uczenia się i podnoszenia kwalifikacji, w zakresie redukcji zużycia energii i mediów, identyfikuje problemy techniczne z tym związane i określa cele prowadzące do ich rozwiązania

K1P_U08

K1P_K01,

K1P_K04

Ocena za wykonane zadania projektowe

P

Page 152: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

152

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z projektów opracowanych przez studenta w trakcie semestru.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 60h 36h

Konsultacje 18h

Przygotowanie się do zajęć 30h 35h

Sporządzenie sprawozdań 15h 16h

Sporządzenie projektów 20h 20h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. Wayne C. Turner, Steve Doty, Energy Management Handbook, The Fairmont Press

2. D. Yogi Goswami, Frank Kreith, Energy Management and Conservation Handbook, CRC Press

3. G. Benysek, M. Jarnut, Energooszczędne i aktywne systemy budynkowe, Oficyna Wydawnicza Uniwersytetu zielonogórskiego, Zielona Góra 2013

LITERATURA UZUPEŁNIAJĄCA:

1. M. Balakrishnanhan, Smart Energy Solution for Home Area Networks and Grid Applications, http://cache.freescale.com/files/32bit/doc/brochure/PWRARBYNDBITSSES.pdf

PROGRAM OPRACOWAŁ:

dr. inż. Jacek Kaniewski

[email protected]

Page 153: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

153

SSS YYY SSS TTT EEE MMM YYY EEE LLL EEE KKK TTT RRR OOO MMM AAA SSS ZZZ YYY NNN OOO WWW EEE

Kod przedmiotu: 06.2 – WE – EEP – SE

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Robert Smoleński

Prowadzący:

dr hab. inż. Robert Smoleński dr inż Paweł Szcześniak

dr inż. Jacek Kaniewski

mgr inż. Piotr Leżyński

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

6

W ykład 30 2 IV

egzamin

Laborator ium 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 IV

egzamin

Laborator ium 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Wyjaśnienie zagadnień z zakresu maszyn elektrycznych, zapoznanie z zasadami ich doboru do instalacji i procesów oraz efektywnego energetycznie sterowania ich pracą.

C1U. Nabycie umiejętności czytania schematów systemów elektromaszynowych, rozpoznawania ich elementów, analizowania i porównywania rozwiązań projektowych systemów elektromaszynowych ze względu na zadane kryteria użytkowe i ekonomiczne

C1K. Wyjaśnienie potrzeby uczenia się przez całe życie, w celu podnoszenia swoich kompetencji zawodowych i osobistych, wynikającej z dynamicznego rozwoju systemów elektromechanicznych

C2K. Nabycie kompetencji odpowiedniego wyboru priorytetów służących realizacji określonego przez siebie lub innych zadania

WYMAGANIA WSTĘPNE:

Fizyka techniczna, Inżynieria materiałowa w energetyce, Podstawy elektroenergetyki, Podstawy elektrotechniki i energoelektroniki

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe prawa elektrodynamiki w teorii maszyn elektrycznych.

Napięcie indukowane, warunki powstawania momentu elektromagnetycznego, moment elektromagnetyczny asynchroniczny, synchroniczny (wzbudzeniowy, reluktancyjny) oraz moment elektromagnetyczny maszyny komutatorowej.

Page 154: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

154

Budowa maszyn elektrycznych wirujących i transformatorów. Klasyfikacja maszyn elektrycznych i ich reprezentacja na schematach technicznych.

Charakterystyki maszyn prądu stałego.

Charakterystyki maszyn prądu przemiennego.

Technika materiałowa a straty w maszynach elektrycznych.

Sprawność maszyn elektrycznych oraz badania użytkowe maszyn.

Generatory stosowane w układach generacji rozproszonej.

Praca równoległa transformatorów. Wpływ doboru transformatorów na efektywność systemu elektroenergetycznego.

Przekształtniki energoelektroniczne w nowoczesnych układach napędowych.

Serwonapędy nadążne i przestawne.

Układy miękkiego rozruchu silników asynchronicznych.

Praca nawrotna napędów czterokwadrantowych z hamowaniem odzyskowym. Hamowanie odzyskowe przy pracy grupowej przemienników częstotliwości ze wspólnym obwodem DC.

Badania eksperymentalne efektywności energetycznej układów napędowych.

Sprzęganie napędów elektrycznych z nadrzędnymi systemami sterującymi np. BMS.

Laboratorium

Badanie transformatora trójfazowego Badanie prądnicy synchronicznej Badanie prądnicy asynchronicznej

Badanie trójfazowego silnika pierścieniowego

Badanie maszyny asynchronicznej klatkowej

Badanie silnika synchronicznego

Synchronizacja z siecią prądnicy synchronicznej

Badanie silnika indukcyjnego klatkowego o podwyższonej sprawności

Badanie układu napędowego z silnikiem krokowym

Rozruch napięciowy maszyny z dużym momentem bezwładności

Rozruch częstotliwościowy maszyny z dużym momentem bezwładności

Praca nawrotna czterokwadrantowego napędu prądu przemiennego

Sterowanie falownika napięcia za pomocą sieci przemysłowej Modbus

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Rozumie zagadnienia z zakresu maszyn elektrycznych, zna zasady ich doboru do instalacji i procesów oraz efektywnego energetycznie sterowania ich pracą

K1P_W07 Dyskusja, sprawdzian, egzamin W

Potrafi czytać schematy systemów elektromaszynowych, rozpoznać ich elementy, przeanalizować i porównać rozwiązania projektowe systemów elektromaszynowych ze względu na zadane kryteria użytkowe i ekonomiczne

K1P_U08, K1P_U20

Dyskusja, sprawdzian, egzamin bieżąca kontrola na zajęciach

W, L

Rozumie potrzebę uczenia się przez całe życie, w celu podnoszenia swoich kompetencji zawodowych i osobistych, wynikającą z dynamicznego rozwoju systemów elektromechanicznych

K1P_K01, Dyskusja, sprawdzian, egzamin,

bieżąca kontrola na zajęciach W, L

Page 155: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

155

Potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania

K1P_K04 bieżąca kontrola na zajęciach L

WARUNKI ZALICZENIA:

Wykład

Egzamin złożony z dwóch części pisemnej i ustnej; warunkiem przystąpienia do części ustnej jest uzyskanie 30% punktów z części pisemnej.

