wwtp inflow parameters

32

Click here to load reader

Upload: herrharo

Post on 26-Oct-2014

202 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: WWTP Inflow Parameters

1

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Design of Wastewater Treatment Plants

Lecture 1Introduction and

Determination of inflow parameters

Prof. Dr.-Ing. Heidrun Steinmetz

Institute for Sanitary Engineering, Water Quality and Solid Waste Management- Chair of Sanitary Engineering and Water Recycling -

2

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Contents of the lecture

Determination of inflow parameters (ATV-DVWK - A 198)

Microbiological processes/activated sludge process

Dimensioning of activated sludge treatment plants (ATV- A 131)

Nitrogen removal

Phosphorous removal

Dimensioning of biofilters

Sludge treatment and dimensioning of sludge treatment plants

Resource orientated systems

Anaerobic systems

Planning process

Exercise

Excursion

Page 2: WWTP Inflow Parameters

3

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Introduction and repetition

Aim of biological Waste water treatment:Removal of carbon compounds (BOD5, COD)Reason: prevent oxygen depletion of receiving waters

Removal of nutrients (nitrogen, phosphorus) Reason: prevent eutrophication of receiving waters

WastewaterTreatment Plant Corg, NH4, NO3, PO4

Corg, Norg, NH4, Porg

Corg,Norg,Porg

CO2,N2Influent Effluent

Gas

Sludge

4

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Components in Wastewater and their Effects

Radioactivity

Aesthetic inconveniences, toxicity

Hydrogen sulfide, othersOdour (and taste)

Changing living conditions for flora and fauna

Hot waterThermal effects

Toxicity, corrosionAcids, bases, hydrogen

sulfideOther inorganic material

Toxicity, bioaccumulationHg, Pb, Cd, Cr, Cu, NiMetals

Eutrophication,

oxygen depletionNitrogen, phosphorusNutrients

Toxicity, bioaccumulation in the food chain,

Detergents, pesticides, fat, oil, phenols,endocrine d.....

Other organic material

Fish death, odors, deterioration of drinking w.

Oxygen depletion in water bodies

Biodegradable organic material

Risk when bathing and eating fishes

Pathogenic bact., viruses and worm eggs

Microorganisms

Environmental effectOf special interestComponent

!

!

Page 3: WWTP Inflow Parameters

5

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Carbon (C)- Parameters for Dimensioning

COD (Chemical oxygen demand) Amount of oxygen required for the chemical oxidation of organic compounds

Specific load per inhabitant (acc. to ATV-DVWK A 131, 2000):120 g BOD5/(C·d)

BOD (Biochemical oxygen demand)Amount of oxygen required for the biological oxidation of organic compounds

BOD5: Degradation time = 5 days; Temperature = 20 °C

Specific load per inhabitant (acc. to ATV-DVWK A 131, 2000):60 g BOD5/(C·d)

Only a part of the organic wastewater constituents are readily degradable

6

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Phosphorus (P) – Parameter for Dimensioning

Pto

tal Po

ly-P

ho

sph

ate

/ o

rg. P

ort

ho

Ph

osp

hat

e /

ino

rg. P

Specific load per inhabitant (acc. to ATV-DVWK A 131, 2000):

1.8 g P/(C.d)

Origin (acc. to Raach et al., 1999 ):

70% Urin and Faeces

17% Washingpowder/liquid

13% Kitchen waste

Page 4: WWTP Inflow Parameters

7

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Specific Load and Concentration of Nutrients

The specific load of phosphorus decreased within the last years due to the reduction of P in detergents

The specific load of nitrogen is 11 to 13 g/(cap•d)

10.02.03.04.9Total

0.50.11.13.0Detergents

9.51.91.91.9Food

mg/L Pg/(cap•d) Pg/(cap•d) Pg/(cap•d) P

200019891985

8

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Nitrogen (N) - Parameters for Dimensioning

Ng

es

TK

NN

Ox-

N

NH

4-N

NO

x-N

org

. N

Nan

org

org

. N

Specific load per inhabitant (acc. to ATV-DVWK A 131, 2000):

11 g N/(C.d)

Origin (acc. to Koppe and Stozek, 1999) :

76% Urine

14% Faeces

10% Washing and cleaning agents

Page 5: WWTP Inflow Parameters

9

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Basic Flow Scheme of a WWTP

Secondary sludge= Excess sludge

Dewatering and-agricultural use-landfill-incineration

Primary treatment Biological treatment

Return sludge

Screenings Sand

Influent

Effluent

GreasePrimarysludge

Aerationtank

Secondarysediment.

