w.a. bond and k. machniak environment canada freshwater ... · w.a. bond and k. machniak...

216
AN INTENSIVE STUDY OF THE FISH FAUNA OF THE MUSKEG RIVER WATERSHED OF NORTHEASTERN ALBERTA by W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM Project AF 4.5.1 July 1979

Upload: others

Post on 02-Apr-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

AN INTENSIVE STUDY OF THE FISH FAUNA OF THE

MUSKEG RIVER WATERSHED OF NORTHEASTERN ALBERTA

by

W.A. BOND and K. MACHNIAK

Environment Canada

Freshwater Institute

Winnipeg, Manitoba

for

ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM

Project AF 4.5.1

July 1979

lefort
New Stamp
Page 2: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

ix

TABLE OF CONTENTS

Page

DECLARATION •••••••..•.••••.•.....•••••..••..•.•.•.•••....••• ii

LETT E R 0 F T RA N S MITT A L ••.•.••..••.•••••••.••.•••...•••.•...•• iii

DES C RIP T I V E SUMMA R Y .•••••.••..••.•••.•.•..•••.••..•••..•••.• i v

LIST OF TABLES .••.•••.••.•••......•..•.•••.••...•...•...••.• xiii

LIST OF FIGURES .•••.•••••.••••...•••.•••.••••••••••••••.•••• xv i i

ABSTRACT ••••••••••••.•••••••.•.•.•.••..•••••.••.••..•••••••. x i x

AC KNOWLEDGEMENTS •••••••.••...••••.••••..•.••••..•..••..•.••• xx i

1 . I NTRODUCT I ON •.•.•..••••••..••..•.•••.••••••••.••..

2. R~SUM€ OF CURRENT STATE OF KNOWLEDGE •• '! •••••••••• 4

3. DESCRIPTION OF STUDY AREA .•.••••.•••••.•••••..•.•• 6

4. 4. 1 4.2 4.2. 1 4.2.2 4.2.3 4.2.4 4 .. 3 4.3. 1 4.4 4.4. 1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 4.5. 1 4.5.2 4.5.3 4.6

5. 5. 1 5.2 5.3 5.3. 1 5.3.2 5.3.2.1

MATERIALS AND METHODS •.•••.•••••••••••••.•.• 0 ••••• 17 Counting Fence Construction •.••••.••••••••.•..••.• 17 Counting Fence Operation "0' •••••••••••••••••••••• 17

Samp 1 i ng Schedu 1 e ••.•...•••.•.•••..••••.•..••.. 19 Trap Checks ............ ,......................... 19 Tagging ••••..••.•••.•...•.••..••••••..••.•••••. 19 Dead Samples ••.••••.••••.•••••••••••..••.•.•... 21

Other Fish Collection Techniques ••••.•.•••••••••. 22 Small Fish Collection Sites •..••.••.••••...•.•. 22

Laboratory Techniques .••••••.••.•••..•....•..•.••. 23 Fish Identification and Measurement •••...•••.•• 23 Age Determination •••••••••••.••••.••• , •.•.•••.• 23 Fecundity ........................................ 25 F 00 d H a bit s ...................................... 2 5 Data Analysis •.••.•••.•.•...•••.••.•••••••••••• 25

Aquatic Habitat Analysis ••.•••••••••••.••••...•••• 26 Reach Definition and Description •••••.••••.•••• 26 Point Samples .•.•..••••••.••••••••.••••••..•••• 26 Mapping Procedures •••..•.•..••••••••..•••.••••. 27

Limitations of Methods ••••.•..•.••••.••••.••..•••. 27

RESULTS AND DISCUSSION •.••..•••..•.•.•..•••••.•••• 30 Fish Fauna of the Muskeg River .•.•••••.••••..••.•. 30 Relative Abundance and Distribution •••.••..••••••• 32 Tagging Results ••.••.•.••...•..• ~ ••..••.••....•••• 35

Tag Re I eases and Recaptures ••.••.•••.•.•••. , ••• 35 Movement of Tagged Fish ........................ 35 Wh i te suckers ................................... 37

Page 3: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

5.3.2.2 5.3.2.3 5.3.2.4 5.2 5.4. 1 5.4.1.1 5.4.1.2 5.4.1.3 5.4.1.4 5.4.1.5 5.4.1.6

5.4.1.7 5.4.1.8 5.4.1.9 5.4.1.10 5.4.1.11 5.4.1.12 5.4.1.13 5.4.1.14 5.4.1.15 5.4.1.16 5.4.1.17 5.4.1.18 5.4.1.19 5.4.2 5.4.2.1 5.4.2.2 5.4.2.3 5.4.2.4 5.4.2.5 5.4.2.6

5.4.2.7 5.4.2.8 5.4.2.9 5.4.2.10 5.4.2.11 5.4.2. 12 5.4.2.13 5.4.2. 14 5.4.2.15 5.4.2.16 5.4.2.17 5.4.2.18 5.4.2.19 5.4.3 5.4.3.1

x

TABLE OF CONTENTS (CONTINUED)

Longnose Suckers •.......•........•.•.•.•..•.•. Northern Pike .•........••.•...•.••..•.•...••.• Arctic Grayl ing ....••....•...••.•..•..••....••

Life Histories of Fish Species •.....•....••••.•.. Wh i te S ucke rs •.••.•...•...•.....•.••..•.... .. Seasonal Timing of Upstream Mi9ration ..•....•. Diel Timing of Upstream Migration •....••....•. Spawning Period .•.•.••..••.•.••.....•......•.• Spawn i n g A rea s .•..•..•..••..•..•.•••.•..••.... Length of Time Spent in the Muskeg River ..•... Seasonal and Diel Timing of Downstream Migration ..••...•••.••.•.••.•.•.•....•...•... Spawning Mortality .•..•.•.••.••....•.••.•.•.•. Size Composition of Migrant White Suckers •.... Age Composition of Migrant White Suckers •.•.•. Sex Ratio of Migrant White Suckers .••••.••..•. Homing of White Suckers ......••.•.•..•••...... Fecund i ty .....•....•..•••..••.•..•.....•..•••. Age and Growth ..•...•..•.....•.•.•......•..... S ex and Ma t uri t y •...•...•....•....•.•.••.•.... Length-Weight Relationship.; ..•............... Growth of Young-of-the-Year .........•......•.. Food H a bit s ...............•..........•........ Rea r i n g A rea .•........•......•....•........... o v e rw i n t e r i n g ...•.•...........•........•.....• Longnose Suckers ..........•.......•.....•.•..• Seasonal Timing of Upstream Migration .....•... Diel Timing of Upstream Migration ......•..•..• Spawn i ng Per iod .••.....•..•......•.......••..• Spawn i ng Areas ...•..•.•....••••.•..••.•....... Length of Time Spent in Muskeg River .........• Seasonal and Diel Timing of Downstream Migration ....•........•...••....•..•..•....•.. Spawning Mortality ••...........••.•.•..•.•.... Size Composition of Migrant Longnose Suckers .. Age Composition of Migrant Longnose Suckers ..• Sex Ratio of Migrant Longnose Suckers , •...••.• Homing of Longnose Suckers ......•.....•.....•• Fecundity •...•.••.....•..•...•.••.•...•••••••• Age and Grow t h ..•.•..•....•••...•....••...•.•. Sex and Ma t uri t y .•••...••. ••...•....•••.•.••.• Length-Weight Relationship ......•.•...•..••... Growth of Young-of-the-Year ••.•.•••..•........ Food Hab i ts ......•...•..•...••••..•.•.•.•..... Rearing Areas ....•....•.••••.••.•...•.•••....• Overwintering ••.•....•.•..•.••••••..•.•...•.•. Arctic Gray1 ing ....••.••.••..•••.••••.•.••..• Spr i ng Movements .•••..•..•..••••••••.•...•.•••

Page

38 39 39 39 39 39 40 40 46 46

47 47 49 53 53 57 57 58 63 65 65 66 66 66 69 69 69 72 72 73

73 73 75 75 75 80 80 82 86 86 88 88 89 89 89 89

Page 4: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

5.4.8.6 5.4.9 5.4.9.1 5.4.9.2 5.4.9.3 5.4.9.4 5.4.9.5 5.4.9.6 5.4.10 5.4.10.1 5.4.10.2 5.4.10.3 5.4.10.4 5.4.10.5 5.4.10.6 5.4.11 5.4.11.1 5.4.11.2 5.4.11.3 5.4.11.4 5.4.11.5 5.5 5.5. 1 5.5.1. 1 5.5.1.2 5.5.1.3 5.5.1.4 5.5.1.5 5.5.2 5.5.2.1 5.5.2.2 5.5.2.3 5.5.2.4

6.

7.

8. 8. 1

xi i

TABLE OF CONTENTS (CONCLUDED)

Page

Food H a b j t s .•.•••••••.•••••••.••.••• ,......... 1 33 S 1 i my S c u 1 pin •.•..•••.••••.•.•••...••.•.•.•••• 1 3 3 Distribution and Relative Abundance ........... 133 Age and Growth .••..•.•.••.•.••••.•.....••.•••• 133 Sex and Ma t uri t y ..••..••..•.•....•.•.••••• 0 • •• 1 33 Length-Weight Relationship '0 •••••••••••••••••• 135 S paw n i n g ••.•••.••••.•..•.••..•...••.•.•.••...• 1 35 Food Habits ..•.•.••.•..•.••••.••••......•..... 135 Longnose Dace .•.••••.•••••..•.•..•••.••.•.••.. 136 Distribution and Relative Abundance ........... 136 Age and Growth •.••...•.•.•.•.•..•.••••.•.•.••. 136 Sex and Ma t uri t y .•...........•.•..•.••. 0 • • • • •• 1 36 Length-Weight Relationship •••.••••..•••.•••••• 136 Spawn i n g ••••.••••••..•...••••.••...••••.•.•••• 1 36 Food Ha bit s •.••.••. ,.......................... 1 38 Other .Small Fish Species ••••.•..•.•.•...•.•..• 138 Pearl Dace •...••.•.••.•••....•..•••.•..•••.••. 138 Trout-Perch .••..•..••••••.•.••....••••....•••. 138 Ninespine Stickleback ••..••••••••..•.••....•.• 139 Fathead Mi nno\tJ •. 0 ••••••••••••••• 0 •••••••• o •••• 139 Spottail Shiner ••••.••....•......•.. , ••.....•. 140

Habit8t /'\nalysis ................................ 140 ttuskeg ftiver t1ainstem ..••..••.....•..•.•.....• lifO Reach 1M •..•....•...••.•.••••..•••••.•.•..•..• 14() Reach 2M •.•....••.••....•••..•.••••••.••.•..•• 149 Reach 3M .•••..••.•••••.•••••.•.•.•.•..•.••.•.• 151 Reach 4M •.•••• ,............................... "153 Reach 5M •.•••.••••••.•..•..•.••••....•..•••••• 154 Ha rt 1 ey C reek and Kea r 1 Creek ••.•.•..••••••••• 155 Rea c h 1 H •.••.••.•.•..•••••..••...•.••••••••.•• 1 55 Reaches 2H, 3H, and 4H ••••••••••.•••....•.•.•. 158 Reach 5H ••••••.•.••.••.•••••..••.•••••••.•.••• 159 Kea r 1 Cree k ...••.••••....•••.•••••.•.••.•.•.•. 1 59

CONCLUSiONS •..•••••••.•.•••••••...••.••..•.••••.• 161

REFERENCES CITED ................................. 164

APPENDICES Maximum and Minimum Daily Water Temperatures Recorded at the Muskeg River Counting Fence,

172

1977 •••••••••.••••••••.•.•.•..•••.••••••••••••••• 172 8.2 Dates of Tagging and Recapture, Location of

Recapture, Distances Travelled, and Elapsed Time Between Release and Recapture for Fish Tagged at the Muskeg River Counting Fence in 1976 and 1977, and Subsequently Recaptured Outside the Muskeg Watershed in 1977 and 1978 ....................... 174

9. LIST OF AOSERP RESEARCH REPORTS 178

Page 5: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

5.4.3.2 5.4.3.3 5.4.3.4 5.4.3.5 5.3.4.6 5.3.4.7 5.3.4.8 5.3.4.9 5.4.3.10 5.3.4.11 5.4.4 5.4.4.1 5.4.4.2 5.4.4.3 5.4.4.4 5.4.4.5 5.4.4.6 5.4.4.7 5.4.4.8 5.4.4.9 5.4.5 5.4.5.1 5.4.5.2 5.4.5.3 5.4.5.4 5.4.5.5 5.4.5.6 5.4.5.7 5.4.6 5.4.6.1 5.4.6.2 5.4.6.3 5.4.6.4 5.4.6.5 5.4.6.6 5.4.7 5.4.7.1 5.4.7.2 5.4.7.3 5.4.7.4 5.4.7.5 5.4.7.6 5.4.8 5.4.8.1 5.4.8.2 5.4.8.3 5.4.8.4 5.4.8.5

xi

TABLE OF CONTENTS (CONTINUED)

Size of Migrant Grayling ••••••••••••••.••••••• Spawning .••.••• 0" 0 •••••••••• 0 ••••••••••••••••

Summer Residence of Arctic Grayl ing •••.••••••• Age and Growth ..••••••.••••.•.••.•••.• 0 •••••••

Length-Weight Relationship •.••••••.••••••.•••• Sex and Matur i ty .•••••••••••••••.••••••••••••. Fecund i ty ..•.••.•••••...••••.•.••.••••••.••.•• Food Hab its ...•.•..••••••.••.••••••.••••••.••• Rea r i n g A rea s Overwintering Northern Pike

....................................

Movements and Distribution .••••.•.•.•.•••••••. Spawn i ng •..•.•..•••.••••..•••••••••••.••••.•.• Length-Frequency Distribution ••••••••••••••••• Age and Grow t h ••...••...••.•••••.•• •••••.••••• Length-Weight Relationship •••••••••..••••••••• Sex and Maturity .•..•..•.•.••.•.•.••.••••••••• Fecund i ty , .•••.•.••.•..•.•.•.•.•.••••.•.•.•••• Food Habits ..•...••..•......•••.••••••••..•.•.• Rearing and Overwintering .•••••••••••••.••.••• Moun ta i n \~h i tef ish .•....•.••.••..••.••.••.••.• Spring Movements and Distribution .••.•...•...• Spav"ning ..•.•.....•.•.•...••.•••••••••••••••.. Length-Frequency Distribution ••.•••••••.•.•.•• Ag e and Grow t h ..••.•..•..••••. , ••••••.•. Sex and Maturity ••••.•...••••.••••••••••..•••• Length-Weight Relationship ••.•••....••.••••••. Food Habits •.•.•..•..•... , .••••••••.•••.. 0 ••••

Other Large Fish Species ••••••.••••.•.••.••.•• Lake \~h i tef ish •.••.••.•.•..••.•••.••.••.•...•• Bur bo t ......••.••••........•••••..••.••••••••. Wa 1 1 eye .•..• ~ •..•••..•••.•.•..•••..•• \ ••••••.. Dolly Varden •..•••••••.••••••••.. 0 •••••••••••

La ke Cis co ...•.•••...•..•••••.••.••••••••..••• Ye 1 1 ow Per c h ••. 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Brook Stickleback •.••••••••.••••••.• , ••••.•••• Distribution and Relative Abundance ........ .. Age and Grow th .• 0 •••••••••••••••••••••••••••••

Sex and Maturity ••••••••••••• , .••••••.•••••••• Length-Weight Relationship •••••••••••••.. , .••• Spawn i ng •..•••••••.• • •••••••••••••••••..••••• Food Habits ••••.••••.•.•.••••••••..••••.•••.•• Lake Chub ..•••••••.•••••••••••.••••.•••.•.• •• Distribution and Relative Abundance .......... . Age and Growth .••••.•••••••••••.••••••••••.••• Sex and Matur i ty .•••••••••..••••••••••••••.•.• Length-Weight Relationship ••••••••• ! •••••••• o.

Spawn i ng ••.•••••• • •••••.•••.••.••••••••••..•••

Page

90 93 94 95 99 99 99

100 102 102 103 103 105 106 106 11 1 11 1 11 1 113 11 3 115 115 116 116 116 119 119 119 119 119 120 121 121 121 121 122 122 122 122 127 127 127 130 130 130 132 132 132

Page 6: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xi i i

LIST OF TABLES

Page

1. Summary of Physical and Chemical Characteristics of the Muskeg River on Several Dates, 1976 ............. 16

2. Sampl ing Schedule for Muskeg River Counting Fence, 1977 ............................................ 20

3. Dates of Small Fish Collections at Each Col lection Site, Muskeg River Watershed, 1977 ..................... 24

4. List of Fish Species Captured in the Muskeg River Drainage during 1976 and 1977 .......................... 31

5. Summary of Fish Recorded at the Muskeg River Counting Fence, 1977 ................................... 33

6. Number of Fish Captured by Seine, Minnow Trap, Drift Net, and Dipnet at Each Smal 1 Fish Collecting Site in the Muskeg River Drainage, 1977 ........................ 34

7. Summary of Tag Releases and Recaptures by Species for Fish Tagged at Muskeg River Counting Fence, 1976 and 1977, and Recaptured Outside the Muskeg River Watershed .............................................. 36

8. Summary of Fish Enumerated during the Counting Fence Operation in the Muskeg River, 1977 .................... 41

9. Summary of Diel Timing of the Upstream Migration of White Suckers in the Muskeg River, 1977. Fish that were Counted at Times other than those Indicated were Included in the Next Time Check Period ............ 45

10. Summary of Diel Timing of the Downstream Migration of White Suckers in the Muskeg River, 1977. Fish that were Counted at Times other than those Indicated were Included in the Next Check Period ................. 48

11. Length-Frequency Distribution of White Suckers during Migration, Muskeg River, 1977 .......................... 50

12. Sex Ratio for White Suckers during the Upstream Migration, Muskeg River, 1977 .......................... 56

13. Fecundity Estimates for White Suckers Sampled during the 1977 Muskeg River Spawning Migration ...••.........• 59

Page 7: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

14.

15.

16.

17.

18.

19.

20.

xiv

LIST OF TABLES (CONTINUED)

Age-Length Relationship (Derived from Fin Rays and Otol iths) for White Suckers Captured in the Muskeg River Watershed, 1977, Sexes Separate and Combined Sample (Includes Unsexed Fish) .......•••...•.• , ...•.••

Age-Weight Relationship for White Suckers Captured in the Muskeg River Watershed, 1977, Sexes Separate and Combined Sample (Includes Unsexed Fish) ....••.....

Age-Specific Sex Ratios and Maturity for White Suckers from the Muskeg River Drainage, 1977. Sex Ratios Were Based Only on Fish for which Sex was De term i ned •..•.....•••.•.....•...••.. 6 • • • • • • • • • • • • • • • •

Food Habits of Adult Longnose Suckers, White Suckers and Lake Whitefish Captured from the Muskeg River, 1977 to & ........ e * ••••••••• ., ., ••• c. .. e .... " .................... .

Food Habits of Young-of-the-Year and Juveniles of the Larger Species Captured in the Muskeg River, 1977

Summary of Diel Timing of the Upstream Migration of Longnose Suckers in the Muskeg River, 1977. Fish that were Counted at Times other than those Indicated were Included in the Next Time Check .•....•.•••......••.•..

Summary of Diel Timing of the Downstream Migration of Longnose Suckers in the Muskeg River, 1977. Fish that were Counted at Times other than those. Indicated were Included in the Next Time Check ..••.••.•..••..•.•...•.