Laboratorium

Na ocenę końcową z laboratorium składają się oceny z przygotowania do zajęć (50%) oraz oceny sprawozdań z ćwiczeń (50%).

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 6ECTS x (25h / 1ECTS) = 150h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 15h 36h

Przygotowanie się do zajęć 15h 18h

Zapoznanie się z literaturą 15h 18h

Sporządzenie sprawozdań 20h 20h

Przygotowanie do egzaminu 25h 22h

Razem 150h 150h

LITERATURA PODSTAWOWA:

1. Latek W., Teoria maszyn elektrycznych, Wyd. 2, WNT, Warszawa 1987.

2. Latek W., Badanie maszyn elektrycznych w przemyśle, WNT, Warszawa 1987.

3. Ronkowski M. i inni, Maszyny elektryczne wokół nas, Wyd.PG 2011.

4. Orłowska-Kowalska T.: Bezczujnikowe układy napędowe z silnikami indukcyjnymi, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2003

5. Kaźmierkowski M. P., Blaabjerg F., Krishnan R.: Control in Power Electronics, Selected Problems, Elsevier, 2002.

6. Boldea I., Nasar S.A, Electric Drives, CRC Press, 1999.

7. Honczarenko J.: Roboty przemysłowe. Budowa i zastosowanie, WNT, 2004

8. Tunia H., Kaźmierkowski M. P.: Automatyka napędu przekształtnikowego, PWN, 1987.

LITERATURA UZUPEŁNIAJĄCA: 1. Łastowiecki J., Duszczyk K., Przybylski J., Ruda A., Sidorowicz J., Szulc Z.: Laboratorium

podstaw napędu elektrycznego w robotycem WPW, Warszawa, 2001.

PROGRAM OPRACOWAŁ:

dr hab. inż. Robert Smoleński

Page 156: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

156

TTT EEE CCC HHH NNN III KKK III PPP OOO MMM III AAA RRR OOO WWW EEE WWW EEE NNN EEE RRR GGG RRR TTT YYY CCC EEE

Kod przedmiotu: 06.0 – WE – EEP – TP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : Ryszard Rybski

Prowadzący: Pracownicy IME

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

4

W ykład 30 2 IV

zaliczenie na ocenę

Laborator ium 30 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2 IV

zaliczenie na ocenę

Laborator ium 18 2 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z podstawowymi metodami, technikami, przyrządami, układami i systemami pomiarowymi stosowanymi w obszarze energetyki.

C1U. Ukształtowanie u studentów podstawowych umiejętności w zakresie budowy i zasady działania, przyrządów i systemów pomiarowych oraz stosowania podstawowych technik pomiarowych w obszarze energetyki.

C1K. Uświadomienie studentom roli pomiarów i narzędzi pomiarowych w ocenie i podnoszeniu efektywności energetycznej.

WYMAGANIA WSTĘPNE:

Podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe pojęcia z zakresu techniki pomiarowej Charakterystyka właściwości metrologicznych przyrządów pomiarowych Charakterystyka sygnałów oraz uwarunkowań prawnych w obszarze pomiarów elektroenergetycznych

Podstawy analogowego przetwarzanie sygnałów pomiarowych

Przetwarzanie analogowo-cyfrowe oraz elementy cyfrowego przetwarzania sygnałów w pomiarach elektroenergetycznych

Metody i techniki pomiarowe stosowane w pomiarach podstawowych wielkości elektroenergetycznych (prąd, napięcie moc, energia) oraz współczynników charakteryzujących sygnały, np. THD

Page 157: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

157

Metody i przyrządy do pomiaru podstawowych wielkości opisujących bierne elementy obwodów elektroenergetycznych (R, L, C)

Obwody wejściowe przyrządów i przetworników pomiarowych wielkości elektroenergetycznych; pasmo częstotliwościowe, izolacja galwaniczna; przekładniki prądowe i napięciowe Pomiary parametrów charakteryzujących jakość energii elektrycznej

Elementy techniki sensorowej – czujniki pomiarowe wybranych wielkości nieelektrycznych

Liczniki energii elektrycznej oraz liczniki innych mediów

Pomiary zdalne, rejestracja, przesyłanie i archiwizowanie danych pomiarowych Wprowadzenie do inteligentnych systemów pomiarowych – Smart Metering (SM)

Przykłady zaawansowanych rozwiązań w obszarze SM oraz tendencje rozwojowe w zakresie pomiarów w energetyce Podsumowanie wiadomości z zakresu technik pomiarowych w energetyce.