Raw sludge

Digester35°C

Thickener andstorage tank

BiogasGas storage

Thickener

Screening Gritrem.

Greaserem.

Primarysediment.

Supernatant

Sludge treatment

10

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Introduction and repetition

IndustrialWastewater

DomesticWastewater

InfiltrationWater

Preci-pitation

Combined SewerWastewater Sewer

IndustrialWWTP

StormSewer

Municipal WastewaterTreatment Plant

2,8

3,2 3,9 0,9

0,6

1,2

Billion m³/a

2,8 8,9

Page 6: WWTP Inflow Parameters

11

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Types of Wastewater (WW)

Municipal WWDomestic or Household WW

Industrial, Commercial, Institutional WW

Infiltration WW (Imported, Sewer Infiltration, Parasite Water)

Stormwater

Average Flow treatment process design in m3/d

Peak Flow hydraulic design in m3/h;l/s

12

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Determination of Dimensioning Values

Wastewater flow • Concentration = LoadWastewater flow • Concentration = Load

Can be measured !

Cannot be measured directly !

Literature values (Loads) and measured values(flow and/or concentrations) often cannot bebrought into agreement easily!

Page 7: WWTP Inflow Parameters

13

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

How to start with the dimensioning?

Which input parameters are needed?Load of BOD (or COD)

Load of total nitrogen

Load of total Phosphorous

Load of TSS

Temperature

Mean flows

Maximum flow (minimum flow)

If data do exist, one should need them

Aim of DWA A 198

Verification is always necessary (are the results plausible?)

14

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Aims and application of A- 198

Examination of existing data (self-monitoring, specific monitoring programms) as well as derivation of dimensioning values and forecast values for various time horizons (planning criteria)

Adjustment of dimensioning values of sewer systems and wastewater treatment plants

Harmonizing the symbols for dimensioning as extensively as possible

Mathematical determination of the dry weather flow (dissociated from meteorological records)

Approach for the determination of the combined wastewater flow (Qcomb) at the interface sewer – wastewater treatment plant

Determination of concentration of N and P on the basis of COD as a master parameter

Page 8: WWTP Inflow Parameters

15

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Aims and application of A- 198

However:

because of the temporal variable releases of standards and leaflets there are yet much different terms and symbols for the same facts

However:

the needed flows, loads and concentrations for dimensioning are to be found in the respective standards (e.g. A 131)

16

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Symbols and their meanings I

Main terms:

A = Areas [ha, m²]

Q = Flows [l/s, m³/a, m³/d, m³/h]

C = Concentrations (homogenised sample) [mg/l, kg/m³, %]

S = Concentrations (filtered sample) [mg/l, kg/m³, %]

X = Concentrations (in the filter residue) [mg/l, kg/m³, %]

B = Loads [kg/a, kg/d, kg/h]

q = Flow rates [l/(s ha)]

Page 9: WWTP Inflow Parameters

17

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Symbols and their meanings II

Indices

Catchment areas

Types of flow

Periods of time

Mean values for periods

Parameters

Location of sampling

18

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Symbols and their meanings III

Catchment Areas (AC)

Area with seperate sewer system (AC,Sep)

Area with combined sewer system (AC,Comb)

Paved surface (AC,p)

Non-paved surface (AC,np)

With sewers (AC,s or e.g. AC,s,p)

Types of flow (Q)

WW - wastewater flow (QWW)

DW - dry weather flow (QDW)

Inf - infiltration water flow (QInf)

Comb - combined wastewater flow (QComb)

Thr - throttle flow (QThr)