21. Length-Frequency Distribution of Longnose Suckers During the Upstream Migration in the Muskeg River,

Page

60

61

64

67

68

71

74

1977 ............ c .......................... e"' ••••••••••• 76

22. Sex Ratio for Longnose Suckers during Upstream Migration, Muskeg River, 1977 ..............•......•..• 79

23. Fecundity Estimates for Longnose Suckers Sampled During the 1977 Muskeg River Spawning Migration •....•• 81

24. Age-Length Relationship (Derived from Fin Rays and Otoliths) for Longnose Suckers Captured in the Muskeg River Watershed, 1977, Sexes Separate and Combined Sample (Includes Unsexed Fish) •..•.•.••••.••• 83

Page 8: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xv

LIST OF 'TABLES (CONTI NUED)

25. Age-Weight Relationship for Longnose Suckers Captured in the Muskeg River Watershed, 1977, Sexes

Page

Separate and Combined Sample (Includes Unsexed Fish) 84

26. Age-Specific Sex Ratios and Maturity for Longnose Suckers From the Muskeg River Drainage, 1977. Sex Ratios were Based Only on Fish for which Sex was Determi ned ......... 0.................................. 87

27. Length-Frequency Distribution of Arctic Grayling during the Upstream Migration in the Muskeg River, 1977 ............... 0 •••••••••••••••••••••••• •••••••••• 91

28. Age-Length Relationship (Derived from Scales) and Age-Weight Relationship for Mountain Whitefish and Arctic Grayl ing Captured in the Muskeg River, 1977, Sexes Combined (Includes Unsexed Fish) ................ 96

29. Size and Weight Relationships for Young-of-the-Year and Juveniles of Larger Fish Species Collected from the Muskeg Ri ver, 1977 .......... o. ....•• .•.. .••• •..•. • 97

30. Food Habits of Arctic Grayl ing Collected ~rom the Muskeg River during 1976 and 1977 0 ••• 0 •••••••••••••••• 101

31. Age-Length Relationship (Derived from Scales) for Northern Pike Captured in the Muskeg River, 1977, Sexes Separate and Combined Sample (Includes Unsexed F ish) .. 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 108

32. Age-Weight Relcltionship for Northern Pike Captured i~ the Muskeg River, 1977, Sexes Separate and Combined Sample (Includes Unsexed Fish) ............... 110

33. Age-Specific Sex Ratios and Maturity for Northern Pi~e from the Muskeg River, 1977. Sex Ratios were Based Only on Fish for which Sex was Determined ....... 112

34. Actual Egg Counts of Two Northern Pike Females Sampled during the 1977 Spawning Period, Muskeg Rive r 0 ••••••• 0 ••••••••••••••••• 0 • • • • • • • • • • • • • • • • • • • • •• 114

35. Age-Length (Derived from Otol iths) and Age-Weight Relationships, Age-Specific Sex Ratios, and Maturity of Small Fishes Captured in the Muskeg River, 1977 .... 124

Page 9: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xvi

LIST OF TABLES (CONCLUDED)

36. Sex and Maturity Ratios, by Size C1ass~ for Brook· Stickleback Captured from the Muskeg River Water­shed, 1977. Sex Ratios were Based Only on Fish

Page

for which Sex was Determined ..........•...•........•.. 128

37. Food Habits for Small Fishes Collected from the Muskeg River, 1977 ....•.•.•............•..•.........•. 129

38. Physical Characteristics of the Muskeg River Mainstem, 22-23 June 1978 .. o •••••••••••••••••••••••••• 143

39. Summary of Physical and Chemical Information Collected at Each Sampling Point in the Muskeg Rive r Wa t e r she d, 22 - 23 June 1 978 ...................... 1 44

40. Number of Fish Captured in Small Mesh Seines at Each Sampling Point in the Muskeg River Watershed, 22-23 June 1978 ....•..•....•..•..•.....•.......•...... 145

41. Percentage Composition by Numbers for the Major Benthic Macro-invertebrate Groups Taken at Each Samp1 ing Point in the Muskeg River Watershed, 22-23 June 1978 .......•.............•......••......•.. 146

42. Documented Distribution of Adult and Young Fish in the Muskeg River Mainstem Based on Catch Data Obtained in 1976-1978, and on Reports by Other I n d i v i d ua 1 s •••..••.••••••••••••••••.••.••..••••••.•••• 1 47

43. Physical Characteristics of Hartley Creek, 22-23 June 1978 ...•...................•.....••..•...•. 156

44. Documented Distribution of Adult and Young Fish in Hartley Creek and Kear1 Creek Based on Catch Data Obtained in 1976-1978, and on Reports by Other I nd i vi d ua 1 s ......•.•............•.....•.......••.•...• 1 57

45. Maximum and Minimum Daily Water Temperatures Recorded at the Muskeg River Counting Fence, 1977 .•... 173

46. Dates of Tagging and Recapture, Location of Recapture, Distances Travelled, and Elapsed Time Between Release and Recapture for Fish Tagged at the Muskeg River Counting Fence in 1976 and 1977, and Subsequently Recaptured Outside the Muskeg River Watershed in 1977 and 1978 ............................ 175

Page 10: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xv i i

LIST OF FIGURES

Page

1. Map of the AOSERP Study Area Indicating the Location of the Muskeg River ...... .............. ...... 7

2. Map of the Muskeg River Drainage Basin Indicating the Location of the Counting Fence and Small Fish Collection Sites...................................... 8

3. The Upper Muskeg River at Small Fish Collection Site 6 .•....................•.................•....... 9

4. The Confluence of the Muskeg River and Kearl Creek at Sma 11 Fish Co 11 ect ion Site 9 ....................... 10

5. The Muskeg River Downstream of the Counting Fence .. 0 •• 11

6. The Canyon Section of the Muskeg River ............•... 13

7. Discharge of the Muskeg River from 1 April to 31 October 1977 .......................•............... 14

8. Discharge of the Muskeg River from 1 August to 30 November 1978 ...................................... 15

9. The Muskeg River Counting Fence ...................... 0 18

10. Seasonal Timing of the White Sucker Migration in the Muskeg River, 1977 ................................ 44

11. Length-Frequency Distribution for White Suckers during the Upstream Migration in the Muskeg River, 1977 ........................................... 51

12. Seasonal Changes in Length-Frequency Distribution for White Suckers during the Upstream Migration in the Muskeg River, 1977 ................................ 52

13. Length-Frequency Distribution for White Suckers during Three Time Periods in the Downstream Migration in the Muskeg River, 1977 '0 ••••••••••••••••• 54

14. Age Composition for White Suckers Sampled during the Counting Fence Operation, Muskeg River, 1977 .......... 55

15. Growth in Fork Length for White Suckers from the Muskeg River and from Several Other Areas ............• 62

16. Seasonal Timing of the Longnose Sucker Migration in the Muskeg River, 1977 ............................. 70

Page 11: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xvii i

LIST OF FIGURES (CONCLUDED)

17. Length-Frequency Distribution for Longnose Suckers during the Upstream Migration in the Muskeg River,

Page

1977 " ............................... ,................ 7 7

18. Age Composition for Longnose Suckers Sampled during the Counting Fence Operation, Muskeg River, 1977 ...... 78

19. Growth in Fork Length for Longnose Suckers from the Muskeg River and .from Severa 1 Other Areas ............. 85

20. Length-Frequency Distribution for Arctic Grayling during the Upstream Migration in the Muskeg River, 1977 ..... 0 ...................................... 0.. ... 92

21. Growth in Fork Length for Arctic Grayl ing from the Muskeg River and from Several Other Areas............. 98

22. Seasonal Timing of the Northern Pike Migration in the Muskeg River, 1977 .... 00.......................... 104

23. Length-Frequency Distribution for Northern Pike during the Upstream Migration in the Muskeg River, 1977 ........•....•..........................•.......•. 107

24. Growth in Fork Length for Northern Pike from the Muskeg River and from Several Other Areas ............. 109

25. Length-Frequency Distribution for Mountain Whitefish during the Upstream Migration in the Muskeg River, 1977 ......................................... 0 •••••••• 117

26. Growth in Fork Length for Mountain Whitefish from the Muskeg River and f rom Severa 1 Other Areas ............. 118

27. Length-Frequency Distribution for Brook Stickleback from the Muskeg River, 1977 ........................... 123

28. Length-Frequency Diostribution for Lake Chub from the Muskeg River, 1977 .... 0................................ 131

29. Length-Frequency Distribution for Slimy Sculpin from the Muskeg River, 1977 ................................ 134

30. Length-Frequency Distribution for Longnose Dace from the Muskeg River, 1977 .... 1........................... 137

31. Biophysical Map of the Muskeg River, Hartley Creek, and Kear1 Creek •...•..........•....•.....•.•...•.••••. 141

Page 12: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xix

ABSTRACT

The fish fauna of the Muskeg River was studied during the

open water period in 1976 and 1977. Additional work in 1978 served

to define the aquatic habitat of this watershed in terms of

various physical parameters. Fish movements into and out of the

Muskeg River were monitored by means of a two-way counting fence.

The fence was operated from 28 April to 30 July 1976, and from

28 April to 15 June 1977. Small mesh beach seines were used

throughout the watershed to collect ~mall fishes. Tags were

applied to 3898 migrant fish in order to determine the length

of time spent in the Muskeg River watershed by individual fish,

and to define migration patterns within the lower Athabasca River

system. The general biology of the various fish species was

described in terms of their age and growth patterns, food habits,

fecundity, etc.

White and longnose suckers were the most abundant fish

taken at the upstream trap in both years of the study. These two

species occurred in equal numbers in 1976 when they accounted for

92% of the 6153 fish enumerated. Arctic grayling (5%) and

northern pike (2%) made up most of the remainder. The total 1977

catch at the upstream trap was 5275 fish, of which 56% were white

suckers, 31% were longnose suckers, 8% were northern pike, and 3%

were Arctic grayl ing. Upstream runs of white suckers, longnose

suckers and Arctic grayling represented spawning movements. Some

pike also spawn within the Muskeg River system although most of

the pike movement observed appeared to be associated with feeding.

Small numbers of mountain whitefish, lake whitefish and walleye

also undertook spring feeding movements into the Muskeg River.

After spawning in the lower 35 km of the Muskeg River

and in the lower reaches of Hartley Creek, suckers of both species

began to leave the Muskeg River watershed. Most spawners had

probably left the stream by mid-June. Sucker fry hatched and

began to migrate out of the Muskeg River watershed in early June.

Arctic grayling remained in the Muskeg River throughout the summer

to feed. Young-of-the-year grayling may overwinter in the Muskeg

Page 13: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xx

River, and join the migrant population in the autumn of their

second year.

Only 2% of all fish tagged were recaptured outside the

Muskeg River watershed. Recaptures suggest that white and longnose

suckers that spawn in the Muskeg River are part of the Lake

Athabasca population and return to the lake to overwinter. A

homing tendency was demonstrated by both species. Northern pike

showed little tendency to move around.

The resident fish fauna of the Muskeg River consists

largely of brook stickleback, lake chub, longnose dace, and sl imy

sculpin.

Page 14: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

xxi

ACKNOWLEDGEMENTS

The authors greatly appreciate the direction and

encouragement provided by R.R. Wallace and the members of the

Aquatic Fauna Technical Research Committee, and by M.R. Falk of

the AOSERP head office staff during the early planning stages of

this project. We also thank D. Hadler and C. Boyle of the AOSERP

Fort McMurray office for many services rendered, especially in

the area of field communications and logistics.

Technical support, both in the field and in the labora­

torY,was provided by M.R. Orr, B. Corbett, D. Miller and D. Rudy.

R. Gavel, J. Hardin, B. Anholt, H. Schneider and D. Loucks served

as field assistants during the study. Many other people provided

field assistance and useful comments throughout the study and we

are grateful to all of them.

Thanks are due S. Zettler and his staff of the Graphics

Department at the Freshwater Institute who prepared the figures

for the report, and J. Allan and W. Thompson who typed the

manuscript.

To the residents of northeastern Alberta who expressed

interest in the study and who assisted us through the return of

fish tags, we offer our sincere appreciation.

Funding for this project was provided by the Alberta

Oil Sands Environmental Research Program, a joint Alberta-Canada

research program establ ished to fund, direct and co-ordinate envi­

ronmental research in the Athabasca Oil Sands area of northeastern

Alberta.

Page 15: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

1. INTRODUCTION

The proposed development of the Athabasca Oil Sands may

introduce disturbance to some lake and river systems of the lower

Athabasca River drainage. Especially susceptible is that section

of the surface-mineable area for which the Alberta Energy

Resources Conservation Board (AERCB) has granted development

approval. Local disruption in the form of land clearing, muskeg

drainage and removal, stream diversions, and the construction of

access routes may affect the water quality and quantity of streams

in addition to the physical alterations produced. Other activi­

ties that could affect water quality include tailings pond

seepages and saline minewater discharges. The diversion or

blockage of streams may affect fish spawning runs. Traditional

fish rearing, feeding, and overwintering areas may be disturbed

or lost altogether. In the case of migrant fish populations,

such local disruptions could be felt over much wider areas.

In order to provide information that could be used to

minimize the adverse effects of development on fish populations

of the Athabasca River and its tributaries, the Alberta Oi 1 Sands

Environmental Research Program (AOSERP) through its Aquatic Fauna

Technical Research Committee, initiated an integrated series of

projects to assess the baseline state of the fish resources of

the area. The work, which began in 1976, involves a broadly

based fisheries investigation of the Athabasca River as well as

site-intensive study of selected tributaries. Tributaries

selected for intensive study are those considered to be most

immediately imperilled by future surface mining operations or by

increased pressure from a growing human population.

The Muskeg River, a medium sized watershed on the east

side of the Athabasca River, was the first tributary selected for

intensive study. Initially, this tributary was selected because

a large portion of its drainage lies within the surface-mineable

area and because the AERC.B was involved in considering the

construction there of two synthetic crude oil plants. The

possibil ity was anticipated that construction of one or both of

these plants could involve massive watershed disturbance including

Page 16: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

2

the eventual diversion of both the Muskeg River and its major

tributary, Hartley Creek. Development plans for this area have

recently changed with the proposal by the Alsands Project Group~

a consortium of nine oil companies, to develop a single plant

north of the Muskeg River. The new proposal will not require the

diversion of either the Muskeg River or Hartley Creek, and total

destruction of this watershed will, therefore, be avoided.

However, construction and operation of the proposed plant, the

construction of a proposed new town, and increased access through

extension of roadways are expected to place considerable pressure

on the fish populations of the Muskeg River.

The present study was conducted over a period of three

years with the general objective, as outlined in the terms of

reference agreed to by AOSERP and the Department of Fisheries and

Environment, of describing the baseline states of the fish

resources of the Muskeg River watershed and providing a quanti­

tative estimate of the significance of the watershed to the

fisheries of the Athabasca River system.

Specific objectives for the study were as fol lows:

1. To enumerate the migrant populations of those

fish species utilizing the Muskeg River watershed

on a seasonal basis;

2. To describe the timing of the seasonal and daily

movements of the various fish populations into

and out of the Muskeg River watershed, and to

obtain information concerning the age and growth,

sex ratio, fecundity, food habits, etc., of these

fish;

3. To determine the extent of movement of the various

non-resident fish populations within the Muskeg

River watershed, and to locate critical spawning

and nursery areas;

4. To apply conventional (Floy) tags to migrant fish

to permit definition of their migration routes

within the Athabasca River system;

Page 17: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

3

5. To monitor the downstream migration of fry of

various species hatched within the Muskeg River

watershed, and to estimate recruitment of these

species to the Athabasca River system; and

6. To assess the resident fish species of the Muskeg

River watershed in terms of relative abundance,

distribution and general biology.

During the second year of the study it was also our

objective to describe in detail the aquatic habitat of the Muskeg

River watershed. This work was postponed until year three because

the classification system and key adopted by AOSERP for this

purpose was unavailable in 1977.

Results of work done in 1976 have already been reported

in interim form (Bond and Machniak 1977). This report presents

the results of work done in 1977 and attempts to draw together

the results from both years. It also presents results of the

habitat characterization done in 1978 and attempts to relate

habitat to fish util ization.

Page 18: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

4

2. RESUME OF CURRENT STATE OF KNOWLEDGE

Prior to 1976, information relative to the fish fauna

of the Muskeg River was limited to that generated by Griffiths'

(1973) preliminary survey and subsequent baseline studies conducted

by Lombard-North Group Ltd. (1973) and Renewable Resources

Consulting Services Ltd. (1974). The latter two studies were

performed as part of an environmental assessment of Shell's lease

13 mining project and a summary of the work is included in the

lease 13 environmental impact assessment that was filed with

Alberta Environment in 1975 (Shell Canada Ltd. 1975).

Since Griffith's work was part of a broad regional

study intended to evaluate the sport fishery potential of a large

number of streams in the oil sands area, his treatment of anyone

stream was, of necessity, cursory. He did, however, document the

occurrence of eight fish species in the Muskeg River and

identified the presence of a grayl ing popUlation in the lower

reaches. He did not examine the upper Muskeg River watershed nor

did he sample Hartley Creek.

The work by Lombard-North Group Ltd. (1973) and Renew­

able Resources Consulting Services (1974), while extending

knowledge of the fish fauna of the Muskeg River, left many

questions unanswered. These studies suggested an important role

for the Muskeg River in terms of providing spawning areas for

longnose suckers and white suckers although they were unable to

enumerate the runs. The capture of Arctic grayling, longnose and

white suckers, and mountain whitefish in Hartley Creek suggested a

greater importance for that tributary than was predicted by

Griffiths. The significance of the mouth region for fish popula­

tions from the Athabasca River was implied and an attempt was

made to relate fish utilization to habitat type. However,

because these studies concentrated on the region within leases 13

and 30, they provided no information on the resident fish

populations of the upper watershed or the extent to which this

region is utilized by migrant popUlations. Since no attempt was

made to capture small fish, the likely presence of several species

was not detected, nor were the younger age classes of larger

Page 19: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

5

species sampled. Small sample sizes precluded an adequate

description of the life history and general biology of several

species.

Previous studies did not permit an adequate description

of the fish resources of the Muskeg River watershed. Quantifica­

tion of the migrant populations that utilize the Muskeg River

watershed on a seasonal basis and a clear description of such

seasonal utilization patterns were required. Areas within the

watershed that may be critical in the life histories of the

various species required definition. The composition and

distribution of resident fish populations required description.

Life history patterns and general biological features of all

species required further elucidation.

Page 20: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

6

3. DESCRIPTION OF THE STUDY AREA

The Muskeg River originates in the Muskeg Mountain

uplands and travels approximately 100 km before joining the

Athabasca River 58 km downstream from Fort McMurray (Figure 1).

The total area drained by the Muskeg River system is 1464 km2 ,

of which 80% is forest and 20% muskeg (Northwest Hydraulic

Consultants Ltd. 1974). Only 2% of the total wat~rshed area is

lakes, the largest of which, Kear1 Lake (Figure 2), is only

5.4 km2 in surface area and 2 m in maximum depth. Hartley Creek

(Figure 2), the major tributary of the Muskeg River, drains

325 km 2 to the south of the main stream and enters the Muskeg

River about 33 km upstream from its confluence with the Athabasca

River. The water of the Muskeg River and Hartley Creek is

stained brown as a result of the presence of humic and fu1vic

acids.

The climate of the study area is continental, charac­

terized by cold winters, short, cool summers, and wide temperature

fluctuations (Intercontinental Engineering of Alberta Ltd. 1973).

Precipitation records for the Muskeg Mountains show the annual

precipitation to be 49.8 cm, of which 33.6 cm falls between May

and September (NHCL 1974).

The upper portion of the Muskeg River (Figure 3) is well

drained and vegetated by mixed spruce and areas of treed muskeg.

Surficial deposits consist of relatively thick drift composed

mainly of ti 11 (NHCL 1974) while the bedrock material is largely

Cretaceous shales and sandstones. The large central area of the

watershed is flat, poorly drained and covered with marshland and

treed muskeg (Figure 4). A thin surficial layer of outwash sand

is underlain in this area by the McMurray Oil Sands Formation.

The Muskeg River leaves the flat, central portion of its watershed

in the lower 16 km of its course and begins to cut through the

McMurray Oil Sands and Waterways limestone (NHCL 1974). The lower

reaches of the river valley are stream cut and the channel is

frequently confined by limestone outcroppings. The stream channel

in this area is fairly stable, the substrate, consisting of large

areas of gravel (Figure 5) with occasional areas of boulders and

Page 21: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

sru~~~_

Alherta

Edmonton •

Km 10 0 laQiff

10 20 30

Mi 10 0 20 30

7

Birch Mountains

40

Figure 1. Map of the AOSERP study area indicating the location of the Muskeg River.

Page 22: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

AOSERP STUDY AREA

8

MILES 5 0 I .,~,

JI1 5 0

KILOMETRES

I 5

LIMIT OF MUSKEG /' RIVER WATERSHED

13

5 10 I

I I I

I 10 15 20

Figure 2. Map of the Muskeg River drainage basin indicating the location of the counting fence and small fish co 1 1 e c t ion sit e s .

Page 23: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

9

Figure 3. The upper Muskeg River at small fish collection Site 6.

Page 24: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

10

Figure 4. The confluence of the Muskeg River and Kearl Creek at small fish collection Site 9.

Page 25: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

11

Figure 5. The Muskeg River downstream of the counting fence.

Page 26: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

12

bedrock (Figure 6).

The Muskeg River generally freezes over in late October

and remains ice-covered unti 1 late Apri 1. Ice left the stream on

15 Apri 1 in 1976 and on 22 Apri 1 in 1977. Under ice cover, water

temperatures remain near OOC but the stream can warm quickly in

the spring and reach high temperatures in mid-summer. A maximum

water temperature of 25°C was recorded in 1976 and daily temper­

ature fluctuations of up to SoC were observed (Bond and Machniak

1977).

Discharge records for the Muskeg River (Water Survey of

Canada 1975) showed a mean dai ly discharge in 1977 of 2.3 m3/s

(range 0.2 to 13.5 m3/s). After the spring flood, water levels

generally decl ine through the summer although considerable

fluctuation may occur as a result of heavy precipitation (Figures

7andS).

A brief description of the physical and chemical

characteristics of Muskeg River water is given in Table 1. More

complete physical and chemical data for this stream are presented

by Seidner (in prep.).

Page 27: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

13

Figure 6. The canyon section of the Muskeg River.

Page 28: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

14

- 12 cj Q.)

~ IO~ rc")

E ----W (!) 8 0:: <! I I

61

U en -0

4

2

I \ Last Days of JflJ Ice Conditions

\~ . _ .. _- ...

I \

15 30 15 31 APRIL MAY

f\

Fence Out

15 30 JUNE

15 31 JULY

15 31 AUGUST

Figure 7. Discharge of the Muskeg River from 1 Apri 1 to 31 October 1977.

15 30 15 30 SEPTEMBER OCTOBER

......

.r::-

Page 29: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

-o Q) (/)

......... I'()

30

~ 20

~ I ~ .. FREEZE-UP V; « I

~ 10 o

15 AUGUST

31 15 30 SEPTEMBER

15 OCTOBER

31 15 30 NOVEMBER

Figure 8. Discharge of the Muskeg River from 1 August to 30 November 1~78.

Page 30: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

16

Table 1. Summary of physical and chemical characteristics of the Muskeg River on severa1 dates, 1976a .

Parameterb

Discharge (m 3!s)

pH (pH units)

Specific conductance (llmhos!cm @ 25C)

Turbidity (JTU)

Apparent colour (Relative units)

Total alkal inity

Total hardness

Humic acid

Fulvic acid

Filterable residue

11 Feb

0.4

].7

367

6.,3

65

119

139

8

10

NO

----,--_. --

Date

14 May

2.6

8. 1

259

2.8

70

136

137

4

20

181

27 July

0.9

1

380

1·"> , I .

35

228

196

9

9

276

8

a Data provided by Mr. C. ~ Froel ich, Alberta Oi 1 Sands Environmental Research Program.

b Except as indicated, data are expressed as mg/l.

7 Sept

2,9

7.8

270

14,6

80

148

137

162

Page 31: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

17

4. MATERIALS AND METHODS

The fish fauna of the Muskeg River was studied during the

open water period of 1976 and 1977. During spring and summer of

both years various methods were employed to collect fish through­

out the watershed although the major emphasis was placed on the

construction and operation of a two-way fish counting fence to

monitor spring movements of fish into and out of the Muskeg River.