Laboratorium

Pomiary napięć i prądów w obwodach prądu przemiennego o sygnałach sinusoidalnych i odkształconych

Pomiary mocy czynnej i biernej w układach trójfazowych

Pomiary rezystancji i impedancji

Czujniki wybranych wielkości nieelektrycznych

Układy analogowe w przetwarzaniu sygnałów pomiarowych

Pomiary parametrów sygnałów z zastosowaniem cyfrowego przetwarzania sygnałów

Obwody wejściowe przyrządów i przetworników pomiarowych

Przetworniki pomiarowe wielkości elektroenergetycznych

Liczniki energii elektrycznej

System zarządzania energią w maszynach na bazie sterownika PAC

Systemy monitorowania parametrów sieci energetycznej

Wirtualne przyrządy pomiarowe

Podsumowanie wiadomości z zakresu techniki pomiarowych w energetyce

METODY KSZTAŁCENIA:

Wykład - wykład konwencjonalny z wykorzystaniem wideoprojektora.

Laboratorium - zajęcia praktyczne w laboratorium technik pomiarowych w energetyce.

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Ma podstawową wiedzę w zakresie metod, technik, przyrządów i systemów pomiarowych stosowanych w energetyce

K1P_W04 Kolokwium pisemne W

Zna i rozumie budowę oraz podstawowe funkcje inteligentnych systemów pomiarowych – Smart Metering (SM)

K1P_W04 Kolokwium pisemne W

Potrafi dobierać metodę i przyrządy pomiarowe do realizacji podstawowych zadań pomiarowych

K1P_U01

K1P_U09

K1P_U22

Sprawdzian praktyczny L

Ma świadomość roli pomiarów i narzędzi pomiarowych w ocenie i podnoszeniu efektywności energetycznej

K1P_K01 Kolokwium pisemne W

WARUNKI ZALICZENIA:

Page 158: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

158

Wykład – kolokwium w formie pisemnej i/lub ustnej, realizowany na koniec semestru.

Laboratorium – ocena końcowa stanowi sumę ważoną ocen uzyskanych za realizację

poszczególnych ćwiczeń laboratoryjnych.

Ocena końcowa = 50 % oceny zaliczenia z formy zajęć wykład + 50 % oceny zaliczenia z formy

zajęć laboratorium.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 4ECTS x (25h / 1ECTS) = 100h

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 18h

Przygotowanie się do zajęć 15h 18h

Zapoznanie się ze wskazaną literaturą 15h 18h

Przygotowanie się do kolokwium 10h 10h

Razem 100h 100h

LITERATURA PODSTAWOWA:

1. Chwaleba A., Poniński M., Siedlecki A.: Metrologia elektryczna. WNT, Warszawa 2010

2. Tumański S.: Technika pomiarowa. WNT, Warszawa 2007

3. Nawrocki W.: Rozproszone systemy pomiarowe, WKiŁ, Warszawa 2006

4. Billewicz K. : Smart metering. Inteligentny system pomiarowy. Wydawnictwo Naukowe PWN, Warszawa 2012

LITERATURA UZUPEŁNIAJĄCA:

1. Rosołowski E.: Cyfrowe przetwarzanie sygnałów w automatyce elektroenergetycznej, Wydawnictwo EXIT, Warszawa 2004.

2. Łastowiecki J.: Układy pomiarowe prądu w energoelektronice. COSiW, Warszawa 2003.

PROGRAM OPRACOWAŁ:

dr hab. inż. Ryszard Rybski

Page 159: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

159

TTT EEE CCC HHH NNN OOO LLL OOO GGG III EEE III NNN FFF OOO RRR MMM AAA CCC YYY JJJ NNN EEE

Kod przedmiotu: 15.0 – WE – EEP – TI

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr inż. Piotr Powroźnik

Prowadzący: nauczyciele akademiccy IME

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

3

W ykład 15 2 I

zaliczenie na ocenę

Laborator ium 45 2 zaliczenie na ocenę

Studia niestacjonarne

W ykład 9 1 I

zaliczenie na ocenę

Laborator ium 27 3 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy związanej z metodami i sposobami zbierania, przechowywania, przetwarzania, przesyłania, rozdzielania i prezentacji informacji.

C1U. Ukształtowanie u studentów umiejętności pracy z edytorem tekstu, arkuszem kalkulacyjnym, programem do tworzenia prezentacji multimedialnych oraz programem do tworzenia i przeglądania baz danych.

WYMAGANIA WSTĘPNE:

Podstawowe umiejętności z obsługi sprzętu komputerowego.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawy technik informatycznych

Pozyskiwanie i przetwarzanie informacji

Praca w środowisku sieci komputerowych

Usługi w sieciach informatycznych

Bezpieczeństwo w systemach informatycznych

Przetwarzanie danych w pakietach biurowych

Wdrażanie systemów informatycznych

Podsumowanie wiadomości z zakresu metod i sposobów zbierania, przechowywania, przetwarzania, przesyłania, rozdzielania i prezentacji informacji.

Laboratorium

Edytor tekstu - tworzenia i zapisywania dokumentów do pliku, ustawienia stron, formatowania tekstu, dodawanie grafiki oraz tworzenia spisu treści.