Mean values for periods

aM – annual mean

mM – monthly mean

pM – mean for a period

wM – weekly mean

2wM – 2-weekly mean

dM – daily mean

hM – hourly mean

With no details:

intervall < 5 minutes

Page 10: WWTP Inflow Parameters

19

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Symbols and their meanings IV

Periods of time

a, m, w, d, h, min

P a special period

Location of sampling

In – inflow to thewastewater treatmentplant

InB – inflow to the biologicalstage

ESST – effluent of thesecondary settlingstage

EF – effluent of a filter

EP – effluent of a pond

20

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Definition of the types of areas

AC

AC,ns

AC,s

AC,p

AC,np

Sou

rce:

AT

V-D

VW

K-S

tand

ard

A 1

98 (

2003

)

Catchment Area

Catchment area notserved by sewers

Catchment area servedby sewers

Paved surface

Non-pavedsurface

Page 11: WWTP Inflow Parameters

21

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Symbols and their meanings V

QDW Dry weather flow l/s

QComb Combined wastewater flow to the wastewater

treatment plant l/s

Qa Annual flow m³/a

Qd Daily flow m³/d

QDW,d Daily dry weather flow m³/d

QDW,d,aM Dry weather flow as annual mean m³/d

(quotient of sum of daily flows of all dry weather

days and the number of dry weather days of a year)

QDW,aM Dry weather flow as annual mean l/s

QDW,2h,max Maximum dry weather flow as 2-hourly mean m³/h

QSl,d Daily volume of sludge m³/d

QWS,d Daily volume of waste (activated) sludge m³/d

22

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Determination of Dimensioning Values

It should be differentiated between the actual loading (status quo) and the designed loading (predicted)

It should be differentiated between:

Water quantity

Loads

Concentrations

Several sources are used:

Existing measurements

Operations manual

Special monitoring programs

Operation of experimental plants

Data from municipalities, industries and others

Literature values

Empirical values, estimates

Page 12: WWTP Inflow Parameters

23

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Actual situation and prognosis

Infiltration waterInfiltration water

Industrial wastewaterIndustrial wastewater

QD,dwdPQD,dwdP

Domestic wastewaterDomestic wastewater

PrognosisActual situation

24

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Dimensioning Values

Flow data

Mean values (for procedural design)

QDW,d Daily dry weather flow m³/d

QDW,aM Dry weather flow as annual mean l/s

Peak values (for hydraulic calculations)

Important for complete optimization of sewer and wastewater treatment plant!!

In catchment areas only with separate sewer system

QDW,h,max

In catchment areas with combined sewer systems

QComb

Additional for hydraulic calculations the Minimum dry weather flow as 2-hourly mean

QDW,2h,min

Page 13: WWTP Inflow Parameters

25

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Dimensioning Values

Design of the primary settling tanks

Dry weather flow

QDW,2h,max

Stormwater flow

Combined sewer system: QComb

Separate sewer system: QR,Sep,h,max

Operational temperature

Lowest temp. (for process design)

Highest temp. (for design of aeration system)

Temperature at location of sampling: effluent of the biological tank (alternatively inflow or effluent of the primary settling tank)

Relevant: Determination from the curve of 2-week mean over 2 years

26

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Annual temperature variation WWTP H. 2006

0

5

10

15

20

25

J F M A M J J A S O N D

Months

Tem

per

atu

re i

n °

C

Daily temperature

2 weeks mean

12 °C

10 °C

Page 14: WWTP Inflow Parameters

27

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Dimensioning values for wastewater treatment plants

Loads and concentrationsClassification of wastewater treatment plants in size ranges

BOD5 load(Bd,BOD5,In)in the influent to the wastewater treatment plant which is undercut on 85% of the dry weather days without backflows plus a planned capacity reserve.