The fence was established approximately 1 km upstream of the mouth

of the tributary, thus permitting enumeration of a large proportion

of the fish moving from the Athabasca River into the Muskeg River

watershed. The counting fence was operated from 28 April to

30 July in 1976 and from 28 April to 15 June in 1977.

The absence of a fall fence operation in 1976 and 1977

was seen as a serious omission in the study and it was planned to

conduct such an operation in 1978. However, extremely high water

in September and October (Figure 8) made this impossible.

During June 1978, a biophysical inventory of the Muskeg

River was conducted in order to describe the aquatic habitats of

the watershed and relate habitat types to fish uti lization.

4.1 COUNTING FENCE CONSTRUCTION

The counting fence (Figure 9) was constructed of 2.5 cm

by 2.5 cm welded wire fabric and was installed in such a way as

to form a complete temporary barrier to fish. Fish travell ing

upstream or downstream encountered the fence at some point and

were led into one of the holding boxes where they could be worked

with. Complete detai ls of construction and installation are given

in Bond and Machniak (1977).

4.2 COUNTING FENCE OPERATION

The operation of a counting fence of this type is

highly labour intensive, especially during the high water period

generally encountered in the spring. Debris carried by the river

tends to clog the openings in the wire mesh, placing great pressure

on the structure. Frequent cleaning is required to remove such

debris and prevent the fence being washed out.

Page 32: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

18

Figure 9. The Muskeg River counting fence.

Page 33: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

19

4.2. 1 Sampling Schedule

The 1977 counting fence was operated from 28 April to

15 June. The downstream trap, however, was kept closed until

12 May to prevent upstream migrants from drifting into it. The

upstream trap was checked six or more times daily as required

during the early part of May when fish movement was intense. After

12 May, the traps were usually checked three or four times daily

(Table 2).

4.2.2 Trap Checks

Each trap check was performed by two persons, one _

working inside the trap and the other serving as recorder. The

number of fish of each species was recorded and as many fish as

possible were measured and sexed. The development of pearl

organs by male white and longnose suckers often made it possible

to distinguish between the sexes for these species without

sacrificing the fish. Smaller fish, that were either females or

immature males, could not be sexed by this method, and where doubt

existed, no sex was recorded. Handling of fish was minimized by

using a scoop constructed of PVC pipe and rochelle netting, and

fish were passed through the fence in the direction in which they

were moving.

Relative water level was recorded at each trap check

using a metre stick anchored in the stream. A continuous record

of stream temperatures was provided by a Ryan Model D15 recording

thermometer. Temperature data are summarized in Appendix 8.1.

The fence was cleaned as required and examined regularly for holes.

4.2.3 Tagging

Numbered Floy anchor tags (Type FD-68S) were applied to

as many fish (mainly suckers and pike) as was practicable. Tags

were inserted into the left side of the fish near the base of the

dorsal fin. The risk of infection was minimized by rinsing the

tagging gun in disinfectant and in fresh water before each

insertion. Suckers, retained in a holding pen for up to 15

minutes, rarely showed any ill effects. However, in 1976,

Page 34: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

20

Table 2. Samp 1 i ng schedule for Muskeg River counting fence, 1977.

Time of Fence Checka

Date 0300 0900 '1200 1500 1800 2100 2400

28 Apri 1 + + 29 + 1300 1600 + 30 + + +

1 May + + + 2 + + + + + + 3 + + + + + + 4 + + + + + + 5 + 1300 + 2200 + 6 + + + + + + 7 + 0500 + + + + + 8 + 0600 + + + + + 9 + 0500 + + + + +

10 + + + + + + 11 + + + + + + 12 + + + + + 13 + + + + 14 + + + + 15 + + + + 16 + + + 17 + + + 18 + + + 19 + + + + 20 + + + 21 + + + 22 + + + + 23 + + + 24 + + + + 25 + + + 26 + + 27 + + + 28 + + + 29 + 30 + + + 31 + + +

1 June + + + + 2 + + 3 + + + 4 + + + 5 + + + 6 + + + 7 + + + 8 + + + 9 + + + +

10 + + + + + 11 + + + 12 + + + + 13 + + + + + 14 + + + 15 + Operations terminated

a Actual check time indicated where different from scheduled check time.

Page 35: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

21

grayling did not appear to cope well with the stress imposed by

the application of Floy tags. Therefore, metallic clip tags were

utilized for this species in 1977. These tags were affixed to

the left operculum and no mortality was observed.

Depending on the species, either fork or total length

(±1.0 mm) was recorded for each fish tagged and the sex was

noted if possible. Tagged fish were not weighed and no body

structures were retained for age determination. Tagging was done

only during the day in 1976 but in 1977. floodlights, operated

from a portable generator, enabled the fence crew to tag fish

during the late evening and at night. Care was taken at all times

not to impede the progress of the fish any more than necessary.

When fish were observed to be backing up in front of the trap.

tagging was curtailed and the remaining fish were simply passed

through and enumerated.

The tagging program was well publicized by posters and

press releases and a two dollar reward was offered for returned

tags. Tag returns were made by sport fishermen along the Athabasca

River, by domestic fishermen on the Athabasca River and Lake

Athabasca, and by commercial fishermen on Lake Athabasca.

Personnel of LGL Ltd., Environmental Research Associates,

Edmonton, and Aquatic Environments Ltd., Calgary, also returned

tags, while others were recovered by fishery crews working on the

Athabasca River (Bond and Berry in prep.b), the Steepbank River

(Machniak and Bond in prep.), and the MacKay River (Machniak

et a 1. in prep.).

4.2.4 Dead Samples

Small numbers of fish were sacrificed each day for

biological analysis. Fork or total length (±l.O mm) and weight

(±20 g) were recorded for each fish. Weights of some small fish

were determined on a triple beam balance (±O.l g). Sex and stage

of maturity were determined by examination of the gonads. A fish

was considered to be mature if it appeared that it would spawn or

had already spawned in the year of capture. A ripe fish was a

mature fish whose gonads were close to spawning condition and

Page 36: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

22

from which sexual products could be expressed by application of

light pressure to the abdomen. A spent or spawned out fish was

a mature fish which had obviously spawned shortly prior to its

capture. Ovaries for fecundity work were removed from a number of

longnose suckers, white suckers, and Arctic grayling and weighed

fresh on a triple beam balance (±0.1 g). These ovaries were then

preserved in Gilson's fluid. Stomach contents were noted and a

small number of stomachs were preserved in 10% formalin for a more

detailed assessment of food habits. Scales were removed from the

appropriate body location (Hatfield et a1. 1972) for ageing of

grayl ing, mountain whitefish, pike, walleye, and lake whitefish.

Otoliths (ear bones) were taken from burbot, and for suckers, the

left pectoral fin was retained for age determination.

4.3 OTHER FISH COLLECTION TECHNIQUES

Apart from the counting fence, fish were collected by

various methods including small mesh beach seines (3.2 mm oval

mesh), commercial minnow traps, gill nets, electrofishing, drift

nets, dip nets, and angl ing. Large fish captured by these methods

were either dead sampled or measured and tagged. Small fish were

initial ly preserved in 10% formalin and later transferred to 40%

isopropyl alcohol.

An attempt was made to monitor the downstream fry

migrations in 1977 using a bomb drift sampler (Burton and

Flannagan 1976). However, the 202 ~m Nitex uti1 ized in the construc­

tion of the sampler quickly became clogged with debris, rendering

the sampler ineffective. Drift samplers, as a consequence, were

useful only in identifying the starting time of the fry migration.

4.3.1 Small Fish Collection Sites

Small fish were collected from 10 general areas of the

Muskeg River watershed. The sampling sites utilized in 1977 were

essentially the same as we sampled in 1976 (Bond and Machniak

1977). Sampling Sites 1, 2, and 3 were located downstream of Shell

lease 13, Sites 5, 6, 8, 9, and 10 were upstream of the lease,

while Sites 4 and 7 were situated within the lease boundaries

Page 37: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

23

(Figure 2). Each site consisted of from 10 m to 3 km of stream

channel that was sampled in such a way as to obtain a representa­

tive sample of the fish population of the area. No standard unit

of effort was used. The dates on which each location was sampled

in 1977 are shown in Table 3. Numerous col lections were made at

Sites 1, 2 and 3 on dates other than those indicated in Table 3

and these fish were included in the results.

4.4 LABORATORY TECHNIQUES

4.4. 1 urement

Preserved fish specimens were identified using

taxonomic keys and descriptions given by Paetz and Nelson (1970)

and McPhail and Lindsey (1970). While most fish could be iden­

tified to species, larval catostomids could often be identified

only to genus.

Small, preserved fish specimens were measured to the

nearest 1.0 mm (0.5 mm for some larval fishes) and weighed to

the nearest 0.1 g on a triple beam balance.

4.4.2 Age Determination

Ages were determined by the scale method for Arctic

grayling, mountain whitefish, lake whitefish, walleye, and

northern pike. Several scales from each fish were cleaned and

mounted between two glass slides and the annuli were interpreted

from the image produced by an Eberback microprojector.

Longnose and white suckers were aged from cross sections

of pectoral fin rays as described by Beamish and Harvey (1969) and

Beamish (1973). After embedding the dried fin rays in epoxy, thin

sections (0.5 to 1.0 mm) were cut by hand using a jeweller's saw

with No.6 or r~o. 7 blades. The sections were then mounted in

Permount on glass slides and read under a compound microscope.

Ages for all other fish were determined from otol iths.

Otoliths were stored in a 1:1 glycerine and water mixture and read

whole under a dissecting microscope using reflected light. Where

required, the otol ith was ground by hand on a carborundum.

Page 38: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

24

Table 3. Dates of sma 11 fish collections at each co 11 ect i on site, Muskeg River watershed, 1977a .

Date of Co 11 ect ion

Site No. 20 19 18 30 16 15 13 May June July July Aug. Sept. Oct.

+ + + +

2 + + + + +

3 + + + + + +

4 + + + + +

5 + +

6 + + + + +

7 + + +

8 + + + + +

9 + + +

10 + + + + +

al n addition to the above, samples were collected from Site 1 on 5 June and 6 August; from Site 2 on 10 other dates; from Site 3 on five other dates, and from Site 7 on 3 June 1977.

Page 39: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

25

Independent age determinations were made by three people in all

cases. Where discrepancies existed among the three results, the

readers conferred until a consensus was achieved.

4.4.3 Fecundi ty

Fecundity was determined for longnose and white suckers

using the gravimetric method of estimation described by Healey and

Nicol (1975). The ovarian tissue was removed from the sample and

the separated eggs dried to constant weight. The weight of a

subsample of eggs was determined and the total number of ova then

derived by extrapolation. The accuracy of the estimates was

assessed by performing total counts on several ovaries.

4.4.4 Food Habits

The stomach contents of preserved fish were removed

and the food items identified to the lowest possible taxon using

keys and descriptions from Pennak (1953). Results were expressed

as percentage frequency of occurrence, percentage of total number,

and, in some cases, percentage of total volume.

4.4.5 Data Analysis

Biological data were analyzed for graphic and tabular

presentation using a Hewlett-Packard Model 9810-A programmable

ca lculator.

equat i on:

Length-weight relationships were described by the power

where:

a + b (10910L); sb

W weight in grams

L fork or total length in mill imetres

a = y-intercept

b slope of the regression 1 ine, and

sb standard deviation of b.

Data summaries and raw data are presently on file at

the Freshwater Institute in Winnipeg.

Page 40: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

26

4.5 AQUATIC HABITAT ANALYSIS

An effort was made to characterize the aquatic habitat

of the Muskeg River util izing the procedures described by Brown

et ale (1978). In this system, streams are divided into reaches

which differ from each other in their physical characteristics.

A hel icopter survey is used to produce average values for various

parameters over each entire reach and site-specific information

is gathered from sample points within each reach.

4.5.1 Reach Definition and Descri ion

A reach is a section of stream whose physical properties

(habitat characteristics) are relatively homogeneous throughout

its length. According to Brown et al. (1978), IIreach boundaries

are located in regions where the topography changes drastically,

or significant changes in water quality, channel form and/or flow

character" occur.

Tentative reach boundaries for the Muskeg River and

Hartley Creek were assigned by reference to National Topographical

Series maps (1 :50,000) and available gradient information (RRCS

1975). These were later verified in the field. Aerial photo

interpretation, a recommended method for assigning tentative reach

boundaries, was not used in he present study,

General descriptions of each reach were acquired during

an aerial survey of the Muskeg River. At that time observations

were recorded on various aspects of the aquatic habitat. These

characteristics, which include velocity, substrate, pools, riffles,

riparian vegetation etc., are presented as averages of these

parameters over the length of the reach.

4.5.2 Point Samples

Site-specific information on biological and physical

parameters was collected on 22 and 23 June 1978. The sites

sampled included small fish collection sites uti 1 ized in 1976 and

1977 plus several additional locations.

At each site, stream width was measured and the depth

was taken at three locations across the channel. A rough estimate

Page 41: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

27

of stream velocity was obtained by floating a small chip a

distance of 5 m and timing it. This was also done at three

locations across the channel. The substrate composition at the

site was estimated in terms of fines « 2 mm), gravel (2 to 64 mm),

larges (> 64 mm) and bedrock. Riparian vegetation and aquatic

vegetation were noted and water temperature was recorded using a

pocket thermometer. At every second site, dissolved oxygen was

determined using a Hach field kit (Model AL-36-B) and pH was

estimated by means of colour comparator. Specific conductance

was measured using a Beckman RB-3 conductivity meter.

From five to seven seine hauls (3.2 mm oval mesh) were

made at each location. Fish captured were preserved in 10%

formalin in the field and were later identified to species,

measured, and weighed. Benthic macroinvertebrates were collected

using the kick method and a net fitted with 202 ~m Nitex. These

were also preserved in 10% formalin. Kick samples were later

divided into major groups (Chironomidae, Ephemeroptera, Plecoptera,

Trichoptera, Simuliidae, 01 igochaeta and "others"). No attempt

was made to identify these samples further as extensive inverte­

brate data from the Muskeg River watershed have already been

presented by Barton and Wallace (in prep.).

4.5.3 Mapping Procedures

A map of that portion of the Muskeg River watershed

surveyed was prepared at a scale of 1:50 000 to summarize the

biophysical data gathered during this study. Fish data col lected

in 1978 were supplemented by those gathered during 1976 and 1977.

4.6 LIMITATIONS OF METHODS

The primary objective of the present study was to

enumerate and describe the migrant fish populations that utilize

the Muskeg River on a seasonal rather than a year-round basis.

The best possible means of achieving such an objective is undoubt­

edlya counting fence. However, this apparatus, like any other,

has certain limitations.

The 2.5 x 2.5 cm wire mesh used in the construction of

Page 42: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

28

the counting fence is believed to have been highly effective in

catching fish longer than 150 mm in fork length. Smaller fish,

although sometimes taken in the trap, were able to pass through

the apertures. Seasonal movements of small fish (such as trout­

perch) could not, therefore, be monitored.

The Muskeg River counting fence could be operated

effectively only at discharge rates of less than 7 m3/s. Thus,

the fence could not be installed unti 1 the spring flood had begun

to subside, and fish movements occurring during the peak of the

flood could not be monitored. Once the fence was installed, no

problems were encountered in either year of the study as water

levels remained low during the period of operation.

Because of the highly compacted nature of the substrate

at the fence site, 1 ittle problem was encountered with holes

developing under the structure. Although small numbers of fish

may have avoided the traps through such holes, we bel ieve the

number to be small relative to the total number counted.

We believe that our catch data are highly representa­

tive of the nature and timing of the upstream migrations. Suckers

moving upstream quickly located the entrance to the trap and showed

no hesitation in entering it. At times of heavy upstream movement,

suckers backed below the fence but continued actively to seek a

way through. Their progress was delayed as 1 ittle as possible by

continuous trap work at such times. Downstream data are considered

to be less representative. The downstream trap, especially in

1976 (Bond and Machniak 1977), was inefficient in terms of holding

fish. This problem was considerably reduced in 1977 by a modifi­

cation of the trap entrance, whereby the entrance was from

the long axis of the trap. The second problem encountered in

mon i tor,i ng the downs t ream run was the apparent re 1 uctance of

suckers to enter the downstream trap. Fish moving downstream

would often stop just ahead of the entrance to the trap and hold

there. Many times they would refuse to enter and would move back

upstream. Thus, the situation in the Muskeg River was similar to

that described by Kendel (1 ) where post-spawning, downstream

movements of longnose suckers were delayed by the presence of a

Page 43: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

29

counting fence.

The counting fence was operated from 28 April to 30 July

1976, and from 28 April to 15 June 1977. Thus, spring and early

summer fish movements in the Muskeg River have been fairly

accurately described. The exception appears to be Arctic grayl ing,

many of which undoubtedly passed upstream prior to fence installa­

tion. The absence of a fall fence operation leaves a serious gap

in the study. No firm plans for a fall operation were included in

the 1976 and 1977 studies. High water thwarted a planned fall

operation in 1978 and prevented a complete enumeration of Arctic

grayling during their downstream migration which is suspected to

occur just prior to freeze-up.

The small mesh seines (3.2 mm) used in the present

study are considered to have been highly effective in capturing

small fish in the Muskeg River watershed o However, in deep water,

and in areas with an uneven bottom (rocks, logs etc.) their value

was limited. Such areas might have been more efficiently sampled

by an electrofisher or toxicant.

Because no winter sampling was conducted, the present

study produced no information on fish util ization of the Muskeg

River at that time of the year.

Page 44: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

30

5. RESULTS AND DISCUSSION

5.1 FISH FAUNA OF THE MUSKEG RIVER

Nineteen fish species representing nine famil ies

(Table 4) were captured in the Muskeg Rive watershed during 1977.

All species taken in 1976 (Bond and Machniak 1977) were represented

in the 1977 catch with the exception of spottail shiner. Species

captured in 1977 that represent additions to the 1976 results

include Dolly Varden, fathead minnow, yellow perch, ninespine

stickleback, and lake cisco.

The fish fauna of the Muskeg River can be divided into

three categories on the basis of the extent to which this watershed

forms part of the home range of the various populations. The first

category includes a number of species that appear to be more

typical of the Athabasca River or other areas outside the Muskeg

watershed. It includes lake whitefish, walleye, yellow perch,

burbot, Dolly Varden, lake cisco, fathead minnow, ninespine

stickleback, and spottail shiner. These species are seldom

encountered upstream of the fence site and are most 1 ikely to be

taken in the vicinity of the river mouth, an area that may be of

considerable importance in te~ms of providing resting areas during

migrations within the Athabasca River or nursery areas for young­

of-the-year.

The second category includes five species that appear

to have establ ished resident populations within the Muskeg River

watershed and whose home range is more or less restricted to that

watershed. These are lake chub, brook stickleback,longnose dace,

slimy sculpin, and pearl dace. For these species the Muskeg River

satisfies all requirements of all life stages on a year round

basis.

The third category includes a number of species to

which the Muskeg River represents a small but important portion of

their home range. These species, whi le inhabiting areas outside

of, and, in some cases, great distances from the Muskeg River for

part or most of the year, re urn to the tributary periodically to

spawn and/or feed. The Muskeg River watershed may also provide

Page 45: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

31

Table 4. List of fish species captured in the Muskeg River drainage during 1976 and 1977.

Family and Species Names

Family Coregonidae

Coregonus cZupeafoNnis (Mitchill) Prosopium wiZZiamsoni (Girard) Coregonus artedii Lesueura ThymaZZus arcticus (Pallas) SaZveZinus maZma (Walbaum)a

Fami ly Esocidae

Esox Zucius Linnaeus

Family Cyprinidae

SemotiZus margarita nachtriebi (Cox) Couesius pZumbeus (Agassiz) Rhinichthys cataractae (Valenciennes) Notropis hudsonius (Clinton)b PimephaZes promeZas Rafinesquea

Family Catostomidae

Catostomus commersoni (Lacepede) Catostomus catostomus (Forster)

Family Percopsidae

Percopsis omiscomaycus (Walbaum)

Fam i 1 y Gad j dae

Lota Zota (Linnaeus)

Family Gasterosteidae

CuZaea inconstans (Kirtland) Pungitius pungitius (Linnaeus)a

Fami ly Cottidae

Cottus cognatus Richardson

Fami 1 y Perc i dae

Stizostedion vitreum vitreum (Mitchill) Perca fZavescens (Mitchill)a

a Captured in 1977 but not in 1976. b Captured in 1976 but not in 1977.

Common Names

Lake whitefish Mountain whitefish Lake cisco Arctic grayling Dolly Varden

Northern pike

Northern pearl dace Lake chub Longnose dace Spottail shiner Fathead minnow

White sucker Longnose sucker

Trout-perch

Burbot

Brook stickleback Ninespine stickleback

Slimy sculpin

Wa 11 eye Yellow perch

Page 46: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

32

rearing and overwintering areas for juvenile members of some of

these populations. Species included in this group are white

sucker, longnose sucker, Arctic grayl ing, mountain whitefish,

northern pike, and, perhaps, trout-perch.

5.2 RELATIVE ABUNDANCE AND DISTRIBUTION

A total of 5275 fish (10 species) were passed through

the upstream trap between 28 April and 15 June 1977 (Table 5). As

in 1976 (Bond and Machniak 1977), white suckers (56.3%) and long­

nose suckers (31.1%) dominated the catch. Northern pike (8.2%),

Arctic gray1 ing (3.1%), and mountain whitefish (1.1%) accounted

for most of the remainder.

By 15 June, 2487 fish had been counted at the downstream

trap (Table 5). Remaining in the watershed beyond 15 June were

1505 white suckers (53.4% of the total number of white suckers

enumerated at the upstream trap), 637 longnose suckers (38.8%),

150 Arctic grayling (93.2%), 374 northern pike (86.4%), and small

numbers of several other species. These numbers are certainly con­

servative, especially in the case of Arctic grayl ing which probably

began to move into the Muskeg River several days prior to fence

installation.

Collections throughout the Muskeg River watershed during

the summer produced 261 11 fish (Table 6). Suckers accounted

for 75.5% of this total, the majority (>96%) being young-of-the­

year. Excluding suckers, brook stickleback was the most abundant

small fish in the samples accounting for 47.9% of the total catch.