Edytor tekstu - tworzenie i edycja tabel i wzorów

Page 160: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

160

Edytor tekstu - tworzenia i wstawiania pozycji autotekstu, wstawiania komentarzy, wstawiania pól i tworzenia szablonu dokumentu

Podsumowanie wiadomości z zakresu pracy w edytorze tekstowym

Arkusz kalkulacyjny - wprowadzanie i edycja danych, wykonywanie obliczeń, formatowanie arkusza i ustawianie funkcji zabezpieczeń dla danych

Arkusz kalkulacyjny - tworzenie, edycja i formatowanie wykresów

Arkusz kalkulacyjny - korzystanie z funkcji analizujących dane i makropolecenia

Podsumowanie wiadomości z zakresu pracy w arkuszu kalkulacyjnym

Grafika prezentacyjna - tworzenie prezentacji

Grafika prezentacyjna - publikowanie prezentacji w Internecie

Bazy danych - tworzenie tabel, relacji, formularzy, kwerend i raportów

Bazy danych - zaawansowana edycja

Podsumowanie wiadomości z zakresu pracy grafiki prezentacyjnej i baz danych

Podsumowanie wiadomości z zakresu metod i sposobów zbierania, przechowywania, przetwarzania, przesyłania, rozdzielania i prezentacji

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę na temat metod i sposobów zbierania, przechowywania, przetwarzania, przesyłania, rozdzielania i prezentacji informacji.

K1P_W02 Kolokwium pisemne na koniec

semestru W

Potrafi pozyskać i przedstawić innym wiedzę dzięki poznaniu podstaw funkcjonowania systemów informa-tycznych z literatury, baz danych oraz innych właściwie dobranych źródeł. Student ma zweryfikowaną laboratoryjnie wiedzę na temat metod i sposobów zbierania, przechowywania, przetwarza-nia, przesyłania, rozdzielania i prezen-tacji informacji.

K1P_U01, K1P_U04

Sprawdziany pisemne podczas zajęć laboratoryjnych

L

Ma świadomość znaczenia i potrzeby ciągłego doskonalenia technik informacyjnych stosowanych w działalności inżynierskiej.

K1P_K01

K1P_K07

Kolokwium pisemne na koniec semestru

W

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za trzy kolokwia praktyczne.

Ocena końcowa

Na ocenę z przedmiotu składa się ocena z laboratorium (50%) i z wykładu (50%).

Page 161: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

161

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 3 ECTS x (25h / 1ECTS) = 75h

LITERATURA PODSTAWOWA:

1. M. Cieciura, Podstawy technologii informacyjnych z przykładami zastosowań, Warszawa : Vizja Press&IT, 2006.

2. M. Tanaś (red.)Technologia informacyjna w procesie dydaktycznym, Warszawa PWN 2004

3. T. Goban-Klas, Media i komunikowanie masowe, Warszawa PWN 2004

4. P. Wróblewski, MS Office 2013/365 PL w biurze i nie tylko, Gliwice, Helion, 2013

5. Z. Nowakowski, Dydaktyka informatyki i technologii informacyjnej w praktyce, Warszawa PWN 2004

6. J. Bednarek, Multimedia w kształceniu, Warszawa PWN 2004

7. M. Castells, Społeczeństwo sieci, Warszawa PWN 2004

8. D. Harel, Rzecz o istocie informatyki, Warszawa PWN 2004

9. C. Grover, M. MacDonald, E. Moore, Office 2007 PL: poznaj najgłębiej ukryte tajemnice najnowszego MS Office, Gliwice, Helion, 2008

LITERATURA UZUPEŁNIAJĄCA:

1. W. Sikorski, Podstawy technik informatycznych, Wyd. 3 zm., Warszawa, Mikom, 2004

2. M. Raczyńska, Technologia informacyjna w metodzie projektów, Radom, Wydawnictwo Politechniki Radomskiej, 2008

3. R. Orzechowski, Budowanie wartości przedsiębiorstwa z wykorzystaniem IT, Warszawa, Szkoła Główna Handlowa, 2008

4. A. Bremer, M. Sławik, ABC użytkownika komputera, Wyd. 2., uaktual., Chorzów, Videograf Edukacja, 2008

5. R. Supranowicz, L. Łozowski, Windows Vista oraz Office 2007 Professional w praktyce, Legnica, Państwowa Wyższa Szkoła Zawodowa im. Witelona, 2008

6. Akademia sieci CISCO CCNA : semestry 1 & 2, Wyd. 3., Warszawa, Mikom, 2004

7. K. Turczyński (red.), Akademia sieci CISCO CCNA : semestry 3&4, Wyd. 3., Warszawa, Mikom, 2003

8. C. Benvenuti, Linux : mechanizmy sieciowe, Gliwice, Helion, 2006

9. S. Shah, Linux : administracja : kurs podstawowy, Kraków, Wydawnictwo "EDITION 2000", 2001

10. C. Schreder, Sieci Linux : receptury, Gliwice, Helion, 2009

11. D. Mendrala, M. Szeliga, ABC systemu Windows 7 PL, Gliwice, Helion, 2010

12. P. McFedries, Microsoft Windows 7 PL, Gliwice, Helion, 2010

PROGRAM OPRACOWAŁ:

dr inż. Piotr Powroźnik

[email protected]

stacjonarne niestacjonarne

Godziny kontaktowe (W + L) 60h 36h

Konsultacje 9h

Przygotowanie się do zajęć 15h 30h

Razem 75h 75h

Page 162: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

162

TTT EEE RRR MMM OOO DDD YYY NNN AAA MMM III KKK AAA III MMM EEE CCC HHH AAA NNN III KKK AAA PPP ŁŁŁ YYY NNN ÓÓÓ WWW

Kod przedmiotu: 13.2 – WE – EEP – TMP

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmio t : dr hab. inż. Zygmunt Lipnicki prof. UZ

Prowadzący: dr hab. inż. Zygmunt Lipnicki prof. UZ, mgr inż. Marta Gortych

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia

Punkty ECTS

Studia s tacjonarne

5

W ykład 30 2

II

zaliczenie na ocenę

Laborator ium 15 1 zaliczenie na ocenę

ćwiczenia 15 1 zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

II

zaliczenie na ocenę

Laborator ium 9 1 zaliczenie na ocenę

Pro jekt 9 1 zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Przekazanie wiedzy w zakresie termodynamiki i mechaniki płynów.