Calculation out of minimum 40 values of BOD5 loads out of 3 years

Dimensioning of combined sewer overflows

Annual mean value of the COD concentration in the inflow to the wastewater treatment plant

Dimensioning of wastewater treatment plants

Relevant loads for dimensioning the biological reactor

Bd,COD,InB kg/d

Bd,BOD5,InB kg/d (also for trickling filters)

Bd,SS,InB kg/d

Bd,TKN,InB (evtl.: Bd,NO3,InB and Bd,NO2,InB) kg/d (also for trickling filters)

Bd,P,InB kg/d

28

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Dimensioning of activated sludge plants according to A131

The relevant loads are calculated as

The maximum 2-4-weekly means in the determining range of temperature

or

85-percentile value of minimum 40 daily loads that are uniformly distributed over up to 3 years

Attention: If an annual graph indicates periodical fluctuations, several loading cases are to be investigated.

Relevant sludge volume index (SVI)

Maximum value of 3 year curves as 2-week mean

or

85%-percentile value of the last 2 years

Peak factor

Maximum daily 2-h-load/ daily average

Page 15: WWTP Inflow Parameters

29

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Daily Variations of Wastewater Flow

Determination of yearly wastewater flow (sewage flow on all days)

Determination of yearly dry weather flow (dry weather flow on dayswithout rain)

Determination of peak flow during dry weather

iqC,iAWW,dwP

WW,aMQ ⋅+⋅

=86400

Inf,aMQ

WW,aMQ

DW,aMQ +=

Inf,aMQ

Qx

WW,aMQ

DW,Q +

⋅=

max

24

maxSou

rce:

AT

V-D

VW

K-A

rbei

tsbl

att A

198

(A

pril

2003

)

[ l/s ]

30

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Daily Variations of Wastewater Flow

Sou

rce:

AT

V-D

VW

K-A

rbei

tsbl

att A

198

(A

pril

2003

)

Ruralareas

< 5,000 E

Middle towns5,000- 20,000-

20,000 E 100,000 E

Largecities

> 100,000 E

20

Divisor xQmax [ h/d ]

18

12

14

16

10

8

aMInfQ

aMWWhDWhDW Q

x

QQorQ ,

max

,max,2,max,,

24+

⋅=

Page 16: WWTP Inflow Parameters

31

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Dry weather inflow and combined water inflow

Old standard:

New opinion (A-198):

New approach: Seen as an advantage that the mean wastewater flowQWW,aM can present the same initial basis both for the layout of combined sewer overflows and also for the combined wastewater flowto the wastewater treatment plant.

InfWWComb QQQ +⋅= 2

aMInfaMWWQCWWWComb QQfQ ,,, +⋅=

32

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Dry weather inflow and combined water inflow

Ruralareas

< 5,000 E

Middle towns5,000- 20,000-

20,000 E 100,000 E

Largecities

> 100,000 E

9

6

3

fWW,QCW [ - ] peak factor for the calculation of the wastewater flow

Sou

rce:

AT

V-D

VW

K-S

tand

ard

A 1

98 (

Apr

il 20

03)

aMInfaMWWQCWWWComb QQfQ ,,, +⋅=

Page 17: WWTP Inflow Parameters

33

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Daily Variations of Wastewater Flow

Qd = 15,000 m3/d

Mean value of 24h

Daytime mean value

Nighttime mean value

Daytime maximum

Nighttimeminimum

Figure: Variations in dry weather flow during the day (Source: ATV Handbook 1, 1994)

Dis

char

ge in

m³/

h

34

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Design Values Domestic Wastewater Flow

Size of

settlement

Specific do-mestic WW production

Divisor daily peak

Divisor day average

Divisor night average

1000 C wWW,d x x x

- l/(C⋅d) h/d h/d h/d

>250 130-150 16 20 30

50 – 250 120-140 14 18 36

10 – 50 110-130 12 16 48

5 – 10 100-120 10 14 84

< 5 100 8 12 No flow

Example l/(C⋅d) l/(C⋅h) l/(C⋅h) l/(C⋅h)

10 - 50 110 110/12=9,2 110/16=6,9 110/48=2,3

x = Variation factor

Page 18: WWTP Inflow Parameters

35

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Wastewater from Commerce and Industry

Amount depends onType of commerce/ industry

Production amounts

Production method

Internal circulation

Fluctuations depend onProduction times

Hours/ days

Production cycles (e.g.: Slaughtery periods,..)

Days/ weeks

Seasonal activities

Food industry (e.g. production periods of sugar industry,...)