Also occurring commonly were lake chub (25.7%), slimy sculpin

(6.2%), and longnose dace (4.4%). Pearl dace, which dominated the

resident fish population in the Steepbank River (Machniak and Bond

in prep.), comprised only 1.7% of the sma1 1 fish sample in the

Muskeg River in 1977 and only 0.4% in 1976 (Bond and Machniak 1977).

Brook stickleback were captured at eight of the 10

sampl ing sites in 1977, but, as in 1976 (Bond and Machniak 1977),

they were most abundant in the more tranquil water upstream of

Site 3. Lake chub were also taken at eight locations and were found

in association with brook stickleback at Site 6. However, this

Page 47: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

33

Table 5. Summary of fish recorded at the Muskeg River counting fence, 1977.

Number of Fish Species

Upstream Trap Downstream Trap

White sucker 2970 1 385

Longnose sucker 1641 1004

Arctic grayl ing 161 11

Northern pike 433 59

Mountain whitefish 57a 17

Lake whitefish 0 6

Wa 11 eye 8 5

Burbot 0

Lake cisco 0

Do 1 1 y Va r den 3 0

Total 5275 2487

a Includes a small number of lake whitefish which were misidentified prior to 11 May 1977.

Page 48: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 6. Number of fish captured by seine, minnow trap) drift net and dipnet at each small fish collection site in the Muskeg River Drainage, 1977.

Muskeg River Hartley Creek Kear 1 Creek Total

Area Area 2 Area 3 Area 4 Area 5 Area 6 Other Area 7 Area 8 Area 9 Area 10 N % N % N % N % N N % N % N % N % N % N % N %

Arctic grayling 0.2 5 0.5 13 4.0 1.8 20 0,8

Pear 1 dace 10 1.0 1.4 11 D.4

Lake chub 6 0.9 37 3.7 54 16.7 2.3 42 35.3 6 lD.7 12 48.0 2.6 165 6.3 Longnose dace 6 0.9 19 1.9 1 0.3 1 5.3 4.D 28 1.1 Sucker spp. 610 92.1 857 86.8 174 53.8 275 91.1 1916 73.2 Wh i te sucker 5 0.5 18 5.6 2 0.7 2 1.7 21 37.5 1 4.0 4 10.3 53 2.0 w

.,J:-Longnose sucker 0.1 4 1.3 2 3.6 7 0.3 Trout-perch 6 0.9 0.1 7 0.3 Burbot 3 0.3 3 D.l

Brook stickleback 56 17.3 13 4.3 15 100.0 75 63.0 14 73.7 25 44.6 5 20.0 34 87.2 71 98.6 308 11.8 51 imy scul pin 6 0.9 18 1.8 5 1.5 4 21.1 1.8 6 24.0 40 1.5 Northern pike 6 0.6 0.3 7 0.3 Fathead minnow 1 0.1 1 < D. 1 Lake whitefish 14 1.4 2 0.6 16 0.6 Yellow perch 27 4.1 6 0.6 33 1.3 Ninespine stickleback 0.1 1 < 0.1 Mountain whitefish 3 0.3 3 D.l

Totals 662 987 323 302 15 119 19 56 25 39 72 2619

Page 49: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

35

species seems to be most abundant at Sites 2 and 3. In 1976,

chub were taken in large numbers at Site 7 of Hartley Creek (Bond

and Machniak 1977). Longnose dace were captured as far upstream

as Site 3 and one was reported from Site 7 of Hartley Creek in

1976 (Bond and Machniak 1977). However, this species appears to

be most abundant in the lower reaches of the watershed (Sites

and 2) as is also the sl imy sculpin (Sites 1, 2, and 3).

5.3 TAGGING RESULTS

5.3. 1 Tag Releases and Recaptures

F10y tags were appl ied to 1629 fish during 1977,

bringing to 3898 the total number of fish tagged over two years

(Table 7). The majority of fish tagged were longnose suckers

(51.9%), white suckers (42.8%), and northern pike (4.9%). Fish

were tagged during both the upstream and downstream runs.

Recaptures at the downstream trap in 1976 provided an

indication of the length of time spent by some individual fish in

the Muskeg River watershed (Bond and Machniak 1977). Recaptures of

1976 tags at the fence site in 1977 demonstrated a homing tendency

in both white and longnose suckers.

Considering only fish that were tagged at the fence site

and recaptured outside the Muskeg River watershed, 77 recaptures

have been reported for a tag return rate to date of 2.0% (Table 7).

The highest recapture rates obtained outside the watershed were

for northern pike (14.1%). White and longnose suckers had

recapture rates of 1.9 and 0.8% respectively.

In addition to the Floy tags mentioned above, metal

cl ip tags were applied to 40 Arctic grayling in 1977, of which one

has been recaptured.

5.3.2 Movement of Tagged Fish

The recapture of tagged fish can provide useful infor­

mation concerning the extent and timing of fish movements.

However, a degree of caution usually must be exercised in the

interpretation of the results. In the first place, one can never

Page 50: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

36

Table 7. Summary of tag releases and recaptures by species for fish tagged at Muskeg River counting fence, 1976 and 1977, and recaptured outside the Muskeg River watershed.

Species

White sucker

Longnose sucker

Northern pike

Arctic grayl ing

Walleye

Total

Number Tagged

1976 1977

876 793

1267 757

119 73

3 2

4 4

2269 1629

Percent of Total Number

Tagged

42.8

51.9

4.9

O. 1

0.2

100.0

Number Recaptured

32

17

27

o

77

Percent Recaptured

1.9

0.8

14. 1

20.0

0.0

2.0

Page 51: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

37

be absolutely certain that the movement exhibited by an individual

fish is representative of all fish in the population. Secondly,

since it is obvious that no tags will be recovered from areas where

no fishing effort occurs, it can be argued that recaptures serve

merely to identify fishing areas.

There is no question that, in the AOSERP study area,

considerably more fishing effort is expended downstream from Fort

McMurray than upstream. As well, in some cases, low recovery

rates make it impossible to form firm conclusions as to general

movement trends. Nevertheless, results from the present and

several other recent studies (Machniak and Bond in prep.; Bond

and Berry in prep.a, in prep.b; Machniak et a1. in prep.; Jones

et a1. 1978; Kristensen and Pidge 1977) are beginning to identify

patterns of fish movements within the AOSERP study area.

5.3.2.1 White suckers. Floy tags were applied to 1669 white

suckers in the Muskeg River during 1976 and 1977, of which 32 have

been recaptured outside the Muskeg River watershed (Appendix 8.2)

(Bond and Machniak 1977). Of this number, 12 fish were recaptured

in the lower Athabasca River or Lake Athabasca. Only three white

suckers were recaptured upstream of the Muskeg River, none of which

was taken upstream of the Steepbank River. One fish, tagged 20 May

1976 as it left the Muskeg River, was recaptured at the Muskeg

River upstream trap on 8 May 1977 and subsequently in the Athabasca

delta on 21 June 1977. Another was recaptured at the Muskeg River

downstream trap on 27 May 1977, 16 days after it had entered the

tributary. This fish was recaptured again on 15 May 1978 at the

upstream fence of the MacKay River (Machniak et ale in prep.), and

in June 1978, it was recaptured in Lake Athabasca at the mouth of

the Athabasca River. Four other white suckers, tagged in the Muskeg

River in 1977, were also recaptured in the MacKay River upstream

trap in 1978. Another fish, tagged in May 1976 in the Muskeg River

had been at large for 724 days when it was recaptured at the MacKay

River trap on 14 May 1978. One Muskeg River fish was recaptured in

the Steepbank River. This fish, tagged 16 July 1976, was recap­

tured moving upstream in the Steepbank River on 4 May 1977. A

Page 52: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

38

total of 176 white suckers, tagged in 1976, were recaptured in

the Muskeg river during 1977.

Tag return evidence from this and other studies (Bond

and Berry in prep.b; Machniak and Bond in prep~; Shell Canada Ltd,

1975: Machniak et al, in prep.) suggests that white suckers that

spawn in the Muskeg River and other tributaries of the AOSERP

study area belong to the Lake Athabasca population and return to

the lake during summer or fall to overwinter. There is also an

indication of a strong homing tendency on the part of this species

although some individuals apparently enter other tributaries.

5.3.2.2 Longnose suckers. A total of 2204 longnose suckers were

tagged in the Muskeg River during 1976 and 1977, of which 17 have

been recaptured outside the Muskeg River watershed (Appendix 8.2)

(Bond and Machniak 1977). Three fish, tagged in May 1977, were

recaptured in Lake Athabasca between 31 May and 22 June, indicating

a rapid downstream movement of from 264 to 296 km. One sucker,

tagged 13 June 1976, was recaptured at the Muskeg River fence on

9 June 1977 and was recaptured again at the mouth of Clark Creek

(km 11) in the Athabasca River on 23 June. Another, tagged 29 May

1976, was observed spawning in the lower reaches of Beaver Creek on

14 May 1977 (D. Tripp, Fishery Biologist, Aquatic Environments

Ltd. verbal communication with W. A. Bond, June 1977). Nine

10ngnose suckers, tagged in the Muskeg River in 1976, were recap­

tured in May 1977 at the Steepbank River counting fence while one

fish, tagged 18 May 1977, was recaptured on 1 May 1978 at the

Mac~y River upstream trap. A total of 260 10ngnose suckers,

tagged in 1976, were recaptured in the Muskeg River during 1977.

Tag return evidence from this and other studies (Bond

and Berry in prep.b; Machniak and Bond in prep.; Machniak et al.

in prep.) suggests that longnose suckers that spawn in the Muskeg

River and other tributaries of the AOSERP study area belong to

the Lake Athabasca population and return to the lake during summer

or fall to overwinter. There is also an indication of a strong

homing tendency in this species although some individuals

apparently enter other tributaries.

Page 53: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

39

5.3.2.3 Northern ike. Fourteen percent of all pike tagged in

the Muskeg River in 1976 and 1977 have been recaptured outside the

Muskeg River watershed or near the tributary mouth (Appendix 8.2)

~ond and Machniak 1977). Although Bond and Machniak 0977) noted that

one pike moved 72 km between tagging and recapture. pike in general

demonstrated little tendency to move around and most were recap­

tured within 15 to 20 km of the tagging site. Bond and Berry (in

. prep.a, in prep.b) and Machniak and Bond (in prep.) reported

similar results.

Pike in the AOSERP study area appear to concentrate in

the lower reaches of tributary streams during the summer and to

move up and down the tributaries to some extent. They probably

leave the tributaries in late summer or fal 1 to overwinter in the

Athabasca Rive r.

5.3.2.4 Arctic gray] ing. Floy tags were appled to only five

Arctic grayling, one of which has been recaptured (Appendix 8.2).

This fish, tagged in the Muskeg River on 30 April 1976, was recap­

tured 10 October 1977 moving downstream in the Steepbank River.

It had been at large for 528 days at the time of its recapture.

One grayling, tagged with a metal cl ip at the upstream trap in

May 1977, was recaptured near smal 1 fish collection site 4

during August 1977.

5.4 LIFE HISTORIES OF FISH SPECIES

5.4. 1 White Suckers

5.4.1 . 1 Seasonal timing of upstream migration. White sucker

spawning migrations appear to be initiated by increasing water

temperatures fol lowing spring break-up, and often begin when the

daily maximum water temperature in the spawning stream approaches

10°C (Geen et al. 1966; Bond 1972). Whi te suckers were present

in small numbers and moving upstream in the Muskeg River on

28 April 1977, on which date the maximum daily water temperature

was 9°C. Water temperature decreased to 5°C during the next two

Page 54: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

40

days and few fish entered the trap. The number of migrant suckers

then increased daily from 1 to 6 Mayas the water temperature rose

steadily (Table 8, Figure 10). The main part of the migration

occurred between 7 and 9 May, the first three days on which the

maximum daily water temperature exceeded 10°C. On these days,

45.9% of the total migration passed through the upstream trap.

The upstream run was essentially complete by 12 May although small

numbers of fish continued to move up after this date. The 1977 white sucker run into the Muskeg River fol lowed by several days

the migration into the adjacent Steepbank River, but the pattern

was similar in both cases. The Steepbank River first reached

10°C on 1 May and the peak of the upstream white sucker run

occurred between 2 and 4 May (Machniak and Bond in prep.).

5.4.1.2 Diel timing of upstream migration. Bond and Machniak

(1977) reported that, in 1976, most white suckers migrated into

the Muskeg River between noon and midnight. They observed that

maximum movement occurred in the late afternoon and early evening,

just following the time of highest daily water temperature. Geen

et al. (1966) and Machniak and Bond (in prep.) reported similar

results. A different pattern, however, was observed in the Muskeg

River during 1977 as most fish moved upstream at night when the

water temperature had dropped considerably below the da~ly maximum.

The majority of fish (78%) moved upstream between 2100 and 1200 h

(Table 9). Thus it is evident that the diel timing of white sucker

migrations can vary considerably from year to year.

5.4.1.3 Spawning period. As wil 1 be discussed later, the

majority of white suckers mov1ng upstream in the Muskeg River

between 28 April and 5 May were immature fish. The main upstream

migration of spawners commenced approximately 6 May. Most mature

females observed at the fence site were not fully ripe (freely

running eggs) until about 6 to 8 May.

White suckers were observed spawning downstream of the

counting fence during the second week of May. Eggs were collected

in drift nets as early as 9 May 1977 and, while not confirmed,

Page 55: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 8. Summary of fish enumerated during the counting fence operation in the Muskeg River, 1977.

Upstream Trap Downstream Trap

..c: ..!: (j) 0) C C r.r: Q Cil C C (/) (/) C L f.!'; I-o ~- u .-- (j) (jJ'*- o :~ '- U ._, Q) ro4-e C) 0; rv ..:-> 0,) Da i 1 y e Q) (1) (J) .'...1 Q) Da i ly O'l ~ .;....: -~ -\..J >- -1-' (ll c: ~ en~ -1-' _"- -I-' >- 4-J (J) e .j...J

Date e 'J .- U U n:; L~ :J .- Totals c u U ~\ ro \...~ :J .- Totals o ::J ..!: ::::; ~ L o ._- o..!: o :J .c :J \... L 0'- O..!: -.JVl :3 1/') <t tJ') Z 0.. :E: 3: -.J (/) :::: Vi <t en zCL ::: ~

28 Apri 1 7 3 5 0 0 15 29 8 27 10 9 9 63 30 0 16 5 21 0 42

1 May 13 58 13 19 0 103 2 92 83 7 33 4 220a

.j::-

3 64 170 9 53 3 299 4 241 184 15 39 3 482 5 258 221 10 24 1 514 Trap Closed 6 116 211 8 22 0 357 7 71 520 6 24 0 621 8 102 562 4 7 0 675 9 63 282 2 10 1 358

10 42 110 1 30 3 188a

11 49 187 1 29 4 271a 12 22 81 8 20 3 134 3 83 1 4 1 93 b

13 148 44 5 4 6 208a 8 68 0 1 0 77 14 42 30 5 9 2 88 24 46 1 5 0 77 b

15 33 32 4 3 0 72 67 87 2 1 0 158b 16 9 1 0 0 0 9 10 3 0 2 3 18 17 3 8 2 2 1 16 35 10 2 2 1 51b 18 5 3 2 3 0 13 67 26 1 0 1 95

continued

Page 56: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 8. Continued.

Upstream Trap Downstream Trap

..c ..c (l.) 0) c C I/) (l.) 0) C C I/) I/) C !... I/) C !... o !... !... u·- (l.) rol+- Da i 1 y o !... "- U .- (l.) rol+- Da il y C (l.) (l.) (l.) ..c .j..J (l.) C (l.) (l.) (l.) ..c +-J (l.)

Date O)~ +-J ~ +-J >- +-J (l.) C +-J Totals O)~ +-J ~ +-J >- +-J (l.) C +-J Totals C u .- u u ro !...~ ::J .- C U U u ro !...~ ::J .-o ::J ..c ::J !... !... 0·- o..c o ::J ..c ::J !... !... o .- o..c ....JI/) :3 I/) <CO) :zc.. :E: :;: ....J I/) :3 I/) <C 0) :z c.. ::E: :;:

19 May 17 12 4 0 1 34 69 26 0 2 2 99 20 28 13 0 3 .1 46a

73 58 0 1 1 133 21 16 14 4 0 1 35 6 13 0 1 0 21b 22 17 8 6 4 3 39a 114 91 0 2 1 207 23 15 13 3 3 0 34 29 11 0 2 0 42

..t:"" 24 22 7 0 3 0 32 41 62 0 2 0 105 N

25 13 4 3 3 1 24 45 66 0 2 0 115b 26 20 5 2 2 0 29 24 23 0 3 0 50 27 8 8 3 4 0 23 30 15 0 1 0 47b 28 2 9 2 0 2 15 28 29 1 1 1 60 29 0 3 0 1 0 4 20 6 1 0 0 27 30 13 7 4 1 0 25 26 66 0 0 0 92 31 2 6 0 6 1 15 11 76 1 3 0 91

1 June 27 9 0 3 2 41 54 51 0 1 0 106 2 11 0 3 9 0 23 7 11 0 4 0 23 b 3 5 4 0 3 0 13a 13 20 0 3 0 37b 4 8 2 3 5 1 20a 22 20 0 2 0 45 b 5 13 2 1 5 1 23a 14 20 0 0 0 34 6 1 0 1 2 1 6a 42 31 1 0 1 75 7 5 1 0 3 0 lOa 0 12 0 0 1 13 8 1 2 0 3 0 6 23 38 0 4 2 67

cont i nued

Page 57: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 8. Concluded.

Ups t ream Trap Downstream Trap

u ..c ..c <lJ O'l c c V') <lJ O'l c c V')

V') c ~ V') c ~

o ~ ~ u .- <lJ 1'04- o ~ ~ u .- <lJ 1'04-C <lJ <lJ <lJ ..c .j...J <lJ Da i 1 y C <lJ <lJ <lJ ..c .j...J <lJ Da i 1 y O'l~ +J ~ .j...J >- .j...J <lJ C .j...J O'l~ .j...J~ .j...J >- .j...J <lJ C .j...J

Date C u u U 1'0 ~~ ::J .- To ta 1 s C u u U 1'0 ~~ ::J .- Totals o ::J ..c ::J ~ ~ 0'- o..c o ::J ..c ::J ~ ~ o .- o..c ....J V') ::3 V') « O'l ZCL :E: 3 -IV') ::3 V') « O'l ZCL :E: 3

9 June 3 0 0 1 1 5 11 45 0 2 1 59 10 1 2 0 2 0 6a 14 70 0 2 0 86 11 0 2 0 0 0 2 20 58 0 1 1 80 12 1 0 0 3 0 4 9 63 0 1 0 73 13 1 2 0 1 0 4 14 29 0 3 0 46 .::-14 2 0 0 2 0 4 17 28 0 1 1 47 w

15 1 2 0 0 1 4 14 24 0 0 0 38

Total 1641 2970 161 433 57 5275 1004 1385 11 59 1 7 2487

% 31.1 56.3 3. 1 8.2 1 . 1 40.4 55.7 0.4 2.4 0.7

a Other species counted through upstream trap: one lake cisco, 2 May; one burbot, 13 May; eight walleye, 10 May (two fish), 11 May, 20 May, 22 May, 3 June, 4 June and 10 June; three Dolly Varden, 5 June~ 6 June and 7 June.

b Other species counted through downstream trap: five wa 11 eye t 12 May, 17 May, 21 May, 3 June and 4 June; and six lake whitefish, 14 May, 15 May, 25 May (two fish), 27 May and 2 June.

c Numbers shown for mountain whitefish between 28 April and 11 May probably include a few lake whitefish that were erroneously identified.

Page 58: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

500

400

300

:J: CJ) 200 LL

LL 0 100 a: w m :E 0 :::> z

100

WHITE SUCKER

\

28301 APR.

i n~n

15 MAY

Upstream n=2970

D Males EZI Females [JAil

311 JUNE

10-

~

~u JO ~~

-0 -

°E S~ ~

5 10-G)

55 0E ~Q

45 ~-==Qj

35 0 > oQ) .-1

25 ~ ~

15

Figure 10. Seasonal timing of the white sucker migration in the Muskeg River, 1977.

,J::-,J::-

Page 59: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

45

Table 9. Summary of diel timing of the upstream migration of white suckers in the Muskeg River, 1977. Fish that were counted at times other than those indicated were included in the next check period.

Number of Fish Counted at Each Check

Oate 0900 1500 1800 2100 2400 Total (0300)a

28 Apri 1 NO NO NO 0 3 NO 3 29 16 NO 8 2 1 NO 27 30 NO 14 NO 1 1 NO 16

1 May NO 5 NO NO 10 43 58 2 21 0 3 3 19 37 83 3 98 0 7 1 0 64 170 4a 75 41 7 11 7 43 184 5a 125 NO 57 6 NO 33 221 6a 79 25 1 18 6 82 211 7a 152 126 37 51 37 117 520 8a 128 187 87 57 42 61 562 9a 106 85 11 10 42 28 282

lOa 27 20 1 8 13 41 110 11 a 51 18 25 10 8 75 187 12a 50 9 NO 20 2 trap closed 81 13 NO 21 NO 7 NO 16 44 14 NO 23 NO 1 1 5 30 15 NO 27 NO 0 0 5 32 16 NO 1 NO 0 NO 0 1 17 NO 6 NO NO 1 1 8 18 NO 2 NO NO 0 1 3 19 NO 2 NO 0 1 9 12 20 NO 0 NO NO 3 10 13 21 NO 4 NO NO 0 10 14 22 NO 0 NO 0 2 6 8 23 NO 9 NO 2 NO 2 13 24 NO 1 NO 0 1 5 7 25 NO 0 NO 0 NO 4 4 26 NO 2 NO NO NO 3 5 27 NO 3 NO NO 2 3 8 28 NO 2 NO 1 NO 6 9 29 NO 3 NO NO NO NO 3 30 1 NO 2 NO NO 4 7 31 NO 0 NO NO 4 2 6

1 Junea 3 2 NO 1 NO 3 9 2 NO 0 NO NO NO 0 0 3 NO 0 NO 2 NO 2 4 4 NO 0 NO 1 NO 1 2 5 NO 1 NO 1 NO 0 2 6 NO 0 NO 0 NO 0 0 7 NO 0 NO 0 NO 1 1 8 NO 0 NO 0 NO 2 2 9 NO 0 NO 0 0 0 0

10 NO 0 0 0 0 2 2 11 NO 0 NO 0 NO 2 2 12 NO 0 0 NO 0 0 0 13 NO 1 0 0 0 1 2 14 NO 0 NO NO 0 0 0 15 NO 2 ooerations terminated 2

Totals 932 642 246 214 206 730 2970

% Grand 31.4 21.6 8.3 7.2 6.9 24.6 Total

a Checks were made at 0300 h rather than 0900 h during the peak of the runs.