C1U. Nauczenie studentów podstawowych umiejętności w zakresie obliczanie bilansów cieplnych oraz rozwiązywania problemów technicznych z mechaniki płynów i termodynamiki

C1K. Uświadomienie roli termodynamiki i mechaniki płynów w nowoczesnych rozwiązaniach technicznych.

WYMAGANIA WSTĘPNE:

Matematyka inżynierska, fizyka i mechanika techniczna,.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Podstawowe pojęcia i założenia w termodynamice i mechanice płynów

Ruch elementu płynu. Tensor szybkości deformacji płynu.

Prawa zachowania masy, pędu i momentu pędu

Tensor naprężeń w płynie.

Model płynu idealnego i lepkiego newtonowskiego. Równania ruchu płynu idealnego. Równanie Bernoulliego dla płynu idealnego

Równanie Naviera-Stokesa

Statyka płynów: równanie Eulera, równania równowagi, rozkład ciśnień i temperatury w płynie. Napory

Page 163: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

163

statyczne płynu na powierzchnie ograniczające płyn, pływanie ciał.

Niektóre rozwiązania równania Naviera-Stokesa. Przepływy laminarne i turbulentne. Straty przepływu w rurociągu.

Pierwsza zasada termodynamiki. Energia wewnętrzna i entalpia. Sposoby doprowadzenia energii do układu termodynamicznego: ciepło, energia strumienia, praca.

Druga zasada termodynamiki. Przemiany termodynamiczne odwracalne i nieodwracalne. Entropia. Obiegi termodynamiczne: lewobieżne i prawobieżne. Obieg Carnota.

Gaz doskonały, półdoskonały i rzeczywisty: przemiany, równania termiczne i kaloryczne.

Para wodna i jej przemiany. Powietrze wilgotne.

Obieg Rankine’a dla siłowni parowej i obieg pompy ciepła. Obieg turbiny gazowej.

Podstawowe wiadomości z wymiany ciepła. Przewodzenie, przejmowanie i przenikanie ciepła w stanie nieustalonym i ustalonym.

Podstawy promieniowania ciepła. Niektóre rozwiązania równań Fouriera

Laboratorium

Pomiar lepkości cieczy

Pomiar strat przepływu cieczy przez rurociąg

Wyznaczanie profilu prędkości płynu w kanale cylindrycznym

Wyznaczanie charakterystyki pompy wirowej

Pomiar temperatury

Pomiar wilgotności powietrza

Badanie wymiennika ciepła

Zaliczenie laboratorium

Ćwiczenia

Rozwiązywanie zadań z mechaniki płynów

Rozwiązywanie zadań z termodynamiki

Rozwiązywanie zadań z wymiany ciepła

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Projekt: metoda projektu, praca z dokumentem

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę z zakresu podstawowych pojęć w termodynamice i mechanice płynów, praw zachowania masy i pędu, zasad termodynamiki oraz przemian termodynamicznych.

K1P_W05 Kolokwium pisemne na koniec

semestru. W

Student ma zweryfikowaną laboratoryjnie wiedzę na temat pomiarów lepkości i strat przepływu cieczy, pomiarów temperatury i wilgotności..

K1P_U15

Ocena za sprawozdania z zajęć laboratoryjnych.

L

Student potrafi wyznaczyć profil prędkości płynu w kanale cylindrycznym, a także potrafi wyznaczyć charakterystykę pompy wirowej. Student potrafi także rozwiązywać podstawowe zadania rachunkowe z zakresu termodynamiki i mechaniki płynów, np. dotyczące obliczania bilansów cieplnych.

K1P_K01 Ocena za wykonane zadania

rachunkowe. C

Page 164: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

164

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwium z wagą 80%; ocena z aktywności na zajęciach z wagą 20%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ćwiczenia

Ocena końcowa jest średnią arytmetyczną z kolokwiów

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 40%, laboratorium 30% i projekt 30%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 5ECTS x (25h / 1ECTS) = 125h

stacjonarne niestacjonarne

Godziny kontaktowe (W + C + L) 60h 54h

Konsultacje 35h 41h

Przygotowanie się do zajęć 15h 15h

Sporządzenie sprawozdań 15h 15h

Razem 125h 125h

LITERATURA PODSTAWOWA:

1. Szargut J., Termodynamika techniczna. Wydawnictwo PŚ, Gliwice 2000

2. Wiśniewski S., Termodynamika techniczna. WNT, Warszawa 1980

3. Orzechowski Z., Prywer J., Zarzycki R., Mechanika płynów w inżynierii środowiska. WNT, Warszawa 1997

4. Orzechowski Z., Prywer J., Zarzycki R., Zadania z mechaniki płynów w inżynierii środowiska. WNT, Warszawa 2001

5. Puzyrewski R., Sawicki J., Podstawy mechaniki płynów i hydrauliki. Wydawnictwo Naukowe PWN, Warszawa 1987

LITERATURA UZUPEŁNIAJĄCA:

1. Staniszewski B., Termodynamika. Wydawnictwo Naukowe PWN, Warszawa 1982

2. Wiśniewski S., Wymiana ciepła. Wydawnictwo Naukowe PWN, Warszawa 1988

3. Walden H., Stasiak J., Mechanika cieczy i gazów w inżynierii sanitarnej. Arkady, Warszawa 1971

4. Troskolański A.T., Hydromechanika. WNT, Warszawa 1969

PROGRAM OPRACOWAŁ:

dr hab. inż. Zygmunt Lipnicki prof. UZ

Page 165: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

165

UUU KKK ŁŁŁ AAA DDD YYY EEE NNN EEE RRR GGG OOO EEE LLL EEE KKK TTT RRR OOO NNN III CCC ZZZ NNN EEE

WWW EEE LLL EEE KKK TTT RRR OOO EEE NNN EEE RRR GGG EEE TTT YYY CCC EEE

Kod przedmiotu: 06.0 – WE – EEP – UEE

Typ przedmiotu: Obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : dr hab. inż. Zbigniew Fedyczak, prof. UZ

Prowadzący: Pracownicy Instytutu Inżynierii Elektrycznej

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma

zal iczenia Punkty ECTS

Studia s tacjonarne

7

W ykład 30 2

V

Egzamin

Laborator ium 30 2 Zaliczenie na ocenę

Pro jekt 30 2 Zaliczenie na ocenę

Studia niestacjonarne

W ykład 18 2

V

Egzamin

Laborator ium 18 2 Zaliczenie na ocenę

Pro jekt 18 2 Zaliczenie na ocenę

CEL PRZEDMIOTU:

C1W. Zapoznanie studentów z modelowaniem i analizą właściwości podstawowych przekształtników energoelektronicznych typu AC/DC, DC/DC, AC/AC i DC/AC. C2W. Zapoznanie studentów z podstawowymi układami i właściwościami przekształtników energoelektronicznych w systemach elektroenergetycznych. C1U. Ukształtowanie umiejętności opisu zjawisk występujących przy przekształcaniu energii elektrycznej, a w szczególności przyczyn pogarszających jakość przekształcania w systemach elektroenergetycznych. C2U. Ukształtowanie podstawowych umiejętności doboru i nastaw parametrów przy stosowaniu typowych strategii sterowania przekształtników energoelektronicznych C1K. Uświadomienie znaczenia sposobów i jakości przekształcania energii elektrycznej w systemach elektroenergetycznych.

WYMAGANIA WSTĘPNE:

Analiza matematyczna, Algebra liniowa z geometrią analityczną, Fizyka techniczna, Podstawy elektroenergetyki, Podstawy elektrotechniki i energoelektroniki.

ZAKRES TEMATYCZNY PRZEDMIOTU:

Wykład

Wprowadzenie. Charakterystyka ogólna (podsumowanie) wykładów poprzedzających z przedmiotu Podstawy elektroenergetyki i Podstawy elektrotechniki i energoelektroniki I.

Charakterystyka ogólna (podsumowanie) wykładów poprzedzających z przedmiotu Podstawy

Page 166: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

166

elektroenergetyki i Podstawy elektrotechniki i energoelektroniki II.

Przekształtniki energoelektroniczne w elektroenergetycznych systemach transmisyjnych (EST) oraz elektroenergetycznych systemach dystrybucyjnych (ESD).

Sprzęganie źródeł energii elektrycznej w systemach elektroenergetycznych.

Układy, opis działania, modelowanie i właściwości przekształtników AC/DC do zastosowań w EST.

Układy, opis działania, modelowanie i właściwości przekształtników AC/DC do zastosowań w ESD.

Przekształtniki AC/DC o poprawionym współczynniku mocy.

Układy, opis działania, modelowanie i właściwości nieizolowanych przekształtników DC/DC do zastosowań w ESD.

Układy, opis działania, modelowanie i właściwości izolowanych przekształtników DC/DC do zastosowań w ESD.

Układy, opis działania, modelowanie i właściwości jedno- i trójfazowych przekształtników DC/AC do zastosowań w EST.

Układy, opis działania, modelowanie i właściwości jedno- i trójfazowych przekształtników DC/AC do zastosowań w ESD.

Układy, opis działania, modelowanie i właściwości jedno- i trójfazowych sterowników prądu przemiennego do zastosowań w systemach elektroenergetycznych.

Układy, opis działania, modelowanie i właściwości przekształtników AC/AC do zastosowań w EST.

Układy, opis działania, modelowanie i właściwości przekształtników AC/AC do zastosowań w ESD.

Podsumowanie i trendy rozwojowe układów energoelektronicznych w systemach elektroenergetycznych.

Laboratorium

Wprowadzenie, program i zagadnienia formalne laboratorium z układów energoelektronicznych w elektroenergetyce.

Badania właściwości układu ze źródłami prądu przemiennego obejmujące pomiary transferu energii elektrycznej I.

Badania właściwości układu ze źródłami prądu przemiennego obejmujące pomiary transferu energii elektrycznej I.

Badania właściwości wybranego przekształtnika AC/DC w EST.

Badania właściwości wybranego przekształtnika AC/DC w ESD.

Badania właściwości wybranego przekształtnika AC/DC o poprawionym współczynniku mocy.

Badania właściwości wybranego przekształtnika DC/DC nieizolowanego w systemie elektroenergetycznym.

Badania właściwości wybranego przekształtnika DC/DC izolowanego w systemie elektroenergetycznym.

Badanie właściwości wybranego przekształtnika DC/AC w EST.

Badanie właściwości wybranego przekształtnika DC/AC w ESD.

Badanie właściwości wybranego przekształtnika AC/AC w EST.

Badanie właściwości wybranego przekształtnika AC/AC w ESD.

Badania właściwości transformatorów sprzęgających wysokiej częstotliwości.

Badanie właściwości energoelektronicznych układów synchronizacji w systemach elektroenergetycznych.

Projekt

Określić (obliczyć) charakterystykę mocy czynnej w układzie jednofazowym dwoma źródłami energii elektrycznej i interfejsem przekształtnikowym.