Tourism

Water saving production methods

Large scale industry mostly direct dischargers

36

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Wastewater from Commerce and Industry

Reliable values only from investigations

Approximate values from literature

Planning recommendations for new commercial areas or industrial estates (ATV-Arbeitsblatt A118)

Companies with low water demandqi = 0.5 l/(ha⋅s)

Companies with moderate water demandqi = 1.0 l/(ha⋅s)

Companies with high water demandqi = 1.5 l/(ha⋅s)

Page 19: WWTP Inflow Parameters

37

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Specific Wastewater Production

Commerce Amount Unit

Hospital 0.25 – 0.6 m³/bed

Swimming-pool 0.15 – 0.18 m³/visitor

School 0.02 m³/pupil

Department store 0.1 – 1.0 m³/employee

Restaurant 0.015-0.02 m³/guest

Hotel 0.2 – 0.6 m³/bed

Pulp production 300 m³/t pulp (downward trend)

Paper production 100 15 m³/t paper

Brewery 0.4 – 0.8 m³/hl beer

Dairy 5 m³/m³ milk

Preserves 35 m³/t fruit/vegetable

Textile industry 40 - 120 m³/t product

38

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration Water

Origin

Diffuse sources (drainage water)

Rivers

Water drainage on building sites

Leaky sewers (groundwater inflow)

inf (groundwater level)

inf (sewer condition)

Infiltration water is undesirable due to the fact, thatthe pollution of infiltration water is very low, but thetotal water flow is increased, resulting in higherwastewater discharge fees!

Page 20: WWTP Inflow Parameters

39

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration Water

Recommendations for Dimensioning

Infiltration water flow

qInf = 0.05 – 0.15 l/(ha⋅s) impervious area

In the separate sewer system for the sanitary sewer

QInf = 100 % QWW

In the combined sewer system (based on average hourly QWW)

QInf = 30 – 40 % QWW

Related to sewer length

qInf = 29 ... (43) ...67 l/(m ⋅ d)

Related to population

wInf = 100 ... (130) ... 150 l/(C*d)

40

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration water

Definitions

Infiltration water fraction

Infiltration water addition

Conversion

1

11

+−=

FWZFWA

InfWW

Inf

DW

Inf

QQ

Q

Q

Q

InflowWeatherDry

InflowWateronInfiltratiFWAi

+===)(fraction n water nfiltratio

WW

Inf

Q

Q

InflowWastewater

InflowWateronInfiltratiFWZi ==)(addition n water nfiltratio

11

1−

−=

FWAFWZ

Page 21: WWTP Inflow Parameters

41

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration water

(Source: DWA Leistungsvergleich 2008)

0

2

4

6

8

10

12

1 2 3

0

50

100

150

200

250

300

350

400

450

500

224

6,3

343

9,9

431

5,0

≤ 25 % 25 – 50% > 50%

Nu

mb

ero

f W

WT

P

Mio

PE

WWTP: 998

Mio P: 21,2

Average value of BW: 42%

Fraction of infiltration water

Infiltration water in BW 2008

Number of WWTP Mio PE

42

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration Water

Determination in existing WWTPs:

Minimum inflow during night

Method of yearly wastewater flow

Sliding minimum

Triangle method

Others

Chemical method

Isotope method

Page 22: WWTP Inflow Parameters

43

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration Water

Assumption: Variations of infiltration flow result from slow variations of groundwater level, fast variations are the result of surface stormwater runoff

For each day, the dry weather flow is determined as the minimum daily flow out of the 21 preceding days (“digital filter“)

Wastewater flow is determined from drinking water consumption or specific consumption values per inhabitant

Tends to result in higher infiltration flow values than other methods

+ No use of subjective weather code

+ Infiltration flow variation over the year can be shown (seasonal variations)

+ Also suitable for small catchment areas with pumping stations and very large catchmentareas

? Catchment area of WWTP identical with service area of water supply company ?