Page 60: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

46

these were thought to be white sucker eggs. The first spent white

suckers were taken at the downstream trap on 12 May and by 18 May

virtually all fish were spawned out.

The white sucker spawning period in the Muskeg River in

1977 was almost identical to that observed in 1976 (Bond and

Machniak 1977). However, as the initiation of white sucker

spawning migrations appears to be closely related to stream

temperature (Geen et al. 1966; Tremblay 1962), the precise timing

of this event can be expected to vary considerably from year to

year.

Spawning areas. White suckers have been reported to

spawn in a variety of habitats, including lake margins and quiet

reaches in the mouths of streams (Scott and Crossman 1973).

However, optimal conditions probably involve shallow water running

over a gravel substrate (Geen 1958). Bond (1972) suggested that

the presence of deep pools adjacent to the spawning sites may also

be an important factor. Within the lower 35 km of the Muskeg

River system there are many areas that appear to satisfy these

conditions.

As in 1976 (Bond and Machniak 1977), white suckers were

observed spawning below the fence site during the second week of

May 1977e Although spawning was not seen upstream of the fence,

young-of-the-year suckers were abundant at Sites 3 and 4 (Figure 2)

by mid-June. Few sucker fry were captured in Hartley Creek either

in 1976 or 1977 although some spawning probably occurs in that

tributary downstream of Site 8. Only one young-of-the-year sucker

was captured from the Muskeg River upstream of Site 4 during the

two years of this study. This fish was taken at Site 6 (Figure 2)

on 16 August 1977.

5.4.105 Length of time spent in the Muskeg River. By 15 June

1977, when trap operations ceased, only 46.6% of the white suckers

counted through the upstream trap had returned downstream. The

downstream migration observed clearly represented the departure

of spawners from the tributary and began approximately one week

Page 61: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

47

following the passage of this group through the upstream trap

(see Section 5.4.1.8). On the other hand, fewer than 10% of the

immature migrants «350 mm) had returned downstream as of 15 June.

No analysis of the 1977 tag data was performed to

indicate the length of time spent in the tributary by individual

fish. However, the 1976 data indicated that this time varied

considerably (from three to 84 days) for fish that had left the

Muskeg River by 30 July. On that date, 40.9% of the white suckers

enumerated at the upstream trap sti 11 remained in the tributary

(Bond and Machniak 1977). Many immature white suckers may remain

in the Muskeg River until freeze-up as was the case in the

Steepbank River (Machniak and Bond in prep.).

5.4.1 .6 Seasonal and diel timing of downstream migration. The

first spent fish were observed upstream of the counting fence on

12 May 1977, on which date the downstream trap was opened. White

suckers moved downstream from 12 May through 15 June, the final

day of trap operations (Table 8 and Figure 10). While the number

of fish passing through the downstream trap varied each day, the

downstream run was not characterized by a discrete peak. Bond

and Machniak (1977) reported that, after a definite peak between

15 and 20 May, white suckers continued to pass downstream through

30 July.

The majority of downstream migrants were captured at

night as 71.2% were taken between 2100 and 1200 h (Table 10).

A similar timing of downstream movement was observed in the

Steepbank River (Machniak and Bond in prep.). The maximum

movement of white suckers occurred each day following the period

of highest water temperature. Bond (1972) noted that the down­

stream migration usually occurred when stream temperatures were

decreasing.

5.4.1.7 Spawning mortal ity. Only a few white suckers were

found dead prior to the termination of fence operations on 15 June

1977. Results in 1976, however, indicated that the number of

mortalities increased and the general condition of the fish

Page 62: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

48

Table 10 0 Summary of diel timing of the downstream migration of white suckers in the Muskeg River, 1977. Fish that were counted at times other than those indicated were included in the next check period.

Number of Fish Counted at Each Trap Check Oate Total

1200 1800 2100 2400

12 May trap opened 18 4 61 83 13 3 31 NO 34 68 14 7 22 0 17 46 15 4 43 10 30 87 16 2 0 NO 1 3 17 0 NO 3 7 10 18 7 NO 2 17 26 19 5 6 0 15 26 20 6 NO 6 46 58 21 1 NO 3 9 13 22 2 41 18 30 91 23 1 2 NO 8 11 24 0 2 7 53 62 25 49 17 NO trap closed 66 26 18 NO NO 5 23 27 5 NO 7 3 15 28 29 0 NO 0 29 29 6 ND NO NO 6 30 2 15 NO 49 66 31 44 NO 11 21 76

1 June 43 It NO 4 51 2 9 NO NO 2 11 3 5 2 ND 13 20 4 17 0 NO 3 20 5 4 3 NO 13 20 6 15 9 NO 7 31 7 7 1 NO 4 12 8 12 11 NO 15 38 9 14 11 8 12 45

10 33 19 5 13 70 1 1 24 22 NO 12 58 12 34 7 9 13 63 13 9 12 2 6 29 14 11 ND 7 10 28 15 24 opera t ions term ina ted 24

Total 452 298 102 533 1385

% Grand 32.7 21.5 7.4 38.5 Total

Page 63: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

49

decreased between 18 June and 30 July (Bond and Machniak 1977).

Fish taken at that time were often blind in one or both eyes,

displayed signs of physical deterioration, and were heavi ly

infested with the parasitic copepod Argulus sp. A mortality rate

of 16 to 20% was observed by Geen et al ~ (1966) for spawning

white suckers in Frye Creek, British Columbia.

5.4.1.8 Size ition of mi rant white suckers Fork

lengths were determined for 155] white suckers during the upstream

migration in 1977 (Table 11, Figure 11). Migrant suckers ranged

in fork length from 157 to 599 mm, but the length-frequency

distribution varied considerably as the migration proceeded.

The early stages of the upstream migration (28 April

to 3 May) were dominated by fish in the 180 to 280 mm fork length

range (Figure 12). Fish of this size remained abundant on 4 and 5

May, but at that time a second group of migrants appeared whose

fork lengths ranged from about 300 to 400 mm. The large group of

immature fish comprising the smaller mode either did not occur in

the Muskeg River in 1976 or it had already passed upstream by

the time that fence operation began. The middle mode in the length

frequency distribution (Figure 11) consists largely of maturing

fish. A certain proportion of these fish probably spawned for the

first time in 1977, although most were likely non-spawners. Fish

in this size range dominated the Muskeg River white sucker run in

1976 (Bond and Machniak 1977) and comprised the vast majority of

the 1977 run in the Steepbank River (Machnlak and Bond in prep.).

In both streams, these immature fish were proceeding upstream

while maximum daily water temperatures ranged from 5 to 9°C.

Between 6 and 10 May 1977, the migration was dominated

by large fish ranging in fork length from about 400 to 600 mm

(Figure 12). This segment is believed to have comprised the main

spawning group of white suckers in the Muskeg River in 1977 and

was also well represented in the 1976 run. Within this mode, but

in neither of the other two, females were clearly larger than males

(Figure 11). Interestingly, this large mode did not appear in the

Steepbank run in 1977 (Machniak and Bond in prep.).

Page 64: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 11. Length frequency distribution of white suckers during the upstream migration in the Muskeg River, 1977.

Fork Length Male Female Unknown Total Fork Length Male Female Unknown Total (10 mm intervals) (10 mm intervals)

150 - 159 1 0 0 1 390 - 399 11 8 8 27 160 - 169 0 0 0 0 400 - 409 12 10 2 24 170 - 179 1 1 7 9 410 - 419 9 15 6 30 180 - 189 2 1 9 12 420 - 429 7 14 2 23 190 - 199 7 4 23 34 430 - 439 22 15 4 41 200 - 209 8 2 28 38 440 - 449 24 16 3 43 210 - 219 15 4 41 450 - 459 19 5 2 26 220 - 229 16 4 53 73 460 - 469 30 9 1 40 230 - 239 17 3 49 69 470 - 479 31 21 1 53 240 - 249 11 1 43 55 480 - 489 25 18 0 43

V'1 0

250 - 259 12 2 52 66 490 - 499 20 20 1 41 260 - 269 14 2 45 61 500 - 509 16 20 0 36 270 - 279 4 0 25 29 510 - 519 4 23 0 27 280 - 289 7 0 19 26 520 - 529 2 32 0 34 290 - 299 1 7 0 17 34 530 - 539 1 22 0 23 300 - 309 5 2 29 36 540 - 549 0 11 0 11 310 - 319 8 5 26 39 550 - 559 0 12 0 12 320 - 329 5 4 37 46 560 - 569 0 10 0 10 330 - 339 19 11 36 66 570 - 579 0 1 0 1 340 - 349 14 4 42 60 580 - 589 0 0 1 350 - 359 15 15 36 66 590 - 599 0 0 1 360 - 369 17 11 19 47 370 379 17 9 21 47 Totals 474 380 697 1551 380 - 389 9 1 1 10 30

Page 65: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

150l WHITE SUCKERS

... All Fish n 1551 L::,. Males n= 474

125l / \ (\ o Females n=380

V5 100 LL LL 0 75 I \ r j \ a:: W £D ~ 50 ::::> Z

25

200 300 400 500 600 FORK LENGTH (mm)

Figure 11. Length-frequency distribution for white suckers during the upstream migration in the Muskeg River, 1977.

V1

Page 66: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

20

15

10

5

15

10

5

52

28 Apr-3 May n=307

11-15 May n= 279

200 300 400 500 600

FORK LENGTH (mm)

Figure 12. Seasonal changes in length-frequency distribution for white suckers during the upstream migration in the Muskeg River, 1977.

Page 67: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

53

Fork lengths were obtained from 1050 white suckers

during the downstream migration, of which approximately 95% were

longer than 350 mm. Most of the downstream fish not measured

(n 335) had been tagged previously, and most of these fish also

exceeded 350 mm fork length. The length-frequency distribution of

downstream migrants remained constant from 12 May to 15 June

(Figure 13).

The virtual absence of small white suckers from our

downstream counts suggests that immature fish tend to remain in

the tributary longer than spawners. This is supported by evidence

from the adjacent Steepbank River. In that study, spawners also

left the stream first, whi le fish that remained in the tributary

through the summer tended to be small individuals. Eighty-five

percent of the white suckers captured during the fall fence

operation in September and October were less than 350 mm in length

(Machniak and Bond in prep.).

5.4.1 .9 Age composition of migrant white suckers. Because our

age sample was not drawn randomly, it may not reflect accurately

the age composition of the white sucker migration. However, the

data do ill ustrate the age range of mi grant suckers and our

knowledge of the age and growth characteristics of this population

(presented in a later section), combined with the length-frequency

data (Table 11, Figure 11) permit a fairly accurate description

of the age composition of these fish.

White suckers in the run ranged in age from three to

16 years (Figure 14). The early part of the migration was

dominated by young fish (age 3 and 4) but the age composition

shifted toward older age groups as the migration progressed. The

main spawning group (>400 mm fork length) consisted largely of

fish age 7 and older with most spawners belonging to age groups

8 to 12 inclusive.

5.4.1.10 Sex was deter-

mined for 1850 white suckers during the upstream migration, of

which 1014 (54.8%) were males (Table 12). This represents a

significant deviation from the usual 1:1 ratio (X2 =17.2; P<O.Ol).

Page 68: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

15

10

5

I-- 15 Z w

10 u 0:: w a.. 5

15

10

5

200

54

300 400 500 FORK LENGTH (mm)

12May-22May n = 413

23May-3June n=336

4-15 June n=301

600

Figure 13. Length-frequency distribution for white suckers during three time periods in the downstream migration in the Muskeg River, 1977.

Page 69: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

20 I I I I

i , WHITE SUCKERS I

,] 10 Males n=123

I I D Females n = 148 I en LL Jl LL 0 a::: w £D ~ :::> 5 z

'I po "I-P--h 3 4 5 6 7 8 15 16

FIN RAY AGE (YEARS)

Figure 14. Age composition for white suckers sampled during the counting fence operation, Muskeg River, 1977.

V'l V'l

Page 70: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

56

Table 12. Sex ratio for white suckers during the upstream migration, Muskeg River, 1977.

Number of Fish Percent Date Malesa

Males Females Unknown Total

28 Apri 1 0 0 3 3 0 29 1 3 23 27 25 30 9 1 6 16 90

1 May 14 12 32 58 54 2 18 13 52 83 58 3 41 22 107 170 65 4 50 30 104 184 63 5 60 40 121 221 60 6 95 64 52 11 60 7 251 185 84 520 58 8 269 201 92 562 57 9 44 183 55 282 19

10 27 42 41 110 39 11 53 26 108 187 67 12 25 9 47 81 74 13 9 2 33 44 82 14 6 0 24 30 100 15 7 1 24 32 88 16 0 0 1 1 0 17 2 0 6 8 100 18 0 0 3 3 0 19 1 0 11 12 100 20 6 0 7 13 100 21 3 0 11 14 100 22 2 0 6 8 100 23 3 0 10 13 100 24 0 0 7 7 0 25 0 0 4 4 0 26 0 0 5 5 0 27 4 0 4 8 100 28 5 0 4 9 100 29 2 0 1 100 30 1 0 6 7 100 31 0 0 6 6 0

1 June 2 2 5 9 50 2 0 0 0 0 0 3 1 0 3 4 100 4 2 0 0 2 100 5 0 0 2 2 0 6 0 0 0 0 0 7 0 0 1 1 0 8 0 0 2 2 0 9 0 0 0 0 0

10 0 0 2 2 0 11 1 0 1 2 100 12 0 0 0 0 0 13 0 0 2 2 0 14 0 0 0 0 0 15 0 0 2 2 0

Totals 1014 836 1120 2970

% 55 45

a Based on fish of known sex.

Page 71: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

57

Male white suckers usually precede the females onto

the spawning grounds (Geen et al. 1966; Bond 1972; Bond and

Machniak 1977). However, because of the large number of immature

fish in the 1977 Muskeg River migration this trend is not

immediately obvious. Among the fish captured between 28 April and

4 May (rrost1'y immatures), males outnumbered females every day.

During the main spawning run, however, which occurred from 6 to

10 May, males outnumbered females on the first three days while

females were dominant on 9 and 10 May. The ratio of males to

females in the downstream run showed no clear pattern.

5.4.1.11 Homing of white suckers. Tagging studies by several

authors (Olsen and Scidmore 1963; Geen et al. 1966) have indicated

a tendency on the part of white suckers to return to the same

spawning stream each year in preference to other streams that

might be available. During 1977, clear evidence was produced to

indicate that white suckers in the AOSERP study area behave in a

similar manner. If, as we suspect, Muskeg River white suckers are

part of the Lake Athabasca population, these fish are performing

in excess of a 500 km round trip to return to this stream.

During the 1976 study (Bond and Machniak 1977), Floy

tags were appl ied to 876 white suckers in the Muskeg River. Twenty­

one tagged fish are known to have been dead prior to the 1977 migration, but of the remainder, 20.6% were recaptured in the

Muskeg River during the 1977 study.

White suckers demonstrated considerable fidelity to

the Muskeg River. The counting fence operation on the Steepbank

River, for instance, recovered only one tagged white sucker from

the 1976 study. McCart et al. (in prep.) in a 1977 study of the

MacKay River, did not recover any tagged white suckers from the

Muskeg River although five were recorded in a counting fence

operation on this tributary in 1978 (Appendix 8.2).

5.4.1.12 Fecundity. Fecundity was estimated gravimetrically

for 10 female white suckers from the Muskeg River. The data in

Page 72: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

58

Table 13 represent additions to those given by Bond and Machniak

(1977). Considering the fecundity data for both years, the esti-

mated total number of eggs per female (fork length 397 to 525 mm)

ranged from 21 402 to 64 175 with a mear of 42 729 ova per female.

Actual counts on five ovaries revealed errors of from +3.2% to

-0.5% for the estimated values. Bond (1972) reported white sucker

fecundity ranging from 15 983 to 60 242 with an average of 34 502

per female.

Length-relative fecundity for white suckers ranged

from 539.1 to 1222.4 ova per em of fork length while weight­

relative fecundity varied from 22.7 to 41.1 eggs per g of body

weight. The right ovary contained more eggs than the left in nine

out of 10 cases.

Regression analysis indicated a significant (p< 0.01),

positive correlation between fecundity and fork length (n = 10;

r=0.887). The mathematical relationship between fecundity and

fork length for Muskeg River white suckers is expressed by the

equat ion:

10gloFecundity 2.9541 og loFo rk Length (mm) + 3.260;

sb 0.543

Fecundity also correlated positively with body weight

(r=0.866, range 800 to 2680 g). The mathematical relationship

between fecundity and body weight is described by the equation:

logloFecundity = 1.182log 10 Body Weight (g) + 2.280;

sb 0.241

5.4.1.13 Age and growth. Age and growth results from 1977

(Tables 14 and 15) were simi lar to those of 1976 (Bond and Machniak

1977)(Figure 15). Muskeg River suckers grew more slowly than those

from George Lake, Ontario (Beamish 1970) but faster than those in

the Bigoray River, Alberta (Bond 1972). Suckers from Muskellunge

Lake, Wisconsin (Spoor 1938) grew more rapidly than Muskeg River

suckers during their first few years but more s10wly after age

four (Figure 15).

Page 73: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

59

Table 13. Fecundity estimates for white suckers sampled during the 1977 Muskeg River spawning migration.

Fork Length

(mm)

495

497

525

Weight (g)

2000

1820

2680

a Actual egg counts.

Number of Eggs

Left Right Total Ovary Ovary

19 268 26 200 45 468

20 695 23 316 44 011

31 609a 32 566 64 175 (+3.2%)b

b Deviation of estimated counts from actual number.

Relative Fecundity

(cm) (g)

918.6 22.7

885.5 24.2

1222.4 23.9

Page 74: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 14. Age-length relationship (derived from fin rays and oto1iths) for white suckers captured in the Muskeg River watershed, 1977, sexes separate and combined sample (includes unsexed fish).

Males Females All Fish Age t-test

N Mean S.D. Range N Mean S.D. Range N Mean S.D. Range

1 1 7 49.8 10.63 38-82 15 50.5 9.36 35-75 43 48.7 9.30 35-82 0.196 2 0 1 107.0 1 107.0 3 5 179.4 13.74 157-193 3 187.7 11. 175-197 12 184.8 11 .88 157-197 0.875 4 19 232.4 28.96 177-293 21 234.1 34.61 182-264 48 230.4 30.23 177-293 o. 168 5 8 313.0 24.83 268-343 6 304.7 54.28 237-381 17 309.8 42. 14 237-381 0.386 6 3 346.0 67.67 296-423 10 386.2 47.10 315-447 13 376.9 52.32 296-447 1 . 187 7 8 411 .6 48.48 347-442 7 406.3 14.59 382-422 15 409.1 35.69 347-442 0.277 8 11 434.7 37.23 366-494 13 452.6 33.75 375-508 24 444.4 35.77 366-508 1 .236 '" 0 9 15 457. 1 29.31 409-495 15 480.9 23.16 437-530 30 469.0 28.64 409-530 2.467a

10 9 463.8 27.73 408-498 16 478.4 35.46 415-527 25 473.2 33.07 408-527 1 .062 11 14 467.4 28.42 425-514 20 498.4 30.84 424-547 34 485.6 33.25 424-547 2.976a 12 11 468.4 24.70 423-505 6 524.7 11 .08 510-540 17 488.2 34.48 423-540 5.242a 13 1 509.0 5 510.6 38.71 443-539 6 510.3 34.63 443-539 14 2 465.0 12.73 456-474 7 530.9 18.78 504-562 9 516.2 33.59 456-562 15 0 1 525.0 1 525.0 16 0 2 526.5 2.12 525-528 2 526.5 2.12 525-528

Totals 123 148 297

a Indicates significant difference between means for males and females (Studentls t-test, P< 0.05).

Page 75: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 15. Age-weight relationship for white suckers captured in the Muskeg River watershed, 1977, sexes separate and combined sample (includes unsexed fish).

Males Females All Fi sh Age t-test

N Mean S.D. Range N Mean S.D. Range N Mean S.D. Range

1 17 1 .59 1 .48 0.5-6.8 15 1.47 0.98 0.3-4.5 43 1. 38 1. 13 0.3-6.8 0.136 2 0 1 13.3 1 13.3 3 5 68.0 17.89 60-100 3 80.0 20.0 60-100 12 74.6 17.25 60-100 0.882 4 19 147.9 75.76 60-300 21 165.7 103.36 75-220 48 150.8 84.47 60-300 0.616 5 8 385.0 124.10 240-520 6 393.3 231 . 14 150-780 17 396.5 173. 13 150-780 0.087 6 3 610.0 334.51 360-990 10 865.0 371 .99 420-1600 13 806.2 367.34 360-1600 1 .060 7 8 1018.8 390.33 520-1360 7 874.3 126.34 700-1060 15 951 .3 297.63 520-1360 0.934 8 1 1 1270.0 363.76 710-1660 13 1430.8 433.62 720-2280 24 1357. 1 402.90 710-2280 0.973 '" -9 1 5 1525.3 410.12 1040-2400 15 1564.0 179.91 1280-1780 30 1544.7 311 . 79 1040-2400 0.335

10 9 1488.9 311 .27 940-1820 16 1603.8 385.88 890-2100 25 1562.4 358.51 890-2100 0.762 11 14 1587.9 477.71 1060-2870 20 1935.5 481 .54 790-2920 34 1792.4 503.56 790-2920 2.078a 12 11 1536.4 282.60 1150-1980 6 2055.0 268.46 1780-2540 17 1719.4 371.09 1150-2540 3.676a

13 1 1914.0 5 1794.0 347.10 1200-2100 6 1814.0 314.30 1200-2100 14 2 1460.0 113. 14 1 380-1 540 7 2211 .4 120.06 2020-2360 9 2044.4 349.58 1380-2360 15 0 1 1880.0 1 1880.0 16 0 2 2410.0 381 .84 2140-2680 2 2410.0 381 .84 2140-2680

Total 123 148 297

a Indicates significant differences between means for males and females (Student's t-test, P< 0.05).