Określić przebiegi czasowe oraz parametry wielkości wyjściowej wybranego przekształtnika energoelektronicznego przy uszkodzeni jednego z łączników przekształtnika.

Określić model matematyczny i interpretację geometryczną wektora przestrzennego sygnałów trójfazowych w wybranym układzie przekształtnika energoelektronicznego stosowanego w systemie elektroenergetycznym

METODY KSZTAŁCENIA:

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach.

Projekt: metoda projektu, praca z dokumentem

Page 167: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

167

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student ma wiedzę o modelowaniu i metodach analizy właściwości podstawowych przekształtników energoelektronicznych typu AC/DC, DC/DC, AC/AC i DC/AC.

K1P_W19,

K1P_W22,

K1P_U08,

K1P_U16,

K1P_U17,

K1P_K01,

K1P_K03,

K1P_K04.

- kolokwia pisemne,

- sprawozdanie z zajęć laboratoryjnych,

- dokumentacja (raport) projektowa,

- egzamin końcowy.

W,L,P Student ma podstawową wiedzę o funkcjach układów energoelektronicznych oraz w systemach elektroenergetycznych.

Student potrafi określić podstawowe właściwości układu energoelektronicznego oraz ma świadomość ich znaczenia w systemie elektroenergetycznym.

Student ma świadomość znaczenia sposobów i jakości przekształcania energii elektrycznej w systemach elektroenergetycznych.

WARUNKI ZALICZENIA:

Wykład

W skład oceny końcowej wchodzą: ocena z kolokwiów z wagą 50%; ocena z odpowiedzi na egzaminie z wagą 50%.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Projekt

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za przedstawione projekty.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana, jako średnia arytmetyczna z ocen ze wszystkich form przedmiotu z wagą: wykład 60%, projekt 20%, laboratorium 20%.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 7 ECTS x (25 h / 1 ECTS) = 175 h

Studia stacjonarne

stacjonarne niestacjonarne

Godziny kontaktowe (W + L + P) 90h 36h

Konsultacje 10h 34h

Przygotowanie się do zajęć 45h 75h

Sporządzenie sprawozdań 30h 30h

Razem 175h 175h

LITERATURA PODSTAWOWA:

1. Kahl T. "Sieci elektroenergetyczne"; Warszawa WNT 1984.

2. Tunia H., Smirnow A., Nowak M., Barlik R.: Układy energoelektroniczne. WNT 1990.

3. Piróg S.: Energoelektronika. AGH, Uczelniane Wyd. Nauk.-Dydakt., Kraków 1998.

Page 168: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

168

4. Mikołajuk K.: Podstawy analizy obwodów energoelektronicznych. Warszawa, PWN 1998.

5. Benysek G., Jarnut M.: Energooszczędne i aktywne systemy budynkowe. Techniczne i eksploatacyjne aspekty implementacji miejscowych źródeł energii elektrycznej. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra 2013.

LITERATURA UZUPEŁNIAJĄCA:

1. Hignorami N. G., Gyugi L., Understanding FACTS, IEEE Press Series, New York, 1999.

2. Mohan N.: Power Electronics: Converters, Applications, and Design. John Wiley & Sons, 1998.

3. Holms D. G., Lipo T. A.: Pulse width modulation for power converters. Principle and practice. IEEE press. New York.

PROGRAM OPRACOWAŁ:

Dr hab. inż. Zbigniew Fedyczak, prof. UZ

[email protected]

Dr inż. Marcin Jarnut

[email protected]

Page 169: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

169

WWW YYY CCC HHH OOO WWW AAA NNN III EEE FFF III ZZZ YYY CCC ZZZ NNN EEE

Kod przedmiotu: 16.1 – WE – EEP – WF

Typ przedmiotu: obowiązkowy

Język nauczania: polski

Odpowiedzia lny za przedmiot : nauczyciel akademicki prowadzący zajęcia/

mgr Tomasz Grzybowski

Prowadzący:

mgr Marta Dalecka, mgr Piotr Galant, mgr Agnieszka Grad – Rybińska, dr Jerzy Grzesiak, mgr Tomasz Grzybowski, mgr Lech Kleczewski, mgr Władysław Leśniak, mgr Ewa Misior, dr Ewa Skorupka, mgr Tomasz Paluch, mgr Jacek Sajnóg, mgr Ryszard Wyder

Forma zajęć

Lic

zb

a g

od

zin

w s

em

es

trz

e

Lic

zb

a g

od

zin

w t

yg

od

niu

Se

me

str

Forma zal iczenia Punkty

ECTS

Studia s tacjonarne

1 Ćwiczenia 30 2 I zaliczenie na „zal”

Studia niestacjonarne

Ćwiczenia 18 2 I zaliczenie na „zal”

CEL PRZEDMIOTU:

Rozwijanie zainteresowań związanych ze sportem i rekreacją ruchową. Kształtowanie umiejętności zaspokajania potrzeb związanych z ruchem, sprawnością fizyczną oraz dbałością o własne zdrowie.

WYMAGANIA WSTĘPNE:

Nie ma wymagań

ZAKRES TEMATYCZNY PRZEDMIOTU:

Edukacja prozdrowotna poprzez wychowanie fizyczne i sport. Ogólna charakterystyka i podstawowe przepisy wybranych dyscyplin sportowych. Praktyczne umiejętności z zakresu wybranych dyscyplin sportowych:

1. Standardowy poziom sprawności:

aqua aerobic,

fitness,

koszykówka,

kulturystyka,

nordic walking,

piłka nożna,

pływanie,

siatkówka,

zajęcia ogólnorozwojowe.

