widely-tunable, narrow-linewidth iii-v/silicon hybrid ... · pdf filewidely-tunable,...

Click here to load reader

Post on 26-Aug-2018




0 download

Embed Size (px)


  • Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication HANG GUAN,1,2,3* ARI NOVACK,1,2,3 TAL GALFSKY,2 YANGJIN MA,2 SAEED FATHOLOLOUMI,2 ALEXANDRE HORTH,2 TAM N. HUYNH,2 JOSE ROMAN,2 RUIZHI SHI,2 MICHAEL CAVERLEY,2 YANG LIU,2 THOMAS BAEHR-JONES,2 KEREN BERGMAN,1 AND MICHAEL HOCHBERG2 1Department of Electrical Engineering, Columbia University, New York, NY 10027, USA 2Elenion Technologies, New York, NY 10016, USA 3These authors contributed equally *[email protected]

    Abstract: We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si3N4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser. 2018 Optical Society of America

    OCIS codes: (250.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits; (140.3600) Lasers, tunable; (060.1660) Coherent communications.

    References and links 1. M. Hochberg and T. Baehr-Jones, Towards fabless silicon photonics, Nat. Photonics 4(8), 492494 (2010). 2. M. Asghari and A. V. Krishnamoorthy, Silicon photonics: energy-efficient communication, Nat. Photonics

    5(5), 268270 (2011). 3. C. R. Doerr, Silicon photonic integration in telecommunications, Front. Phys. 3, 37 (2015). 4. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L.

    Virot, J.-M. Fdli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. OBrien, G. Z. Mashanovich, and M. Nedeljkovic, Roadmap on silicon photonics, J. Opt. 18(7), 073003 (2016).

    5. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, Scaling silicon photonic switch fabrics for data center interconnection networks, Opt. Express 23(2), 11591175 (2015).

    6. K. Wen, P Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, "Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,"" In International Conference for High Performance Computing, Networking, Storage and Analysis (2016), pp. 166-177.

    7. S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, Silicon photonics for exascale systems, J. Lightwave Technol. 33(3), 547-562 (2015).

    8. H.-F. Liu, Integrated silicon photonics links for high bandwidth data transportation, in Optical Fiber Communication Conference (2014), paper Th1D.1.

    9. M. Mazzini, M. Traverso, M. Webster, C. Muzio, S. Anderson, P. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, M. Nyland, C. Togami, K. Yanushefski, and T. Daugherty, 25GBaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics, in Optical Fiber Communication Conference (2015), paper Th5B.3.

  • 10. A. Ramaswamy, J. E. Roth, E. J. Norberg, R. S. Guzzon, J. H. Shin, J. T. Imamura, B. R. Koch, D. K. Sparacin, G. A. Fish, B. G. Lee, R. Rimolo-Donadio, C. W. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. L. Schow, A WDM 4x28Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs, in Optical Fiber Communication Conference (2015), paper Th5B.5.

    11. B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, 112Gb/s DP-QPSK transmission over 2427km SSMF using small size silicon photonics IQ modulator and low power CMOS driver, in Optical Fiber Communication Conference (2013), paper OTh1D.1.

    12. C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, Single-chip silicon photonics 100-Gb/s coherent transceiver, in Optical Fiber Communication Conference (2014), paper Th5C.1.

    13. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters, IEEE J. Sel. Top. Quantum Electron. 20(4), 18 (2014).

    14. C. Doerr, J. Heanue, L. Chen, R. Aroca, S. Azemati, G. Ali, G. McBrien, L. Chen, B. Guan, H. Zhang, and X. Zhang, Silicon photonics coherent transceiver in a ball-grid array package, in Optical Fiber Communication Conference (2017), paper Th5D.5.

    15. C. R. S. Fludger, E. S. Vercelli, G. Marenco, A. Della Torre, T. Duthel, and T. Kupfer, 1Tb/s Real-Time 4 40 Gbaud DP-16QAM Super-Channel Using CFP2-ACO Pluggable Modules Over 625 km of Standard Fiber, J. Lightwave Technol., 35(4), 949-954 (2017).

    16. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, An electrically pumped germanium laser, Opt. Express 20(10), 1131611320 (2012).

    17. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grtzmacher, Lasing in direct-bandgap GeSn alloy grown on Si, Nat. Photonics 9(2), 8892 (2015).

    18. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, Electrically pumped continuous-wave IIIV quantum dot lasers on silicon, Nat. Photonics 10(5), 307311 (2016).

    19. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, High performance continuous wave 1.3 m quantum dot lasers on silicon, Appl. Phys. Lett. 104(4), 041104 (2014).

    20. E. S. Magden, N. Li, J. D. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, Monolithically-integrated distributed feedback laser compatible with CMOS processing, Opt. Express, 25(15), 18058-18065 (2017).

    21. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Opt. Express 14(20), 92039210 (2006).

    22. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.- H. Duan, D. Bordel, and J.-M. Fedeli, Demonstration of a heterogeneously integrated III-V/SOI single wave- length tunable laser, Opt. Express 21(3), 37843792 (2013).

    23. J. C. Hulme, J. K. Doylend, and J. E. Bowers, Widely tunable Vernier ring laser on hybrid silicon, Opt. Express 21(17), 1971819722 (2013).

    24. T. Creazzo, E. Marchena, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, and A. Mizrahi, Integrated tunable CMOS laser, Opt. Express 21(23), 2804828053 (2013).

    25. G. H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, G. Nils, F. Lelarge, J. M. Fedeli, A. Descos, B. Ben Bakir, S. Messaoudene, D. Bordel, S. Menezo, G. de Valicourt, S. Keyvaninia, G. Roelkens, D. Van Thourhout, D. J. Thomson, Y. G. Gardes, and G. T. Reed, Hybrid III-V on Silicon Lasers for Photonic Integrated Circuits on Silicon, IEEE J. Sel. Top. Quantum Electron. 20(4), 6100213 (2014).

    26. T. Chu, N. Fujioka, and M. Ishizaka, Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators, Opt. Express 17(16), 1406314068 (2009).

    27. A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, Power-efficient III-V/silicon external cavity DBR lasers, Opt. Express 20(21), 2345623462 (2012).

    28. S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, High-output-power, single- wavelength silicon hybrid laser using precise flip-chip bonding technology, Opt. Express 20(27), 2805728069 (2012).

    29. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity, Laser Phys. Lett. 10(1), 015804 (2013).

    30. B. Snyder, B. Corbett, and P. OBrien, Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit, J. Lightwave Technol. 31(24), 39343942 (2013).

    31. S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr- Jones, and M. Hochberg, A single adiabatic microring-based laser in 220 nm silicon-on-insulator, Opt. Express 22(1), 11721180 (2014).

  • 32. Y. Zhang, S. Yang, H. Guan, A. E.-J. Lim, G.-Q. Lo, P. Magill, T. Baehr-Jones, and M. Hochberg, Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator, Opt. Express 22(15), 1787217879 (2014).

    33. J.-H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links, Opt. Express 22(7), 76787685 (2014).

    34. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, 3D integrated hybrid silicon laser, Opt. Express 24(10), 1043510444 (2016).

    35. S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J. H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, and H. D. Thacker, Efficient, tunable flip-chip-integrated III-V/Si hybr