Page 76: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

600

E 500 E

::c 400 t-(!) Z W .-J 300 ~ c:::: 0 LL 200

100

., ///////lrt~tJ-1·:t-r i ,/ T l f ),//_3

i i

;"

~ i",,/

.,," ,/

7 8 9 10 II AGE (YEARS)

• Muskeg R 1976 o Muskeg R 1977

Figure 15. Growth in fork length for white suckers from the Muskeg River and from several other areas: 1 George Lake, Onto (Beamish 1970); 2. Bigoray River, Alta. (Bond 1972); and 3. Muskellunge Lake, Wis. (Spoor 1938). Circles represent means and vertical 1 ines the ranges in fork length within age groups for Muskeg River fish.

'" N

Page 77: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

63

Muskeg River suckers added length at a relatively

constant rate during their first eight to 10 years, after which

age little length increase occurred. Females were generally

longer than males of the same age. Bond and Machniak (1977) found

this difference between the sexes to be significant only at age 14

in 1976, but in 1977, significant differences occurred in age

groups 9, 11, and 12 (Table 14). Female suckers also tended to be

heavier than males of equal age but significant differences

occurred only in age groups 11 and 12 during 1977 (Table 15).

Females outnumbered males in age groups 13 to 16 in our 1977 sample,

suggesting that they tend to 1 ive longer than males. Other inves­

tigators have also reported that female white suckers grow larger

and live longer than males (Spoor 1938; Raney and Webster 1942;

Smith 1952; Hayes 1956; Lalancette 1973).

The maximum age for Muskeg River suckers was 17 years

in 1976 (Bond and Machniak 1977) and 16 years in 1977. Maximum

fin ray ages reported by Verdon (1977) were 19 to 25 years for

white suckers in the James Bay area of Quebec.

5.4.1.14 Sex and maturity. Age and sex were determined for 271

white suckers in 1977, of which 148 (55%) were females (Table 16).

The sexes were equally represented in the younger age classes.

However, females made up 60% of all fish age 10 and older.

The youngest mature white sucker observed in the Muskeg

River was a three year old male captured in 1976 (Bond and Machniak

1977). The earliest age of maturity observed in 1977 was four years

in both sexes. Spoor (1938) reported that, in Wisconsin, males

matured at age 5 or 6 and females at age 6 or 7. Geen (1958)

stated that, in British Columbia, white suckers do not spawn

before age 6. Bond (1972) captured no spent suckers less than six

years old in the Bigoray River, Alberta. Muskeg River data,

collected over two years, show that 36, 56, 67, and 86% of male

white suckers were mature at ages 5, 6, 7, and 8 respectively. For

females at the same age, the corresponding values were 37, 58, 61 , and 88%. A major discrepancy appears to exist, however, when the

maturity data for four year old fish are examined. Table 16 shows

that, in 1977, 47% of male and 5% of female white suckers were

Page 78: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

64

Table 16. Age-specific sex ratios and maturity for white suckers from the Muskeg River drainage, 1977~ Sex ratios were based only on fish for which sex was setermined.

Females Males Age Unsexed Total

% % Fish N % Mature N % Mature

15 47 a 17 53 a 11 43

2 100 a a 0 a a

3 3 38 a 5 62 a 4 12

4 21 53 5 19 47 47 8 48

5 6 43 50 8 57 38 3 17

6 10 77 90 3 23 67 a 13

7 7 47 86 8 53 100 a 15

8 13 54 100 1 1 46 100 a 24

9 15 50 100 15 50 100 0 30-

10 16 64 100 9 36 100 a 25

11 20 59 100 14 41 100 a 34

12 6 35 100 11 65 100 a 17

13 5 83 100 17 100 a 6

14 7 78 100 2 22 100 a 9

15 100 100 a a a a

16 2 100 100 a 0 a a 2

Totals 148 55% 123 45% 26 297

Page 79: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

65

mature at four years of age whi Ie in 1976, the corresponding figures

are 77 and 30%. Such values for four year old suckers seem too

high. Although some males in the 200 to 300 mm size range appeared

to be ripe at the time of their upstream migration (i .e. they

were running mi It and had developed small tubercles), the virtual

absence of fish this size from the downstream results (Figure 13)

suggests that most of these small fish did not spawn.

During 1976 (Bond and Machniak 1977), a few white

suckers with undeveloped ova were noted among the older age classes.

The presence of such fish suggests that some white suckers do not

spawn every year.

5.4.1.15 Length-weight relationship. The following length-

weight relationships were determined from white suckers captured

during the 1977 counting fence operation on the Muskeg River.

Both upstream and downstream fish were included in the calculations.

The mathematical relationship between fork length and

bod y we i g h t for ma I e s u c ke r s (n = 1 06 , r = o. 993, ran g e 1 57 to 5 1 4 mm)

is described by the equation:

loglOW = 3.338 (lo9IOL)- 5.832; sb = 0.040

The equivalent expression for female white suckers

(n = 1 34, r = o. 985, ran gel 75 to 562 mm) is:

lo9lOW 3.177 (lo9IOL) - 5.316; sb = 0.048

Analysis of covariance indicated a significant differ­

ence (p > 0.05) between the slopes (F = 9.653), but not the adjusted

means (F = 0.084) of the length-we i ght re 1 at i onsh ips of ma 1 e and

female white suckers.

5.4.1.16 Growth of young-of-the-year. Information on first

year growth of white suckers in the Muskeg River is presented by

Bond and Machniak (1977). At age 1, white suckers ranged in

fork length from 35 to 82 mm and weighed from 0.3 to 7.5 g. White

suckers in the Bigoray River had a mean fork length of 42.2 mm and

a mean weight of 0.89 g at the end of their first year (Bond 1972).

Page 80: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

66

5.4.1.17 Food habits. Sixty-three white sucker stomachs were

examined in the field during 1977 and most (93%) contained no

food. Similar observations were recorded in 1976 (Bond and Machniak

1977). The stomachs of six adult white suckers examined in the

laboratory contained insect remains, Gastropoda, Pelecypoda 1

digested material, and debris (Table 17). Debris (sand) made up

48 0 9% of the total volume of material found in sucker stomachs.

Bond (1972) found that adult suckers fed almost exclusively on

immature insects.

The stomachs of 14 young-of-the-year and juvenile

white suckers contained mostly digested material' (Table 18).

Small suckers in the Bigoray River (Bond 1972) fed mainly on

chironomid larvae, small Crustacea, Rotifera, diatoms, and desmids.

5.4.1.18 Rearing area. Young-of-the-year suckers (two species)

were first captured in the Muskeg River on 30 May 1977 By 15 June

they could be found in large numbers from the mouth of the tribu­

tary to Site 4 (Figure 2) approximately 35 km upstream. Throughout

this section of river these small fish were concentrated in small

back eddies near shore. Although most young-of-the-year drifted

out of the Muskeg River during June, July, and August, the entire

lower section must be considered important in terms of rearing of

this species. Young-of-the-year were still common at Site 3 in

lake August although they were obviously less abundant than they

had been earlier in the year.

5.4.1.19 Overwintering. While most young-of-the-year suckers

leave the Muskeg River during their first summer, a small percent­

age probably remains in the tributary over the winter. Yearl ing

white suckers were captured at Sites 7, 8, and 9 (Figure 2) in May

and June 1977, and at the mouth of Kearl Creek (Site 9) in June

1976 (Bond and Machniak 1977). Small numbers of two and three

year old white suckers may also overwinter in the Muskeg River

drainage. Tagging results suggest that the larger and older fish

overwinter in Lake Athabasca.

Page 81: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 17. Food habits of adult longnose suckers, white suckers and lake whitefish captured from the Muskeg River, 1977.

Longnose Suckers White Suckers Lake Wh i tefi sh Food Items

% Freq. a % No. % Vo 1. % Freq.Cl % No. % Vol. % Freq.a % No. % Vo 1 .

Class Insecta

Diptera S i mu 1 i i dae

1 a rvae 16.7 74.9 6.5 0.0 0.0 0.0 0.0 0.0 0.0 Trichoptera 33.3 2.7 3.6 ·0.0 0.0 0.0 0.0 0.0 0.0 Plecoptera 0.0 0.0 0.0 0.0 0.0 0.0 100.0 50.0 57. 1 Ephemeroptera 0.0 0.0 0.0 0.0 0.0 0.0 100.0 50.0 42.9 Insect Remains 16.7 0.0 2.0 16.7 0.0 3.8 0.0 0.0 0.0

0' ""-..I

Miscellaneous

Gastropoda 0.0 0.0 0.0 33.3 4.9 7.6 0.0 0.0 0.0 Pelecypoda 33.3 22.5 80.0 50.0 24.4 19.8 0.0 0.0 0.0 Vegetat i on 33.3 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 Digested Matter 16.7 0.0 1 .9 50.0 0.0 19.8 0.0 0.0 0.0 Debris (gravel, sand) 16.7 0.0 1.9 66.7 70.7 48.9 0.0 0.0 0.0

Total Stomachs 7 6

Empty (% of Total) 14.3 0.0

a Percentage frequency of occurrence, based on stomachs that contained food.

Page 82: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 18. Food habits of young-of-the-year and juven les of the larger species captured in the Muskeg River, 1977.

Species

Food Items White Suckers longnose Suckers Northern Pike Lake Wh i tef i sh Yellow Perch Burbot

% Frequencya % Frequencya % Freq!3 % No. Freq.a % No. % Freq.a J~ No. % Freq.a % No.

Class Insecta

Diptera Chironomidae 0.0 33.3 0.0 0.0 0.0 0.0 33.3 40.0 0.0 0.0 Unidentified Dipterans 0.0 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Trichoptera 0.0 0.0 0.0 0.0 50.0 50.0 33.3 10.0 0.0 0.0 Plecoptera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ephemeroptera 0.0 0.0 40.0 44.4 0.0 0.0 66.7 50.0 100.0 100.0 Hemiptera 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Q"\

Insect Remains 10.0 0.0 20.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 00

M i sce 1 J aneous

Nematomorpha 0.0 0,0 0.0 0,0 25.0 50.0 0.0 0.0 0.0 0.0

Fish Longnose suckers 0,0 0.0 20.0 22.2 0.0 0.0 0.0 0.0 0.0 0.0 White suckers 0.0 0.0 20.0 22.2 0.0 0.0 0,0 0.0 0.0 0.0 Cyprinids 0.0 0.0 .0 11. I 0.0 0.0 0.0 0.0 0.0 0.0

Digested Matter 80.0 66.7 0.0 0.0 50.0 0.0 0.0 0.0 100.0 0.0

Debris (sand, gravel) 20.0 0,0 0.0 0.0 0.0 0.0 0,0 0.0 0,0 0.0

Total stomachs 14 3 6 3 2 Empty (% of Total) 28,5 0.0 16,7 20.0 0.0 50.0

a Based on stomachs that contained food.

Page 83: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

69

5.4.2 Longnose Suckers

5.4.2.1 Seasonal timing of upstream migration. Longnose sucker

spawning migrations appear to be initiated by increasing water

temperatures following the spring break-up. Geen et al. (1966)

observed that the spawning migration was associated with a water

temperature of 5°C in British Columbia. Bailey (1969) reported

that, in the Brule River, Wisconsin, spawning runs (over a seven

year period) peaked at an average water temperature of 13°C

(range 10.9 to 14.4°C). Longnose suckers were moving upstream in

the Muskeg River in late April 1976 when the daily maximum water

temperature was 9.5°C (Bond and Machniak 1977). However, the most

intensive portion of that run occurred on 9 and 10 May when daily

maximum water temperatures were 12 and 14°C respectively. The 1977

Muskeg River longnose sucker run began on 2 May at a water temper­

ature of 7°C (Table 8, Figure 16). Most upstream movement

(63.9%) took place between 2 and 10 May with peak migrations

occurring on 4 and 5 May when daily maximum water temperatures were

9 and 9.5°C respectively. The longnose run in the Steepbank River

commenced 25 April but the largest portion of the migration took

place on 2 to 4 May when stream temperatures were between 10 and

12°C (Machniak and Bond in prep.).

The 1977 longnose sucker run into the Muskeg River

apparently involved considerably fewer fish (n= 1641) than did

the 1976 run (n 2837). Since the ice is known to have left

the Muskeg River between 20 and 22 April 1977, it is possible that

some upstream movement occurred prior to the installation of the

counting fence. It seems more 1 ikely though, considering the small

numbers of fish taken during th~ first few days of the study, that

the lower numbers observed in 1977 were simply a reflection of

natural year to year fluctuations that might be expected to occur.

5.4.2.2 Diel ti~ing of upstream migration. The majority of

longnose suckers (83.1%) moved upstream between noon and 0300 h

with maximum movement usually occurring between 2100 and 2400 h

(Table 19). Similar results have been observed for other longnose

Page 84: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

300

J: 200 (f)

lJ....

lJ.... o 100 a:: w

LONGNOSE SUCKER

~ 0 Inn H II H 14 H II tn! Ii II I ! g IIII R II n Pi J Z

100

Downstream n = 1004

28 15 APR. MAY

o Males r IZa Females o All Fish

31 I 15

15

"-Q,) .... c ~U

10 ~o == ~ c . o a. .E tj~ ~

5

"-

55 ~-C E 45 ~ 0

~-35 "0 Q) o > Q,)

25 )(.....J C ~

Figure 16. Seasonal timing of the longnose sucker migration in the Muskeg River, 1977.

""'-J 0

Page 85: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

71

Table 19. Summary of die1 timing of the upstream migration of longnose suckers in the Muskeg River, 1977. Fish that were counted at times other than those ind icated were included in the next time check.

Number of Fish Counted at Each Check Oate 0900 1200 1500 1800 2100 2400 Total

(0300)a

28 Apri 1 NO trap opened 5 2 NO 7 29 5 NO 0 0 3 NO 8 30 NO 0 NO 0 0 NO 0

1 May NO 0 NO NO 3 10 13 2 0 0 1 8 49 34 92 3 5 NO 0 0 0 59 64 4a 36 4 4 91 35 71 241 5a 129 NO 9 44 NO 76 258 6a 32 7 1 30 24 22 116 7a 19 16 2 4 5 25 71 8a 29 36 10 11 7 9 102 9a 11 13 1 5 17 16 63

lOa 17 3 1 3 0 18 42 11 a 11 1 1 0 2 34 49 12a 10 4 NO 6 2 trap closed 22 13 NO 40 NO 71 NO 37 148 14 NO 25 NO 1 4 12 42 15 NO 19 NO 0 3 11 33 16 NO 0 NO 0 NO 9 9 17 NO 1 NO NO 2 0 3 18 NO 1 NO NO 0 4 5 19 NO 0 NO 1 13 3 17 20 NO 3 NO NO 16 9 28 21 NO 1 NO NO 0 15 16 22 NO 1 NO 2 2 12 17 23 NO 3 NO 7 NO 5 15 24 NO 3 NO 9 1 9 22 25 NO 2 NO 0 NO 11 13 26 NO 17 NO NO NO 3 20 27 NO 0 NO NO 6 2 8 28 NO 0 NO 0 NO 2 2 29 NO 0 NO NO NO NO 0 30 1 NO 12 NO NO 0 13 31 NO 1 NO NO 0 1 2

1 Junea 6 8 NO 9 NO 4 27 2 NO 10 NO NO NO 1 11 3 NO 0 NO 1 NO 4 5 4 NO 1 NO 1 NO 6 8 5 NO 8 NO 5 NO 0 13 6 NO 1 NO 0 NO 0 1 7 NO 1 NO 2 NO 2 5 8 NO 0 NO 1 NO 0 1 9 NO 2 NO 0 0 1 3

10 NO 0 0 0 0 1 1 11 NO 0 NO 0 NO 0 0 12 NO 1 0 NO 0 0 1 13 NO 0 0 0 0 1 1 14 NO 0 NO NO 1 1 2 15 NO 1 ope rat ions te rmi nated

Totals 311 234 42 317 197 540 1641

% Grand 18.9 14.3 2.6 19.3 12.0 32.9 Total

a Checks were made at 0300 h rather than 0900 h during the peak of the runs.

Page 86: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

72

sucker runs, both within the AOSERP study area (Machniak and Bond

in prep.) and elsewhere (Geen et al. 1966).

5.4.2.3 Spawning period. The 1977 spawning period for longnose

suckers in the Muskeg River probably Jasted from one to two weeks.

Ripe males were first noted on 2 May and most females were ripe by

4 May. Ripe males and females were captured as late as 14 and 15

May respectively but virtually all fish observed were spent by

13 May. Most fish entering the upstream trap after 13 May were

spawned out and had probably been recently passed through the

downstream trap. Geen et al. (1966) reported a spawning period of

short duration with some adults leaving the spawning stream as

early as five days after the migration began.

The 1977 spawning period occurred at about the same time

as in 1976, but because the timing of this event is temperature

dependent, it can be expected to vary considerably from year to

year.

areas, Spawning of longnose suckers was not .....,,:....------'='---s observed in the Muskeg River desp te da i ly s ur-

ve ill ance by field personne 1 . They apparently did not spawn down-

stream of the fence site "".there white suckers spawned despite the

fact that the two species have rather simi lar spawning requirements ..

No attempts were made to locate fish on spawning grounds in the

upstream areas. However, on 3 May 1976, a fish fitting the

description of a male longnose sucker in spawning colouration was

observed in Hartley Creek (Ore R. Hartland-Rowe, University of

Calgary, verbal communication with W. A. Bond, 4 May 1976), From

the distribution of young-of-the-year suckers (two species) we

conclude that longnose suckers do not util ize areas upstream of

Site 4 in the Muskeg River or upstream of Site 8 in Hartley Creek

(Figure 2) for spawning purposes. Young-of-the-year suckers were

abundant at Sites 3 and 4 by mid-June 1977 and small numbers were

captured in the lower reaches of Hartley Creek in mid-June 1976.

Page 87: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

73

5.4.2.5 Length of time spent in Muskeg River. By 15 June

1977,61.2% of the longnose suckers counted through the upstream

trap had returned downstream. Bond and Machniak (1977) observed

that downstream movements continued until at least 30 July, by

which time 77.2% of the migrants had returned downstream. Their

results showed that the length of time spent in the tributary can

vary greatly (from two to 87 days) although the majority of fish

that had moved downstream by 30 July (81.6%) had been in the

Muskeg River less than 30 days. Machniak and Bond (in prep.)

recaptured longnose suckers in a downstream trap in the Steepbank

River and suggested that some individuals may stay in the tribu­

tary throughout the summer. They stated that immature longnose

suckers tend to remain in the tributary longer than the spawners.

A similar situation may occur in the Muskeg River as well.

5.4.2.6 Seasonal and diel timi of downstream mi ra ion. The

first spent fish were observed upstream of the fence on 12 May

1977, on which date the downstream trap was opened. This was

eight to 10 days after the beginning of the main upstream run.

Longnose suckers continued to move downstream through 15 June

(Table 8, Figure 16) when operations were terminated. However,

the majority of fish taken at the downstream trap (72.7%) were

captured prior to 1 June. As mentioned previously, longnose

suckers continued their downstream movement through 30 July in

1976, although 66.9% of them had passed the fence by 31 May (Bond

and Machniak 1977).

The downstream migration of longnose suckers took place

mainly at night as only 30% of the fish were captured between noon

and 2100 h (Table 20). Geen et al. (1966) reported that down­

stream movement of spent longnose suckers ceased in the early

morning when water temperatures reached their daily minimum.

5.4.2.7 Spawning mortal lty. Prior to the 15 June termination

date in 1977 only a few longnose suckers were found dead in the

Muskeg River. Bond and Machniak (1977) reported finding 63 dead

longnose suckers between 18 June and 30 July. Geen et al. (1966)

Page 88: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

74

Table 20. Summary of diel timing of the downstream migration of longnose suckers in the Muskeg River, 1977. Fish that were counted at times other than those indicated were included in the next time check.

Numbe r of Fish Counted at Each Check Oate

1200 1800 2100 2400 Total

12 May trap opened 1 a 2 3 13 2 4 NO 2 8 14 a 7 4 13 24 15 8 26 12 21 67 16 2 a NO 8 10 17 a NO 23 12 35 18 a NO 43 24 67 19 3 40 a 26 69 20 a NO 1 72 73 21 a NO a 6 6 22 20 50 10 34 114 23 8 a NO 21 29 24 a 2 2 37 41 25 32 13 NO trap closed 45 26 20 NO NO 4 24 27 26 NO 2 2 30 28 28 a NO a 28 29 20 NO NO NO 20 30 a 16 NO 10 26 31 11 NO a a 11

1 June 53 a NO 1 54 2 6 NO NO 1 7 3 8 a NO 5 13 4 21 a NO 1 22 5 8 2 NO 4 14 6 36 6 NO a 42 7 a a NO a a 8 19 1 NO 3 23 9 4 2 2 3 11

10 5 5 2 2 14 11 4 9 NO 7 20 12 4 1 1 3 9 13 7 2 3 2 14 14 4 NO 8 5 17 15 14 ope rat ions terminated 14

Total 373 187 113 331 1004

% Grand 37.2 18.7 11 03 33.0 Total

Page 89: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

75

produced mortality estimates of from 11 to 28%, and considered

survival of spawning longnose suckers to be very high.