2. Obniżony poziom sprawności:

boccia,

Page 170: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

170

gry sportowe,

pływanie,

rehabilitacja,

zajęcia ogólnorozwojowe na siłowni.

METODY KSZTAŁCENIA:

Pogadanki, ćwiczenia praktyczne, zajęcia w grupach

EFEKTY KSZTAŁCENIA I METODY WERYFIKACJI OSIĄGANIA EFEKTÓW KSZTAŁCENIA:

OPIS EFEKTU SYMBOLE EFEKTÓW

METODY WERYFIKACJI FORMA ZAJĘĆ

Student zna wpływ aktywności fizycznej na prawidłowe funkcjonowanie organizmu oraz zna zagrożenia dla zdrowia wynikające z niehigienicznego trybu życia

K1P_K01 Dyskusja C

Student ma podstawową wiedzę o przepisach i zasadach rozgrywania różnych dyscyplin sportowych

K1P_K01 Obserwacje i ocena umiejętności

praktycznych studenta Ć

Student potrafi zdiagnozować stan swojej sprawności fizycznej

K1P_K01

Test określający poziom rozwoju motorycznego i umiejętności technicznych lub diagnoza stanu zdrowia i sprawności

fizycznej

Ć

Student potrafi zastosować różne formy aktywności w zależności od stanu zdrowia, samopoczucia, warunków atmosferycznych

K1P_K01 Obserwacje i ocena umiejętności

praktycznych studenta Ć

Student docenia konieczność podejmowania wysiłku fizycznego w kontekście zdrowia

K1P_K01 Obserwacje i ocena umiejętności

praktycznych studenta Ć

Student potrafi funkcjonować w grupie z zachowaniem zasad współżycia społecznego oraz odpowiedzialności za bezpieczeństwo swoje i innych

K1P_K03 Obserwacja zachowań studenta podczas

rywalizacji sportowej i w warunkach wymagających współpracy w grupie

Ć

Student potrafi rywalizować z zachowaniem zasad „fair play”, wykazując szacunek dla konkurentów oraz zrozumienie dla różnic w poziomie sprawności fizycznej

K1P_K03 Obserwacja zachowań studenta podczas

rywalizacji sportowej i w warunkach wymagających współpracy w grupie

Ć

Student zna zagrożenia dla zdrowia wynikające z niewłaściwego używania sprzętu i urządzeń sportowych

K1P_K01 Obserwacje i ocena umiejętności

praktycznych studenta Ć

WARUNKI ZALICZENIA:

Ćwiczenia: Podstawą zaliczenia jest aktywne uczestnictwo w zajęciach oraz ocena: - sprawności fizycznej i umiejętności ruchowych przy zastosowaniu standardowych testów

określających poziom rozwoju motorycznego i umiejętności technicznych (poziom standardowy sprawności fizycznej) lub

- znajomości przez studenta metod diagnozy stanu zdrowia i sprawności fizycznej oraz umiejętności zastosowania ćwiczeń fizycznych dla usprawniania dysfunkcji ruchowych, fizjologicznych i morfologicznych za pomocą indywidualnych (w zależności od rodzaju niepełnosprawności) wskaźników funkcji organizmu (obniżony poziom sprawności fizycznej)

Ocena końcowa: Ocena końcowa jest oceną z ćwiczeń.

OBCIĄŻENIE PRACĄ STUDENTA:

Ogólne obciążenie pracą studenta: 1 ECTS x (30h / 1ECTS) = 30h

Page 171: WYDZIAŁ INFORMATYKI, ELEKTROTECHNIKI, I AUTOMATYKI...Wydział Informatyki, Elektrotechniki i Automatyki Kierunek: Efektywność Energetyczna 5 Przygotowanie się do zajęć 40h 64h

Wydział Informatyki, Elektrotechniki i Automatyki

Kierunek: Efektywność Energetyczna

171

LITERATURA PODSTAWOWA:

1. Bondarowicz M.: Zabawy i gry ruchowe w zajęciach sportowych. Warszawa 2002 2. Huciński T., Kisiel E.: Szkolenie dzieci i młodzieży w koszykówce. Warszawa 2008 3. Karpiński R., Karpińska M.: Pływanie sportowe korekcyjne rekreacyjne. Katowice 2011 4. Kosmol A.: Teoria i praktyka sportu niepełnosprawnych. Warszawa 2008 5. Stefaniak T.: Atlas uniwersalnych ćwiczeń siłowych. Wrocław 2002 6. Talaga J.: ABC Młodego piłkarza. Nauczanie techniki. Warszawa 2006 7. Uzarowicz J.: Siatkówka. Co jest grane? Wrocław 2005 8. Woynarowska B.: Edukacja zdrowotna Podręcznik akademicki. Warszawa 2010 9. Wołyniec J.: Przepisy gier sportowych w zakresie podstawowym. Wrocław 2006

LITERATURA UZUPEŁNIAJĄCA:

UWAGI:

Szczegółowe informacje o zakresie tematycznym, efektach kształcenia, metodach weryfikacji i warunkach zaliczenia w poszczególnych dyscyplinach sportu zawarte są w „Katalogu zajęć dydaktycznych SWFiS Uniwersytetu Zielonogórskiego”

PROGRAM OPRACOWAŁ:

mgr Tomasz Grzybowski, mgr Ryszard Wyder

stacjonarne niestacjonarne

Godziny kontaktowe 30h 18h

Przygotowanie się do zajęć 12h

Razem 30h 30h