Use of drinking water for irrigation or industrial uses which do not produce wastewater

Gliding minimum

44

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration water

0

5000

10000

15000

20000

25000

30000

35000

40000

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12

2001

Inflo

w

[m³/

d]

Wastewater

Infiltration water

Stormwater

FWA = 42,0 %

Gliding minimum

Page 23: WWTP Inflow Parameters

45

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Infiltration water according to the method of the glidingminimum WWTP H. 2006

Hirsau

0

50

100

150

200

250

300

350

400

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353

QdQT,dQS,dQF,d

TAGE

Ab

fluss

in l/

s

FWA [%]:56,4

2006Berichts-/Veranlagungsjahr

Wat

erflo

win

l/s

Days

QDW,dQWW,dQInf,d

56% of dry weather flow is infiltration water!

46

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Water flows WWTP H. 2006

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

J F M A M J J A S O N D

Months

Wat

er f

low

in m

3 /d

Qd

QDW

Page 24: WWTP Inflow Parameters

47

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Cummulative curves of water flows WWTP H. 2006

0

10

20

30

40

50

60

70

80

90

100

110

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Water flow in m3/d

Fre

quen

cy in

%

Qd

QDW

85% value

50% value

QDW,d,85% = 8.727m³/d

48

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Peak flow and combined water flow WWTP H. 2006

QDW,2h,max = 24 · QWW,aM / xQmax + QInf,aM =

24 · 33,9 / 17 + 52,6 = 100,5 l/s

QM = fWW,QCW · QWW,aM + Qf,aM =

6 · 33,9 + 52,6 = 256 l/s

Old standard (ATV-DVWK-A 131 (1991 und 2001)):

Qcomb = 2 · QWW + QInf = 2 · (QDW,2h,max – QInf) + QInf =

2 · (QDW,d,85/f – QInf) + QInf =

2 · (8.727/12 ·24 – 4.544,6) + 4.544,6 =

30.363,4 m3/d = 351 l/s

Page 25: WWTP Inflow Parameters

49

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Determination of loads and concentrations

Determination of inflowing loads for dimensioning the biological

reactor

Determination of cBOD,InB; cCOD,InB; xSS,InB; cTKN,InB,cP,InB,SAlk,InB

Measurements of COD are the most frequently master parameter

COD is the most frequently determined parameter. Values of less

determined parameters could be deflected by ratios between COD and

them (keeping the costs for chemical analysis within limits)

If necessary intensive samplings are needed

50

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Determination of loads and concentrations

Loading cases

Determination on the basis of 2-4-week means

Load at the temperature on which the dimension is based

Load at the lowest temperature

Load at the highest temperature

Special loading cases

Determination of the 85%- Values

Load which is achieved or undercut on 85% of the dry weather days (minimum 40 values)

Building the ratios cCOD,InB/cBOD,InB and cTKN,InB/cCOD,InB for day on which all parameters were sampled

Determination of the relevant loads with these average values

Page 26: WWTP Inflow Parameters

51

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Cummulative curve of COD in inflow of biological tank WWTP H. 2006

0

10

20

30

40

50

60

70

80

90

100

110

0 50 100 150 200 250 300 350 400

COD in inflow of biological tank in mg/l

Fre

quen

cy in

%

85% value

50% value

52

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Cummulative curve of COD load in inflow of biological tank WWTP H. 2006

0

10

20

30

40

50

60

70

80

90

100

110

0 1000 2000 3000 4000 5000 6000 7000 8000

COD load in inflow of biological tank in kg/d

Fre

quen

cy in

%

85% value

50% value

Page 27: WWTP Inflow Parameters

53

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example: Yearly temperature curve of wastewater

5

10

15

20

25

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12

was

tew

ater

tem

per

atu

re[°

C]

54

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example: Duration curve of wastewater temperature

5

10

15

20

25

1 51 101 151 201 251 301 351

Was

tew

ater

tem

per

atu

re[°

C]

-cu

mm

ula

tive

-

2000

1999

Page 28: WWTP Inflow Parameters

55

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Plausibility check of inflow values

Following ratios could be taken as support for urban wastewateraccording to ATV-Standard A131 (2000) (without relevant impacts of commerce and industry):