5.4.2.8 Size composition of migrant longnose suckers. Longnose

suckers measured during the 1977 upstream migration ranged in fork

length from 120 to 514 mm, although the majority (88.3%) were

between 320 and 449 mm (Table 21 and Figure 17). Within this

length range, females were clearly longer in fork length than

males (Figure 17). This situation was practically identical to

that observed in 1976 in the Muskeg River (Bond and Machniak 1977)

and in 1977 in the Steepbank River (Machniak and Bond in prep.).

Unl ike the situation observed for white suckers, where many

juveni le fish took part in the run, the longnose migration was

comprised mainly of adult fish (spawners).

5.4.2.9 Age composition of migrant longnose suckers. Age was

determined for 132 longnose suckers captured during the 1977

migration, of which sex was determined in 108 cases (Figure 18).

Migrant suckers ranged in age from four to 13 years with the major­

ity being seven to 11 years old inclusive. Similar results were

obtained in 1976 (Bond and Machniak 1977).

Although our age sample was not drawn at random and

cannot, therefore, be sa i d to descr i be accurate 1 y the age compos i­

tion of the population, an analysis of the length frequency

distribution of the run (Table 21) in the light of our knowledge

of the age and growth characteristics of this population supports

the conclusion that the migration consisted largely of fish between

seven and 11 years of age.

5.4.2.10 Sex ratio of migrant longnose suckers. Sex was deter-

mined for 1,130 longnose suckers during the upstream migration, of

which 599 (53%) were males (Table 22). This is a significant

deviation from the expected 1:1 ratio (X 2 =4.10, P< 0.001).

The main upstream movement of spawning longnose suckers

occurred between 2 and 10 May. During this period the sex ratio

was not constant as reported by Geen et al. (1966) for longnose

Page 90: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 210 Length-frequency distribution of longnose suckers during the upstream migration in the Muskeg Rive r, 1977.

Fork Length Male Female Unknown Total Fork Length Male Female Unknown Total (10 mm intervals) (10 mm intervals)

120 - 129 0 1 0 1 360 - 369 69 14 32 115 160 - 169 0 0 1 1 370 - 379 95 20 40 155 170 - 179 0 0 0 0 380 - 389 79 33 33 145 180 - 189 0 0 0 0 390 - 399 63 55 38 156 190 - 199 0 0 6 6 400 - 409 45 53 25 123 200 - 209 1 2 11 14 410 - 419 19 57 21 97 210 - 219 2 1 6 9 420 - 429 7 59 7 73 220 - 229 1 0 6 7 430 - 439 5 53 0 58 230 - 239 0 1 2 3 440 - 449 0 21 0 21

"'-.J

240 - 249 2 0 7 9 450 - 459 1 11 0 12 '" 250 - 259 0 1 3 4 460 - 469 1 4 0 5 260 - 269 2 0 5 7 470 - 479 0 0 0 0 270 - 279 4 0 3 7 480 - 489 1 1 0 2 280 - 289 3 0 9 12 490 - 499 1 0 0 1 290 - 299 0 0 14 14 500 - 509 1 0 0 1 300 - 309 0 1 19 20 510 - 519 0 1 0 1 310 - 319 1 0 11 12 320 - 329 3 4 18 25 Totals 482 407 371 1260 330 - 339 7 2 19 28 340 - 349 21 5 16 42 350 359 48 "'7 19 74 J

Page 91: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

300l LONGNOSE SUCKERS A All Fish n = 1260 6 Males n=482 o Females n=407

::r:: 200 en G: LL. 0 0:: I / \ ~ W m ::E 100 :::> z

120 200 300 400 500

FORK LENGTH (mm)

Figure 17. Length-frequency distribution for longnose suckers during the upstream migration in the Muskeg River, 1977.

""-J ""-J

Page 92: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

20 I n

LONGNOS SUCKER

151 Males n = 47 c· :c

CJ) D Females n = 61 lL..

LL 10

cr W m I I I I ""'-.l

~ Q..j

z 5

)

Figure 18. composition for longnose suckers sampled during the counting operation Muskeg River, 1977.

Page 93: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

79

Table 22. Sex ratio for longnose suckers during upstream migration, Muskeg River, 1977.

Number of Fish Pe rcent Date Malesa

Males Females Unknown Total

28 Apri 1 0 0 7 7 0 29 1 0 7 8 100 30 0 0 0 0 0

1 May 5 1 7 13 83 2 49 35 8 92 58 3 17 17 30 64 50 4 107 114 20 241 48 5 93 124 41 258 43 6 47 53 16 116 47 7 22 28 21 71 44 8 32 49 21 102 40 9 17 32 14 63 35

10 24 15 3 42 62 11 17 5 27 49 78 12 7 5 10 22 58 13 49 12 87 148 80 14 14 6 22 42 78 15 12 2 19 33 86 16 0 0 9 9 0 17 3 0 0 3 100 18 3 0 2 5 100 19 8 2 7 17 80 20 19 2 7 28 90 21 6 1 9 16 86 22 9 0 8 17 100 23 3 0 12 15 100 24 6 1 15 22 86 25 6 2 5 13 75 26 4 0 16 20 100 27 3 0 5 8 100 28 0 1 1 2 0 29 0 0 0 0 0 30 3 0 10 13 100 31 1 0 1 2 100

1 June 4 12 11 27 25 2 1 2 8 11 33 3 1 1 3 5 50 4 1 3 4 8 25 5 2 5 6 13 29 6 0 0 1 1 0 7 0 3 2 5 0 8 0 0 1 1 0 9 1 0 2 3 100

10 0 0 1 1 0 11 0 0 0 0 0 12 1 0 0 1 100 13 0 1 0 1 0 14 0 0 2 2 0 15 1 0 0 1 100

Totals 599 531 511 1641

% 53 47

a Based on fish of known sex.

Page 94: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

80

suckers in Frye Creek. Rather, males tended to outnumber females

on the first few days, while females were more numerous in the later

stages of the run ble 22). The sex ratio was also observed to

vary with the time in the Steepbank River with males dominating the

early stages of the upstream run (Machol nd Bond j prep.).

5.4.2.11 Homi suckers. Geen et a . (1966) ----~~----~~-----------

indicated that 10ngnose suckers in Frye Creek tended to return

each year to the same spawning stream. Bailey (1 demonstrated

a similar tendency in Brule Creek, Wisconsin. During 977,

evidence from tag returns clearly indicated t longnose suckers

of the Hus River return to that tributary to spawn n subsequent

years in preference to other tributaries. Floy tags were applied

to 1267 10ngnose suckers during their 1976 m gration into the

Muskeg River (Bond and Machniak 1977). Ten of these fish were

known to have been dead prior to the inning of the 1977 run.

Of the remainder, 270 (20.7%) were recaptured in the Muskeg River

during the 1977 study. If, as we believe Mus

suckers are part of the Lake Athabasca popula

River 10ngnose

these f sh had

undertaken a round ip in excess of 500 km the over-

wintering area and the spaltJn i ng grounds

As was the ca th white suckers 10ngnose suckers

demonstrated considerabl de 1 i ty the Mus River At the

1977 Steepbank fence ope ra t ion, for example, on y nine ongnose

suckers, ta

out of 3811

during the Muskeg River st were recovered

ish counted One fish was recovered fence

operation on the MacKay River in 978 (Appendi 8.2).

5.4.2.12 Fecundi Fecundity was estimated gray metrically

for 13 female 10ngnose suckers from the Muskeg River The data

in Table 23 represent addit ons to those given by Bond nd

Machniak (1977). Considering the fecundity data r both years,

the estima total number of eggs per female (fork length

to 440 mm) ra

23 639 per fema e

of from • 2% to

from 6 068 to 33 060 with an average

Actual counts on eight ovaries

4% for the estimated values .

led errors

Page 95: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

81

Table 23. Fecundity estimates for longnose suckers sampled during the 1977 Muskeg River spawning migration.

Number of Eggs Relative Fork Weight Fecundity

Length (g) Left Right (mm) Total Ova ry Ovary (cm) (g)

370 700 11 218a 10 567a 21 785 588.8 31.1 {-1.9%)b {-4.2%)b

407 1120 15 310a {+2.0%)b

17 750 33 060 812.3 29.5

411 820 1 1 125 12 500 23 625 574.8 28.8

419 950 15 143 12 260 27 403 654.0 28.9

420 930 9 680 12 785 22 465 534.9 24.2

423 111 0 14 303 16 250 30 553 722.3 27.5

a Actual egg count. b Deviation of estimated counts from actual number.

Page 96: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

82

Length-relative fecundity for 10ngnose suckers ranged

from 390.0 to 812.3 ova per cm of fork length, while weight­

relative fecundity varied from 17.9 to 33.2 eggs per g of body

weight. These values are similar to those reported for this

spec i es by McCart et a l. (1977), Machn i ak and Bond (i n prep.) and

Bond and Berry (in prep.b) in other studies within the AOSERP area.

Although a positive correlation was found between

fecundity and fork length, this correlation was not statistically

significant (n= 13, r= 0.233). The mathematical relationship

between fecundity and fork length is described by the equation:

loglOFecundity = 1.408 10g 10 Fork Length (mm) + 0.677;

sb 1.775

Whereas fecundity correlated poorly with fork length a better

but still insignificant positive correlation was seen between

fecundity and body weight (r= 0.633). The relationship between

fecundity and body weight for the above 13 fish (range 700 to

1120 g) is described by the equation:

logloFecundity 1.195 10g 10 Weight (g) +0.830;

sb == 0.441

5.4.2.13 rowth. Age and growth results from 1977

(Tables 24 and 25) were ilar to those of 1976 (Bond and Machniak

1977) (Figure 19). Most growth in length was achieved during the

first eight years of 1 ife. After age 8 the rate of growth

decreased considerably. Growth in length for Muskeg River fish is

identical to that reported for 10ngnose suckers by other studies

in the AOSERP area (McCart et a1. 1977; Machniak and Bond in prep;

Jones et al. 1978; Bond and Berry in prep.a, in prep.b). Muskeg

River suckers (Figure 19) grow faster than those from Pyramid

Lake, Alberta (Rawson and Elsey 1950), but more slowly than

suckers from Yellowstone Lake (Brown and Graham 1954), Great Slave

Lake (Harris 1962), and Lake Superior (Bailey 1969).

Female 10ngnose suckers from the Muskeg River were

generally longer than males of equal age. This difference was

significant in age groups 7 to 11 both in 1976 (Bond and Machniak

1977) and in 1977 (table 24). Also as reported in 1976,

Page 97: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 24. Age-length relationship (derived from fin rays and otol iths) for longnose suckers captured in the Muskeg River watershed, 1977, sexes separate and combined sample (includes unsexed fish).

Males Females All Fi sh Age t-test

N Mean S.D. Range N Mean S. D. Range N Mean S. D. Range

0 53.0 2 50.5 3.54 48-53

2 82.0 0 82.0

3 0 0 0

4 0 193.0 5 191 .8 15.51 165-204

5 6 228.7 25.18 203-270 5 221 .4 22.77 200-253 27 218.2 18.74 200-270 0.499

6 5 27302 29.76 240-321 0 10 277.8 23.25 240-300 00 w

7 4 281.3 7.41 271-288 8 358.4 43.82 293-420 13 329.2 51 . 15 271-420 3.414a

8 8 365.9 16.81 345-397 7 386.0 10.94 371-396 15 375.3 17.33 345-397 2.699a

9 13 383.2 17.62 356-411 19 403.2 20.25 358-438 32 395. 1 21 .41 356-438 2.885a

10 5 378.0 12.90 357-391 10 401 .3 25.84 369-450 15 393.5 24.62 357-450 1 .878a

11 3 381.7 25.38 361-410 9 414.2 20.99 385-445 12 406.1 25.59 361-445 2.223a

12 430.0 411 .0 2 420.5 13.44 411-430

13 381.0 0 381 .0

Totals 47 61 135

a Indicates significant difference between means for males and females (Student's t-test, P< 0.05).

Page 98: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 25. Age-weight relationship for longnose suckers captured in the Muskeg River watershed, 1977, sexes separate and combined sample (includes unsexed fish).

Males Females All Fi sh Age t-test

N Mean S.D. Range N Mean S.D. Range N Mean S.D. Range

0 1 .55 2 1 .33 0.32 1.10-1.55

2 6.55 0 6.55

3 0 0 0

4 0 110.0 5 100.0 15.81 80-120

5 6 131 . 7 56.01 80-220 5 124.0 43.36 80-180 27 115.0 36.82 80-220 0.250

6 5 256.0 129.73 150-480 0 10 257.0 92.26 150-480 00 ,J.::'-

7 4 365.0 210.16 250-680 8 592.5 210.76 290-930 13 498.5 229.70 250-930 1 .764

8 8 585.0 78.92 520-770 7 697.1 31 .99 640-740 15 637.3 83. 11 520-770 3.502a

9 13 684.2 106.85 540-840 19 822.1 152.81 560-1120 32 766.1 150.70 540-1120 2.811 a

10 5 610.0 70.00 540-720 10 750.0 131 .66 590-1060 15 703.3 131.19 540-1060 2.199a

11 3 716.7 193.48 600-940 9 966.7 .68 640-1140 12 904.2 211 .98 600-1140 1 .994a

12 920.0 820.0 2 870.0 70.71 820-920

13 640.0 0 640.0

Totals 47 61 135

a Indicates significant difference between means for males and females (Student's t-test, p:< 0.05).

Page 99: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

600 I

500

E E 400

I I-(!) z 300 w ....J ~ 0:: 200 0 LL

100

" .... ". .... "

,,"

". ".

5 6 7 8 9 10

AGE (YEARS)

/""--.. _2

I- Muskeg R 1976 o Muskeg R 1977

Figure 19. Growth in fork length for longnose suckers from the Muskeg River and from several other areas: 1. Yellowstone Lake, Wyo. (Brown and Graham 1954); 2. Great Slave Lake (south), N.W.T .. (Harris 1962); 3. Lake Superior (Bai ley 1969); and 4 .. Pyramid Lake, Alta. (Rawson and Elsey 1950). Circles represent means and vertical 1 ines the ranges in fork length within age groups for Muskeg River.

co V1

Page 100: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

86

the 1977 data indi te females to be significantly heavier than

males of the same age in age groups eight to eleven inclusive

(Table 25). The divergence in growth rate between males and

females apparently commences at about the age of first sexual

maturity. Brown and Graham (1954) and Lalancette and Magnin (1970)

also reported that female longnose suckers grew faster than the

males. However, Harris (1962) found no difference in growth rate

for longnose suckers in Great Slave Lake.

On the basis of our Muskeg River data for both years

of the study we can detect no tendency for one sex to live longer

than the other as suggested by Scott and Crossman (1973)0

The maximum age of 13 years recorded in the present

study was a1so reported for longnose suckers in the AOSERP area

by Machni ak and Bond (i n prep_) and by Jones et al. (1978) c

Bond and Berry reported a 19 yea r old longnose sucker (aged from

fi n rays) from the Athabasca de 1 ta _ Tri pp and McCart (1974) found

that most spawn i ng run suckers in the Donnelly River, N.W.T. were

11 to 18 years old with a maximum age of 22 years.

5.4.2.14 Sex and maturity. Of 108 longnose suckers for which

both age and sex were determined, 56% were females (Table 26).

The 1976 sample of 182 fish contained 53% males (Bond and Machniak

1977) .

The youngest mature longnose sucker observed during the

two years of the study was a five year old male. However, most

suckers probably do not spawn until seven or eight years of age

(Table 26). Hayes (1956) stated that longnose suckers reach

sexual maturity at the age of two years in Colorado, while in the

Northwest Territories, suckers do not mature unti 1 age nine

(Harris 1962; Tripp and McCart 1974).

5.4.2.15 Length-weight relationship. Analysis of covariance

indicated no significant difference (P>0 .. 05) between adjusted

means (F=0.914) or slopes (F=0.066) of the length-weight

regressions for male and female longnose suckers sampled in 19770

The mathematical re1ationship for the combined sample (including

Page 101: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

87

Table 26. Age-specific sex ratios and maturity for longnose suckers from the Muskeg River drainage, 1977. Sex ratios were based only on fish for which sex was determined.

Females Males Age Unsexed Total

% % Fish

N % Ma ture N % Mature

100 0 0 0 0 2

2 0 0 0 100 0 0

3 0 0 0 0 0 0 0 0

4 100 0 0 0 0 4 5

5 5 45 0 6 55 0 16 27

6 0 0 0 5 100 20 5 10

7 8 67 88 4 33 25 13

8 7 47 100 8 53 88 0 15

9 19 59 100 13 41 100 0 32

10 10 67 100 5 33 80 0 15

1 1 9 75 100 3 25 67 0 12

12 50 100 50 100 0 2

13 0 0 0 100 100 0

Tota 1 s 61 56% 47 44% 27 135

Page 102: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

88

unsexed fish) between fork length and body weight for longnose

suckers from the Muskeg River as determined from 1977 data (n = 131,

r = o. 984 , ran gel 20 to 450 mm) i s des c rib e d by the eq u a t ion:

lo910W = 3.103 (lo910L) - 5.179; sb 0.048

For male longnose suckers (n=47, r=0.963, range 203 to 430 mm)

the calculated values for the slope (b), intercept (a) and

standard deviation of b (sb) were 3.119, -5.225 and 0.130 respect­

ively. The corresponding values for females (n = 63, r = 0.987,.

range 120 to 450 mm) were 3.085, -5.126 and 0.064.

5.4.2.16 Growth of young-of-the-year. Although young suckers

were abundant throughout the lower 35 km of the Muskeg River by

mid-June in both years of the study, the two species were

indistinguishable at that time of the year. By the time young

suckers were large enough to be identified to species, most of the

fish present appeared to be white suckers. Few verified young-of­

the-year longnose suckers were captured in the Muskeg River either

in 1976 or 1977. Bailey (1969) also reported difficulty in

locating longnose sucker fry in spawning streams in western

Wi scons i n and suggested that they dri ft to the lake soon after

hatching. Perhaps young-of-the-year longnose suckers in the

Muskeg River behave sim larly. On the other hand, Machniak and

Bond (in prep.) reported no difficulty in locating young longnose

suckers in the Steepbank River.

The available information suggests that longnose

suckers that remain in the Muskeg River attain a fork length of

approximately 50 mm by the end of their first year (Bond and

Machniak 1977). However, the growth rate of such "resident ll young

suckers may differ considerably from that of those that drift

back to Lake Athabasca.

5.4.2.17 Food habits. Field analysis of longnose sucker

stomachs during the spring spawning migration indicated that

suckers fed little at that time (Bond and Machniak 1977). Suckers

whose stomach contents were examined in the laboratory (n = 7) had

fed primari lyon Simul i idae larvae~ Trichoptera larvae, Pelecypoda,

Page 103: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

and vegetable matter (Table 17). Young-of-the-year had consumed

mainly small aquatic insects (Table 18). The diet of longnose

suckers is known to be highly variable consisting largely of

benthic invertebrates (Scott and Crossman 1973).

5.4.2.18 Reari areas. The lower 35 km of the Muskeg River ---~---

appear to be important as a rearing area for white suckers during

June, July, and August. However, as few young-of-the-year suckers

verified to be longnose were captured in the Muskeg River either

in 1976 or 1977, no definite statement can be made concerning this

species. Longnose sucker fry may leave the tributary more rapidly

after hatching than white sucker fry. Alternatively, 1976 and 1977

may have been sub-normal years for longnose sucker spawning, with

poor reproductive success.

5.4.2.19 Overwinteri No winter sampl ing was done in the

Muskeg River during this study. However, small numbers of year­

lings were captured at Site 7 Hartley Creek and Site 9 the mouth

of Kearl Creek in mid-June 1976, suggesting that some young-of­

the-year spend at least one winter in the Muskeg River water­

shed. Tagging results suggest that larger and older longnose

suckers overwinter in Lake Athabasca.

5.4.3 Arctic Grayling

5.4.3.1 Spring movements. Arctic grayl ing spawning migrations

appear to be initiated by increasing water temperatures and often

begin with ice break-up (Brown 1938; Rawson 1950; Reed 1964;

Schallock 1966; Bishop 1971). Tack (1972) reported that, in

Alaska, the first grayl ing arrived on the spawning grounds when the

water temperature was OoC. Ice left the Muskeg River between 20

and 22 April 1977, and the daily maximum water temperature

exceeded 8°c on 24 April. An upstream migration of Arctic grayl ing

was in progress in the Muskeg River on 28 April when the counting

fence operation began. By 6 June, 161 grayling had passed through

the upstream trap with 73.3% of them moving up prior to 15 May.

Page 104: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

90

This represented approximately half the number of grayling counted

in 1976 (Bond and Machniak 1977). Only 11 grayl ing were captured

in the downstream trap (Table 8). As in 1976, most grayl ing (86.1%) moved upstream

between noon and midnight with the heaviest movements occurring

between 1500 and 2100 h (56.7%). The 1977 Steepbank River migra­

tion also occurred mainly during the daytime as 70% of the grayl ing

moved upstream between 0900 and 2100 h (Machniak and Bond in prep.).

Fai lure to catch the entire upstream grayling migration

in 1976 was the major reason for repeating the fence study in 1977.

Angl ing results during the summer of 1976 suggested that the Muskeg

River supported considerably more grayling than our fence results

had indicated, and it was hoped that more accurate counts could be

achieved in 1977. Unfortunately we were unable to do this. An

attempt to fulfill this objective by operating a downstream trap in

the fall of 1978 was also thwarted, this time by extremely high

water (Figure 8)0

5.4.3.2 Size of migrant grayl ing. Fork lengths were taken from

149 grayling captured during the 1977 upstream migration. These

fish ranged in length from 175 to 389 mm (Table 27) with the

length-frequency distribution exhibiting three modes (Figure 20).

These three modes represent fish of age groups 2, 3, and 4 as

indicated by age and growth information given by Bond and Machniak

(1977) and in a later section of the present report.

The length-frequency distribution did not remain

constant during the period of fence operation in 1977. The early

stages of the migration (25 April to 5 May) were dominated by

grayl ing smaller than 260 mm fork length while most grayl ing

passing upstream after this date exceeded 260 mm (Figure 20).

