what difference will they make?

45
Slide 1 C o p y r i g h t © 2 0 1 0 P e a r s o n E d u c a t i o n , I n c . o r i t s a f f i l i a t e ( s ) . A l l r i g h t s r e s e r v e d . WHAT DIFFERENCE WILL THEY MAKE? Michael Savoy, Ph.D. Math Specialist

Upload: reuben

Post on 24-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

WHAT DIFFERENCE WILL THEY MAKE? . Michael Savoy, Ph.D. Math Specialist. What are standards?. Standards define what students should understand and be able to do. Standards must be a promise to students of the mathematics they can take with them . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 1

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

WHAT DIFFERENCE WILL THEY MAKE?

Michael Savoy, Ph.D.Math Specialist

Page 2: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 2

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

What are standards?

Standards define what students should understand and be able to do.

Standards must be a promise to students of the mathematics they can take with them.

We haven’t kept our old promise and now we make a new one.

What difference will it make?

Page 3: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 3

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Creating Better Standards in Mathematics (Phil Daro)

Phil DaroChair, Mathematics College and Career Readiness Standards Work Group; Writing Team, K–12 Mathematics Standards Committee; Senior Fellow, America’s Choice

How do you create better standards in mathematics?

http://commoncoreanswers.com

Page 4: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 4

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Lessons Learned

After two decades of standards based accountability:

• Too many standards• Lack of student motivation• “Cover” at “pace” is a failure

– Tells teachers to ignore students– Turn the page regardless– Shrug your shoulders and do what “they” say– Mathematics is not a list of topics to cover

• Singapore: “Teach less, learn more”

Page 5: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 5

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Lessons Learned • TIMSS: math performance in the US is

being compromised by a lack of focus and coherence in the “mile wide, inch deep” curriculum

• Hong Kong students outscore U.S. students on the grade 4 TIMSS, even though Hong Kong only teaches about half of the tested topics. U.S. covers over 80% of the tested topics.

• High-performing countries spend more time on mathematically central concepts: greater depth and coherence.

Page 6: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 6

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Answer Getting vs. Learning Mathematics

United StatesHow can I teach my kids to get the

answer to this problem? Use mathematics they already know.

Easy, reliable, works with bottom half, good for classroom management.

JapanHow can I use this problem to teach

mathematics they don’t already know?

Page 7: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 7

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Overview

State-led and developed common core standards for K-12 in English/language arts and mathematics

Focus on learning expectations for students, not how students get there.

States allowed to add additional state-specific standards up to 15%.

7

Page 8: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 8

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

YES, the CCSSM:

define what students should understand and be able to do

stress conceptual understanding of key ideas

are based on evidence and research

are informed by other top-performing countries

are clear and consistent

set grade-specific standards

provide clear signposts (alignment) along the way to the goal of college and career readiness for all students

are a call to take the next step

(Common Core State Standards Initiative 2010, 3–5)

Page 9: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 9

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

NO, the CCSSM do not:

define the intervention methods or materials necessary to support students who are well below or well above grade-level expectations

define the full range of supports appropriate for English language learners

define the full range of supports appropriate for students with special needs

dictate curriculum or teaching methods

(Common Core State Standards Initiative 2010, 3–5)

Page 10: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 10

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards of Mathematical Content

Page 11: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 11

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Math Content Standards

• Mathematical Performance: what kids should be able to do

• Mathematical Understanding: standards for what kids need to understand

Page 12: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 12

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Performance

• Performance: what kids should be able to

do• multiply and divide within 100 • 3rd grade sample

Page 13: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 13

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Understanding

• Understanding: what kids should understand about mathematics

• 3rd grade sample– Understand properties of multiplication and

the relationship between multiplication and division.

• Table Talk:– Why is that our kids do not perform as well as

students in other countries do?

Page 14: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 14

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Content

Organization by Grade Bands and Domains

K–5 6–8 High SchoolCounting and Cardinality

Operations and Algebraic Thinking

Number and Operations in Base Ten

Number and Operations—Fractions

Measurement and Data

Geometry

Ratios and Proportional Relationships

The Number System

Expressions and Equations

Geometry

Statistics and Probability

Functions

Number and Quantity

Algebra

Functions

Modeling

Geometry

Statistics and Probability

(Common Core State Standards Initiative 2010)

Page 15: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 15

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

How to Read the Standards

• introduction (see page 13)

Page 16: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 16

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

How to Read the Standards

• Overview (see page 14)

Page 17: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 17

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Domain

Standard

Cluster

Organization of CCSS

(Common Core State Standards Initiative 2010, 16)

Page 18: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 18

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Overview of High School Mathematics Standards

The high school mathematics standards:–Call on students to practice applying mathematical ways of thinking to real world issues and challenges–Require students to develop a depth of understanding and ability to apply mathematics to novel situations, as college students and employees regularly are called to do–Emphasize mathematical modeling, the use of mathematics and statistics to analyze empirical situations, understand them better, and improve decisions –Identify the mathematics that all students should study in order to be college and career ready.

Page 19: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 19

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

How to Read the Standards: High School• Additional mathematics that students should learn in order to

take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+), as in this example: – (+)Represent complex numbers on the complex plane in

rectangular and polar form (including real and imaginary numbers).

• All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students.