COD : Nges : Pges = 120 : 11 : 1,8

Or approximatley

COD : Nges = 1 : 0,08 = ca. 12

Acceptable range

COD : Nges = 6,5 to 16

56

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Rough estimation values for total nitrogen

Raw inflow: NH4-N x 1,7 = Nges Raw inflow

Example Hof: 16,9 mg/l (mean) x 1,7 = 28,7 mg/l

Inflow biological reactor: NH4-N x 1,2 = Nges inflow biological reactor

Example Hof: 19,9 mg/l (mean) x 1,7 = 23,9 mg/l

NH4-N [mg/l]

TKN [mg/l]

Nges [mg/l]

Norg [mg/l]

Mean 16,9 33,4 35,2 17,5

Minimum 4,4 12,8 14,2 8,4

Infl

ow

WW

TP

Maximum 23,3 46,3 49,9 25,0

Mean 19,9 38,3 39,2 18,5

Minimum 4,7 16,2 17,1 11,5

Infl

ow

b

iolo

gic

al

reac

tor

Maximum 32,4 60,3 60,6 27,9

Nitrogen concentrations in the inflow respectively in the biological reactor of the WWTP Hof

Source: K

A-B

etriebs-Info 2004 (34)

Page 29: WWTP Inflow Parameters

57

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example of hydraulics

Maximum, mean and minimum hourly dry weather flows Nov. 01 until Oct. 02

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

Nov. 01 Dec. 01 Jan. 02 Feb. 02 March. 02 Apr. 02 May. 02 Jun. 02 Jul. 02 Aug. 02 Sep. 02 Oct. 02

Date

Q DW

,hb

zw.

Q DW

,24[l

/s]

QDW,24

QDW,h,min

QDW,h,max

58

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example of hydraulics

Curve of the DW-days about a year from Nov. 2001 until Oct. 2002

0

10000

20000

30000

40000

50000

60000

Nov. 01 Dec. 01 Jan. 02 Feb. 02 March. 02 Apr. 02 May. 02 Jun. 02 Jul. 02 Aug. 02 Sep. 02 Oct. 02

Date

Dai

ly f

low

[m³/

d]

Yearly mean value

9979 m3/d178 DW-days

Page 30: WWTP Inflow Parameters

59

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example of the determination of loadsComparison of the daily flows and of the COD loads from Nov. 2001 until

Oct. 2002

0

2000

4000

6000

8000

10000

12000

14000

0 10000 20000 30000 40000 50000

Qd [m3/d]

Bd

,CO

D,I

nB

[kg

/d]

200

350700 500

Parameter CCOD [mg/l]

60

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example of the determination of loads

Unterschreitungshäufigkeit der CSB-Frachten Zulauf Bio vom Nov. 2001 bis Okt. 2002

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000

COD [kg/d]

Un

ters

chre

itu

ng

[%

]

85%-Value: 6613,14 kg/d

Page 31: WWTP Inflow Parameters

61

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Example of the determination of loads

2-weekly mean of the loads of COD in the inflow of biochemical reactor from Nov. 2001 until Oct. 2002

0

1000

2000

3000

4000

5000

6000

7000

8000

16.9 5.11 25.12 13.2 4.4 24.5 13.7 1.9 21.10 10.12

Date

Bd

,CO

D,I

nB

,2w

M[k

g/d

]

Rated value: 7.000 kg/d

62

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Literature IWastewater Treatment

Degrémont: Water Treatment Handbook Vol. 1 & 2, Lavoisier, Cachan, 2007, ISBN: 978-1-84585-005-0, 978-2-7430-0970-0 Grady, C.P.L., G.T. Daiger, H.C. Lim: Biological Wastewater Treatment, 2. Ed., Marcel Dekker, New York, 1999.Henze, M., Harremoes, P., LaCour Jansen, J., Arvin, E.: Wastewater Treatment, 2. ed., Springer, Berlin, 1997Liptak, B., G., Liu, D.H.F. Environmental Engineers Handbook, 2nd Ed., Lewis Publ., Boca Raton, 1997, Air Pollution, Noise

