widely tunable multimode-interference based coupled cavity ... · pdf file widely tunable...

Click here to load reader

Post on 08-Oct-2020




0 download

Embed Size (px)


  • Widely tunable multimode-interference based coupled cavity laser with integrated interferometer Citation for published version (APA): Agostino, D. D., Lenstra, D., Ambrosius, H., & Smit, M. (2018). Widely tunable multimode-interference based coupled cavity laser with integrated interferometer. Optics Express, 26(11), 14159-14173. https://doi.org/10.1364/OE.26.014159

    DOI: 10.1364/OE.26.014159

    Document status and date: Published: 28/05/2018

    Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

    Please check the document version of this publication:

    • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication

    General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

    • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.

    If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne

    Take down policy If you believe that this document breaches copyright please contact us at: openaccess@tue.nl providing details and we will investigate your claim.

    Download date: 26. Feb. 2021

    https://doi.org/10.1364/OE.26.014159 https://doi.org/10.1364/OE.26.014159 https://research.tue.nl/en/publications/widely-tunable-multimodeinterference-based-coupled-cavity-laser-with-integrated-interferometer(7f87911e-1ad0-4a50-b200-91de720ed20b).html

  • Widely tunable multimode-interference based coupled cavity laser with integrated interferometer DOMENICO D’AGOSTINO, DAAN LENSTRA,* HUUB AMBROSIUS, AND MEINT SMIT COBRA Research Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands *d.lenstra@tue.nl

    Abstract: Wepresent a simple to process tunable laser, fabricated in a low-cost generic fabrication process and based on two coupled Fabry-Perot cavities. The complex coupling coefficients of the coupling element are analytically derived from a 3x3 MMI using coupled mode theory and chosen to maximize the SMSR during lasing operation. Additionally, one of the cavities contains a reflective interferometer, which acts as coarse wavelength selector. This interferometer is derived from a Michelson Interferometer, by replacing the two independent mirrors with our optimized coupling element, leading to a doubled Free Spectral Range. As a result, we obtained a tuning range of 26 nm with potential for beyond 40 nm, a SMSR larger than 40 dB and fiber coupled power up to 9 dBm. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

    OCIS codes: (140.3600) Lasers, tunable (230.4555) Coupled resonators (250.5960) Semiconductor lasers (250.5300) Photonic integrated circuits.

    References and links 1. M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk,

    J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).

    2. A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).

    3. J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.

    4. B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).

    5. M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).

    6. B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).

    7. K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

    8. P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.

    9. E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.

    10. H. Cai, B. Liu, X. M. Zhang, a. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, “A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity,” Opt. Express 16(21), 16670–16679 (2008).

    Vol. 26, No. 11 | 28 May 2018 | OPTICS EXPRESS 14159

    #319378 https://doi.org/10.1364/OE.26.014159 Journal © 2018 Received 10 Jan 2018; revised 24 Feb 2018; accepted 13 Mar 2018; published 18 May 2018

    https://doi.org/10.1364/OA_License_v1 https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.014159&domain=pdf&date_stamp=2018-05-18

  • 11. F. Khan and D. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48(19), 3809–3817 (2009). 12. L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator

    devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981). 13. R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron.

    23(4), 395–400 (1987). 14. S. Arafin, G. B.Morrison,M. L.Mashanovitch, L. a. Johansson, and L. a. Coldren, “Compact Low-Power Consumption

    Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017). 15. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express

    16(6), 3896 (2008). 16. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser

    with 40 dB side-mode suppression ratio” Opt. letters 36(21), 4230–4232 (2011). 17. L.Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-SpacedWavelength

    Tuning,” IEEE Photonics J. 6(4), 1501408 (2014). 18. L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave

    coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012). 19. L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled

    Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2

    20. P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).

    21. D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(5), 653–656 (2015).

    22. W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Mon

View more