• The high school standards are listed in conceptual categories:• Number and Quantity • Algebra • Functions • Modeling • Geometry • Statistics and Probability

Page 20: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 20

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

How to Read the Standards: High School

• Introduction (p. 62)

Page 21: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 21

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

How to Read the Standards: High School

• Overview (p. 63)

Page 22: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 22

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Focus and Progression

K–5 6–8 High School

Operations andAlgebraic Thinking

Number andOperations–Fractions

Number andOperations inBase Ten

Expressions and Equations

The NumberSystem

AlgebraConceptDomains

Grade Bands

(Common Core State Standards Initiative 2010)

Page 23: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 23

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards of Mathematical Practice

Page 24: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 24

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Essential Questions

What are the Standards for Mathematical Practice and why are they important for mathematical proficiency?

What do we mean by “understanding” in mathematics and how do the Standards for Mathematical Practice lead to understanding?

Page 25: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 25

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

A ProblemDO NOT SOLVE

Make as many rectangles as you can with an area of 24 square units. Use only whole numbers for the length and width. Sketch the rectangles, and write the dimensions on the diagrams. Write the perimeter of each one next to the sketch.

What if the perimeter is 24 units?

What questions do you ask yourself as you encounter this problem?

How do these questions help you to develop a solution approach?

Page 26: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 26

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Meta-Cognition

• Thinking about thinking.• The unconscious process of cognition.• Meaning making

It is hard to articulate how you think about thinking. It is even harder to model

Page 27: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 27

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Meta-cognition

• Modeling the thinking strategies• Using multiple representations• Talking about thinking- what are you thinking? Why?• Could you approach this a different way?• Accountable Talk

Page 28: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 28

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Meta-cognition implications for lessons.

• Make thinking public• Use multiple representations• Offer different approaches to solution• Ask questions about the problem posed.• Set a context, define the why of the problem• Focus students on their thinking not the solution• Solve problems with partners• Prepare to present strategies

Page 29: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 29

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Introduction to the Standards for Mathematical Practice

Mathematical proficiency is more than “getting the answer”—it includes the process of using mathematical concepts effectively as identified in the Standards for Mathematical Practice.

The mathematical practices are consistent for all the grade levels even though they manifest themselves differently as students grow in mathematical maturity.

Page 30: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 30

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Background of Mathematical Practices

National Council of Teachers of Mathematics Principles and Standards (2000): Process Standards

National Research Council’s Report Adding It Up (2001): Mathematical Proficiencies

Page 31: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 31

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice (Phil Daro)

Page 32: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 32

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Text Rendering

Read your assigned mathematical practice description from the Common Core State Standards.

Describe the standard in your own words. Find sentences, phrases, and words that are particularly significant.

Discuss with your selections with your group. What does the Practice mean for classroom practice and student understanding. Think about and describe what it may look like, sound like and/or feel like in the classroom.

Page 33: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 33

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.

2. Reason abstractly and quantitatively.3. Construct viable arguments and

critique the reasoning of others.4. Model with mathematics.5. Use appropriate tools strategically.6. Attend to precision.7. Look for and make use of structure.8. Look for and express regularity in

repeated reasoning.

Page 34: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 34

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.

• Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution.

• They analyze givens, constraints, relationships, and goals.

• They plan a solution pathway rather than simply jumping into a solution attempt.

• They monitor and evaluate their progress and change course if necessary.

• Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?”

Page 35: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 35

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

2. Reason abstractly and quantitatively.• Mathematically proficient students make sense of quantities

and their relationships in problem situations. • They bring two complementary abilities to bear on problems

involving quantitative relationships:– the ability to decontextualize—to abstract a given situation

and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents

– and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved.

• Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities; and knowing and using different properties of operations and objects.

Page 36: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 36

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

3. Construct viable arguments and critique the reasoning of others.

• Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments.

• They make conjectures and build a logical progression of statements to explore the truth of their conjectures.

• They are able to analyze situations by breaking them into cases, and can recognize and use counter examples.

• They justify their conclusions, communicate them to others, and respond to the arguments of others.

• Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is.

Page 37: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 37

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

4. Model with mathematics.• Mathematically proficient students can apply the

mathematics they know to solve problems arising in everyday life, society, and the workplace.

• They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas.

• They can analyze those relationships mathematically to draw conclusions.

• They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Page 38: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 38

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

5. Use appropriate tools strategically.• Mathematically proficient students consider the

available tools when solving a mathematical problem. • These tools might include pencil and paper, concrete

models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software.

• Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations.

• They detect possible errors by strategically using estimation and other mathematical knowledge.

• They are able to use technological tools to explore and deepen their understanding of concepts.

Page 39: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 39

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

6. Attend to precision.• Mathematically proficient students try to communicate

precisely to others. They try to use clear definitions in discussion with others and in their own reasoning.

• They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately.

• They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem.

• They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context.

Page 40: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 40

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

7. Look for and make use of structure.• Mathematically proficient students look closely to

discern a pattern or structure.• Young students, for example, might notice that three

and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have.

• They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective.

• They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

Page 41: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 41

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Standards for Mathematical Practice

8. Look for and express regularity in repeated reasoning.

• Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts.

• As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details.

Page 42: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 42

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Fair Share Problem

(Philipp 2005)

There is a delicious cookie that 4 children at a party want to share.

Show how the 4 children might share the cookie. How much does each child get?

Before the cookie is handed out, one child leaves without getting her piece. How could the 3 children left share the cookie fairly? How much does each child get?

Page 43: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 43

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Video Example of Fair Share Problem

Looking for evidence of mathematical thinking.

(Philipp 2005)

Page 44: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 44

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Thank you for your participation!

Have a great day !!!!

Page 45: WHAT DIFFERENCE WILL  THEY  MAKE?

Slide 45

Copyright © 2010 Pearson Education, Inc.or its affi

liate(s). All rights reserved.

Pearson Professional Development

pearsonpd.com

NAME, facilitatorEmail/contact info