Pollution, Wastewater Treatment, Removing Specific Water Contaminants, Groundwater and Surface Water Pollution, Solid Waste, Hazardous Waste

Metcalf & Eddy, Inc.: Wastewater Engineering: Treatment, Disposal and Reuse, McGraw Hill, New YorkRich, L. G.: Unit operations of sanitary engineering, John Wiley, New York, 1961Schroeder, E. D.: Water and Wastewater Treatment, McGraw Hill, New York, 1977Stephenson, K., K. Brindle, K., Judd, S., Jefferson, B.: Membrane Bioreactors for Wastewater Treatment. 2000, Portland

Press Ltd. Essex

Water Chemistry

Sawyer, C.N., P.L. McCarty: Chemistry for Sanitary En-gineers, McGraw Hill Book Comp., New YorkStumm, W., Morgan, J.J.: Aquatic Chemistry, Wiley, New York, 4. Ed..

Hydrobiology

Uhlmann, D.: Hydrobiology, a text for engineers and scientists, John Wiley, New York Chichester, 1988

Biotechnology, Modeling, Chemical Engineering

Bailey, J.E., D.F. Ollis: Biochemical Engineering Fundamentals, Mc Graw Hill, Internat. Editions, New York, 1986Blanch, H.W. u. Clark, D.S.: Biochemical Engineering, Marcel Dekker Inc., New York 1997IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment (Editor): Activated

Sludge Models ASM1, ASM2, ASM2D and ASM3, IWA Publishing, London 2000.Rittmann, B., McCarty, P.: Environmental Biotechnology: Principles and Applications, McGraw-Hill Science/Engineering/Math,

2001Russel, T.W.F., M.M. Denn: Introduction to Chemical Engineering Analyses, J. Wiley & Sons, New York, 1972Snape, J.B., I.J. Dunn, J. Ingham, J.E. Prenosil: Dynamics of Environmental Bioprocesses - Modeling and Simulation, VCH,

Weinheim, 1995

Page 32: WWTP Inflow Parameters

63

Design of WWTP1. Determination of inflow parameters

UNIVERSITÄTSTUTTGART

Literature IIStandards, Advisory leaflets (DIN: Deutsche Industrienorm, EN: European Standard)DIN 4045, 1985-12: Abwassertechnik; Begriffe: Waste Water Engineering; VocabularyDIN EN 1085, 1997-07: Abwasserbehandlung, Begriffe, Terminologie, Wörterbuch: Wastewater treatment – Vocabulary;

Trilingual version EN 1085: 1997DWA: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. in English: German Association for Water,

Wastewater and Waste Design Rules in English, Others

GlossariesBains, W.; Biotechnology from A to Z, Oxford University Press, Oxford, 1993

Journals:Environmental Science and TechnologyISSN: 0013-936X, Uni S, Homepage: http://pubs.acs.org/journal/esthagWater ResearchISSN: 0043-1354, Uni S , Homepage: http://www.iwaponline.com/wr/default.htmWater Science and TechnologyISSN: 0273-1223, Uni S: 13.1981 - 50.2004 (LEA).Homepage: http://www.iwaponline.com/wst/default.htmWater Environment ResearchISSN: 1061-4303t: Uni S 64.1992 - 76.2004 (LEA) Homepage: http://www.ingentaconnect.com/content/wef/werWater Practice & TechnologyISSN: 1751-231X, Uni S, Homepage: http://www.iwaponline.com/wpt/Journal of Water Supply: Research and Technology – AquaISSN: 0003-7214 Uni S 1974 – 1979 (LEA), 1959 – 1974 ISWA, Homepage:http://www.iwaponline.com/jws/default.htmWater Resources ResearchISSN: 0043-1397, Uni S: 26.1990 - 40.2004 (LEA), 5.1969 - 33.1997 ISWA, Homepage: http://www.agu.org/journals/wr/Urban Water JournalISSN: 1744-9006, Uni S, Homepage: http://www.informaworld.com/smpp/title~content=t713734575~db=allJournal of Environmental Technology and ManagementISSN: 1741-511X, Homepage: https://www.inderscience.com/browse/index.php?journalID=11