The initial phase of the upstream grayl ing migration in the

Steepbank River consisted of large, mature fish which were

followed by smaller, immature fish in the later stages of the run

(Machniak and Bond in prep.). Craig and Poul in (1975) demonstrated

a simi lar pattern of upstream movement for grayl ing in northern

streams. The small grayl ing captured in the Muskeg River between

Page 105: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

91

Table 27. Length-frequency distribution of Arctic grayling during the upstream migration in the Muskeg River, 1977.

Fork Length Male Female Unknown Total (10 mm intervals)

170-179 0 2

180-189 0 0 1

190-199 2 5 8

200-209 2 3 5 10

210-219 3 8 12

220-229 0 6 7

230-239 0 6 7

240-249 2 0 10 12

250-259 1 3 4 8

260-269 1 2 11 14

270-279 1 6 8

280-289 0 8 9

290-299 2 0 3 5

300-309 3 6 2 1 1

310-319 3 4 3 10

320-329 5 4 10 .

330-339 6 0 7 340-349 3 0 4

350-359 2 0 0 2

360-369 0 0 0 0

370-379 0 0 0 0

380-389 2 0 0 2

Totals 38 28 83 149

Page 106: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

20-

10

::c 20 en LL LL 10 0 0:: W CD :E :::> z

20

10

92

200 300

28Apr - 5 May n=73

6May-6June n= 76

Total n= 149

400 FORK LENGTH (mm)

Figure 20. Length-frequency distribution for Arctic grayl ing during the upstream migration in the Muskeg River, 1977.

Page 107: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

93

28 April and 5 May are thought to represent the late stages of the

main upstream run. Most spawners are believed to have passed the

counting fence prior to 28 April. The larger fish taken after

5 May may have spawned in other tributaries before entering the

Muskeg or they may have spawned in the Muskeg River below the

fence site and then moved upstream to summering areas.

5.4.3.3 Spawning. Grayling usually spawn over gravel or rocky

bottom with water depth appearing not to be an important factor

(Fabricius and Gustafson 1955; Kruse 1959; Bishop 1971). Grayling

in tributaries of the southern Athabasca River drainage spawn in

May at stream temperatures of 4.5 to 11°C (Ward 1951). Tack (1972)

noted that, in Alaska, spawning was first observed when the stream

temperature was 4°c and that by 10°C spawning was completed.

Records over a 10 year period at Black Lake, a shield lake in

northern Saskatchewan, indicate that, although spawning occurs over

a three week period, the peak spawning period lasts only three days

to a week (Johnston 1971; Kratt and Smith 1977).

Spawning of Arctic grayling was not observed in the

Muskeg River either in 1976 or 1977. However, the lower 35 km of

the main river and the lower reaches of Hartley Creek provide many

areas that appear suitable for this purpose. Spawning probably

occurred during the last week of April and first week of May in

both years. Young-of-the-year were taken on 15 June 1976 (range

32 to 42 mm) and on 3 June 1977 (range 18 to 24 mm) at Site 3

(Figure 2). As well, fry were captured between 16 and 21 June

1976 (range 27 to 38 mm) and on 19 June 1977 (38 mm) at Site 7 in

Hartley Creek. While most grayling spawning is believed to occur

upstream of our fence site, there is a possibility that some fish

spawn below this site. Grayling fry were captured between the

fence site and the tributary mouth on 15 June 1976 (range 32 to

42 mm) and on 7 June 1977 (range 26 to 27 mm). As mentioned

previously, the capture of spawning size grayling in the 1977

upstream trap after 6 May (Figure 20) suggests either that these

fish had spawned in other tributaries and were now moving into the

Muskeg River or that they had spawned in the Muskeg River below the

fence and were now moving into upstream areas.

Page 108: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

94

5.4.3.4 Summer residence of Arctic grayl ing. Arctic grayling did

not leave the Muskeg River after spawning in 1976 and 1977 but

remained in the tributary throughout the summer. This is unlike

the situation in most northern streams (Craig and Poulin 1975) but

similar to that reported by Ward (1951) and Machniak and Bond (in

prep.) for other streams in the Athabasca River drainage.

During summer 1976, angl ing produced considerable

numbers of grayl ing in the lower 10 km of the Muskeg River. Ten

angler hours, applied to this area on 8 to 10 August, produced 28

Arctic grayling, aged one to four years (Bond and Machniak 1977). Dr. D. Barton (University of Waterloo, verbal communication with

W. A. Bond, April, 1978) reported angl ing grayl ing from the area

just downstream of the mouth of Hartley Creek (Site 4) throughout

the summer of 1977 as well as in Hartley Creek itself ite 7) and

at Site 3 (Figure 2) on the Muskeg River. Dr. Barton tated that

most grayl ing occurred in areas where water up to 1 m deep flowed

with a moderate current over beds of macrophytes and sand Within

the canyon portion of the Muskeg River, most grayling were found

near the upstream ends of pools, just below riffles Grayl ing

were never observed in the Muskeg River upstream of Ha tley Creek.

Grayling were still abundant in the Muskeg River on October 1977, when anglers captured 28 fish at Site 3 (Figure 2) These fish

had a mean fork length of 308.9 mm, ranging from to 355 mm.

The situation in the Muskeg River is probably similar

to that described by Machniak and Bond (in prep.) in the adjacent

Steepbank River. In that tributary an upstream run of Arctic

grayl ing took place in April and May. The grayl ing remained in

the tributary through the summer, returning to the Athabasca River

between 6 and 15 October, just prior to freeze-up.

AOSERP fishery crews working on the Athabasca River

captured few grayl ing during the summer, but reported fish

showing up in their catches between 6 and 20 October 1977 (Bond

and Berry in prep.b). Jones et al. (1978) took 25 gray1 ing

during their study on the Athabasca River upstream of Fort

McMurray, but none was captured prior to mid-October.

Page 109: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

95

Although a fence operation was not possible during

autumn 1978, a 1 imited amount of angl ing was conducted in the

lower 5 km of the Muskeg River between 25 September and 13 October

in an attempt to verify the presence of large grayling. During

this period the overnight low water temperature decreased from 6.7

to 3.9°C, but these temperatures were warmer than those recorded

at the time of the downstream grayl ing run in the Steepbank River

(Machniak and Bond in prep.). Two grayling, a male and female

measuring 385 and 360 mm respectively in fork length, were

captured on 30 September. Another male (342 mm) and female

(328 mm) were captured on 13 October. The 1978 grayl ing migration

out of the Muskeg River probably took place between 15 October and

freeze-up, which occurred on 5 November (Figure 8).

5.4.3.5 Age and growth. Growth of Arctic grayl ing in the Muskeg

River is described in detail by Bond and Machniak (1977). Addition­

al growth information gathered in 1977 is presented in Tables 28

and 29. Muskeg River grayling have almost identical growth patterns

to those reported for populations in southern tributaries of the

Athabasca River (Ward 1951) and in other tributaries of the AOSERP

study area (Griffiths 1973; Machniak and Bond in prep.).

Muskeg River grayl ing grew at a rate similar to that

reported for grayl ing from Great Bear Lake (Falk and Dahlke 1974),

Great Slave Lake (Bishop 1967), and the Mackenzie River (Hatfield

et al. 1972) for their first year or two, but thereafter, they

grew more slowly than the lake populations but faster than

Mackenzie River fish (Figure 21). Grayl ing from the Muskeg River

grew considerably faster than those from the Kavik River (Craig

and Poulin 1975).

The maximum scale age recorded for Arctic grayl ing in

the Muskeg River is seven years (Bond and Machniak 1977). This

was also the maximum age observed in the Steepbank River (Machniak

and Bond in prep.). The oldest grayl ing reported to date from the

AOSERP study area is a 12 year old male, aged from otoliths (Jones

et al. 1978). Grayling appear to live longer in the northern

Page 110: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Tab 1 e 28. Age-length relationship (derived from scales) and age-weight relationship for mountain whitefish and Arctic grayling captured in the Muskeg River, 1977, sexes combined (includes unsexed fis

Fa rk Length (mm) We i gh t (g) Age Male Female Total

Mean s. D. Range Mean s. D. Range

Arcti c gray1 ing

2 204.8 14.19 175-231 91.2 18.67 60-140 7 9 17

3 251. 0 4.85 247-258 182.0 44.94 140-240 2 2 5

4 312.5 13.44 303- 322 330.0 42.43 300- 360 2

Totals 10 12 24 \..0 0"

Mountain whitefish

3 245.3 16.86 226-257 173.3 46.19 120-200 2 3

5 342.4 11.04 327- 358 551.4 43.66 475-600 2 5 7

6 368.5 7.05 364- 379 580.0 59.44 510-650 2 4

7 392.0 1000.0 0

Totals 5 9 15

Page 111: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Tab 1 e 29. Size and weight relationships for young-of-the-year and juveniles of larger fish species coll-ected from the Muskeg River, 1977.

Species/Age Fork Length (mm) Weight (g) Total

Mean S.D. Range Mean S.D. Range

Yellow perch

0+ (July-Aug.) 39.2 6.62 23-49 0.7 0.30 0.2-1.2 33

Arctic grayl ing

0+ (June) 23.4 4.50 18-38 o. 1 0.10 0.1-0.5 17 (July) 79.0 3.6 1 (Aug. ) 89.0 8.0 1

Lake wh i tef ish

0+ (June-July) 29.5 4.99 24-38 0.3 O. 15 0.1-0.5 16 \..0 ........

Northern pike

0+ (June) 26.5 4.95 23-30 0.2 0.00 2 ~Ju1Y) 107.0 15.56 96-118 6.9 1 .20 6.0-7.7 2 Aug. ) 126.0 4.24 123-129 14.0 2.12 12.5-15.5 2

1+ (May) 167.0 34.0 1

Burbot a

0+ (July) 54.0 0.8 1+ (May) 107.5 3.54 105-110 7.0 0.42 6.7-7.3

a Tota 1 1 ength.

Page 112: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

400

~

E E 300 '-'

I I--(!) Z W ...J ~ c:: 200 ~

100

I

I

:

.I .I

I

98

I

/

3 ........ ."".. .. . "" .' ,,'

_0."",4 _0'

• Muskeg R 1976

o Muskeg R 1977

0+ I 2 3 4 5 6 7 8 9 10 II 12

AGE (YEARS)

Figure 21. Growth in fork length for Arctic grayling from the Muskeg River and from several other areas. 1. Great Bear Lake (Falk and Dahlke 1974); 2. Great Slave Lake (Bishop 1967); 3. Mackenzie River (Hatfield eta 1. 1 972 ) ; 4 0 Ka v i k R i ve r ( C r a i g and Po u 1 i n 1 9 75) . Circles represent means and vertical 1 ines the ranges in fork length within age groups for Muskeg River fish.

Page 113: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

99

part of their range than in the south. A maximum scale age of 12

years is reported from Great Slave Lake (Bishop 1967) and Great

Bear Lake (Falk and Dahlke 1974). Craig and Poulin (1975)

recorded an otolith age of 22 years in the Firth River, Yukon

Territory.

5.3.4.6 Length-weight relationship. Comparison of length-

weight relationships in 1976 indicated no significant difference

(p > 0.05) between the regressions for male and female grayl ing

from the Muskeg River and the data for the two sexes were

combined (Bond and Machniak 1977).

Length and weight data are available for only 24

g ray lin g f ro m the 1 977 stu d y (r = o. 971, ran ge 1 75 to 322 mm). The

mathematical relationship between fork length and body weight for

this sample is expressed by the equation:

0.162

5.4.3.7 Sex and maturity. Sex and age were determined for only

22 Arctic grayl ing in 1977, of which 10 were males (Table 28).

Males accounted for 62% of the sample in 1976 (Bond and Machniak

1977) .

Bond and Machniak (1977) reported that, for Muskeg

River grayling, the earl iest age of sexual maturity was two years

for males, three years for females, and that 50% of both sexes

were mature at age three. By age four virtually all grayl ing

were sexually mature. Similar findings were reported by Ward

(1951) and Machniak and Bond (in prep.)o Craig and Poulin (1975)

reported that grayl ing in Alaska reached sexual maturity between

age five and age eight, the oldest age of maturity for grayling in

North Amer i ca.

5.4.3.8 Fecundity. Total egg counts were performed on two

Muskeg River grayling in 1976 (Bond and Machniak 1977). One fish

( fork 1 eng t h 225 mm) co n t a i ned 27 19 ova, wh j 1 e the 0 the r (fo r k

length 308 mm) contained 6971 eggs. Fecundity in Steepbank River

grayl ing varied from 2206 to 8546 (mean 4.689) for seven fish

Page 114: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

100

ranging in fork length from 275 to 365 mm (Machniak and Bond in

prep.). The average fecundity for this species is probably between

4000 and 7000 (Scott and Crossman 1973), although counts on

individual fish have ranged from 574 (Ward 1951) to 15 907 (Bishop

1971) .

5.4.3.9 Food habits. Studies of the food habits of Arctic

grayling indicate that this species is extremely opportunistic,

feeding on a great variety of food items. Many authors have

stressed the importance of aquatic insects in the diet (Kruse 1959;

Bishop 1967; Reed 1964), while others (Miller 1946; Rawson 1950;

Wojcik 1955; Schallock 1966) have found terrestrial insects to

make up a large proportion of the food. Fish, fish eggs, lemmings,

and amphipods have also been found in grayling stomachs (Miller

1946; Reed 1964; McPhail and Lindsey 1970).

Sixty grayl ing stomachs were examined in the field

during 1976 of which only 10 "Jere empty (Bond and Machniak 1977).

Most were one-quarter to one-half full, the contents consisting

mainly of aquatic insects. During 1977, 21 additional stomachs

were examined in the field, of which only one, a ripe female,

contained no food. The remaining stomachs were one-half full to

full, the principle food being aquatic insects of the orders

Trichoptera, P1ecoptera, Odonata and Hemiptera.

The stomach contents of 20 adult gray1 jng were examined

in more detail in the laboratory. The results of this analysis

(Table 30) showed that aquatic insects occurred in all stomachs

examined, with immature stages of the orders Diptera, P1ecoptera,

Trichoptera, Hymenoptera, and Odonata accounting for most of the

food.

The stomachs of four adult grayling captured from the

Muskeg River in September and October 1978 were gorged with

Plecoptera nymphs and Corixidae adults, and also contained small

numbers of Trichoptera and Diptera larvae, Odonata nymphs, and

Coleoptera adults.

The stomachs of young-of-the-year grayl ing also con­

tained mostly immature insects (Table 30) (Bond and Machniak

Page 115: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 30. Food habits of Arctic grayling collected from the Muskeg River during 1976 and 1977.

May (1976/77) July (1976) August (1976) Y -O-Y (1977) Food Items

% F req • a % No. % Vol. % Freq.a % No. % Vo 1. % F req . a % No. % Vo 1 . % F req . a % No.

Class Insecta

Diptera Ch i ronomi dae

1 a rvae 0.0 0.0 0.0 0.0 0.0 0.0 26.7 5.6 0.8 33.3 40.9 pupae 0.0 0.0 0.0 0.0 0.0 0.0 13.3 9.9 0.7 33.3 11.4

Unidentified Dipterans 1 a rvae 66.7 25.4 4.8 0.0 0.0 0.0 86.7 36.0 11 .0 33.3 4.5 adults 0.0 0.0 0.0 0.0 0.0 0.0 6.7 1.2 O. 1 0.0 0.0

Trichoptera 33.3 31. 7 4.3 0.0 0.0 0.0 40.0 13.7 4.6 16.7 2.3 P1ecoptera 100.0 19. 1 41 .8 0.0 0.0 0.0 60.0 14.3 14.5 33.3 22.7

0 Coleoptera 0.0 0.0 0.0 100.0 66.7 20.2 6.7 0.6 0.6 0.0 0.0 Hemiptera 0.0 0.0 0.0 0.0 0.0 0.0 13.3 2.5 1 .5 16.7 2.3

Corixidae 33.3 3.2 2. 1 0.0 0.0 0.0 6.7 0.6 0.3 0.0 0.0 Notonectidae 33.3 3.2 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Hymenoptera Formicidae 33.3 1 .6 1 . 1 50.0 16.7 4.2 40.0 6.2 2.6 0.0 0.0

Odonata 66.7 9.5 37.9 0.0 0.0 0.0 26.7 7.5 3.7 16.7 203 Lepidoptera 33.3 1.6 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ephemeroptera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 13.6 Insect Remains 0.0 0.0 0.0 0.0 0.0 0.0 73.3 0.0 35.9 16.7 0.0

Mi sce 11 aneous

Arachnida 100.0 6.3 2.6 50.0 16.7 8.4 13.3 1.2 2.2 0.0 0.0 Vegeta t i on (a 1 gae, seeds) 0.0 ND ND 0.0 ND ND 6.7 ND 3.7 16.7 ND Fish 0.0 0.0 ND 0.0 0.0 ND 6.7 0.6 9.3 0.0 ND Di gested Matter 0.0 ND ND 0.0 ND ND 13.3 ND 7.4 16.7 ND Debris (sticks, stones) 0.0 ND ND 50.0 ND 67.2 6.7 ND 0.6 16.7 ND

Number of stomachs 3 2 15 6 Empty (% of Total) 0 0 0 0

a Percentage frequency of occurrence, based on stomachs that contained food.

Page 116: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

102

1977). Scott and Crossman (1973) state that young grayling

initially feed on zooplankton but undergo a shift to immature

insects as they increase in size.

5.4.3.10 Rearin areas. The entire lower 35 km of the Muskeg

River, and the lower 10 km of Hartley Creek are utilized as

rearing areas by Arctic grayling. Many young-of-the-year were

observed throughout the summer of 1977 in the area just down­

stream from Hartley Creek as well as near Site 3 (Figure 2). As

mentioned previously, fry were captured at Site 7 as well as at

Sites 2 and 3 during both summers. In the canyon section of the

Muskeg River, approximately 6 to 8 km upstream from the mouth of

the tributary, many young-of-the-year were observed on 10 August

1976. These sma1 1 fish occupied long shallow pools where a moder­

ate current flowed over a very uniform gravel bottom.

5.4.3.11 Overwinteri We believe, for several reasons, based

on our observations on the Muskeg and Steepbank rivers, that young­

of-the-year grayling in both streams remain in the tributaries

over their first winter, and do not join the migrant population

until the autumn of their second year. Firstly, despite intensive

sampling with small mesh beach seines, few young-of-the-year gray-

1 ing have been captured in the Athabasca River within the AOSERP

study area (Bond and Berry in prep.a, in prep.b). Secondly,

upstream grayl ing runs in the Muskeg River in 1976 and 1977 and

in the Steepbank River in 1977 (Machniak and Bond in prep.) included

no one year old fish. Although such fish could pass through the

2.54 x 2.54 cm mesh used in the fence, some, had they been present,

would have been captured, if not in the fence at least by seines

or minnow traps. Thirdly, the downstream migration in the Steep­

bank River in October 1977 (Machniak and Bond in prep.) included

fish in the 130 to 230 mm size range that are thought to have been

age 1+ fish. These small fish were the last to leave the Steep­

bank River. Lastly, D. Barton (University of Waterloo, verbal

communication with W. A. Bond, December 1976) reported sighting

six to 10 juvenile gray1 ing through the ice at Site 7 Hartley

Page 117: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

103

Creek, on 30 October 1976. Overwintering within the tributaries

would appear to enhance the survival chances of young fish which

would not be exposed to the rigors of migration or to predation

by piscivorous fish. Migrant grayl ing (age 1+ and older) probably

overwinter in the Athabasca or Clearwater rivers upstream of Fort

McMurray.

5.4.4 Northern Pike

5.4.4.1 Movements and distribution. A total of 433 northern

pike were passed through the upstream trap of the 1977 Muskeg

River counting fence (Table 8, Figure 22). The majority of

pike (76.4%) passed the fence between 30 April and 12 May, during

which period the daily maximum water temperature increased from 5

to 14°c. Pike demonstrated a pronounced diel periodicity during

their upstream run as 62% of those captured through 12 May were

taken between 1200 and 2100 h, the largest movements occurring

after 1500 h. Frankl in and Smith (1963) reported that pike

began moving into spawning streams or flooded marshes at water

temperatures of 1 to 4.5°C, and that most movement takes place at

night. This represents a sharp contrast to the situation

observed in the Muskeg River.

By 15 June, 59 pike had moved through the downstream

trap, leaving 374 still upstream of the counting fence. Pike

continued passing through the downstream trap through 30 July

1976 (Bond and Machniak 1977). During the summer months, northern

pike seem to be confined largely to the lower reaches and mouth

area of the Muskeg River, although individual fish may ascend the

tributary for considerable distances. Angl ing results in 1976

suggested that most pike do not ascend more than 6 or 7 km upstream

(Bond and Machniak 1977). However, in 1977, Ilquite a few" pike

were angled in the vicinity of small fish collection Site 3 (13 km

upstream) (Dr. D. Barton, University of Waterloo, verbal communi­

cation with W. A. Bond, April 1978). One young-of-the-year

96 mm in fork length, was captured in a seine at Site 4 (Figure 2)

on 18 July 1977.

Page 118: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL
Page 119: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

105

Although there is no direct evidence, most pike

probably left the Muskeg River before freeze-up to overwinter in

the Athabasca River. Most pike in the Steepbank River had appar­

ently left that stream during the summer, and 42 fish were were

captured moving out of the watershed during September and October

(Machniak and Bond in prep.).

Within the AOSERP study area, northern pike appear to

move around very 1 itt1e. Tagging results from the present study

(Bond and Machniak 1977) (Appendix 8.2) show that most pike recap­

tured outside the Muskeg River watershed had travelled less than

20 km from the point of tagging. Similar results were obtained by

Machniak and Bond (in prep.) and Bond and Berry (in prep.a, in

prep.b).

5.4.4.2 Spawning. Northern pike usually spawn in April and

early May immediately after ice breakup at water temperatures of

4.4 to 11. 1°C (Scott and Crossman 1973). While pike may spawn in

a variety of habitats, a requirement of the spawning site appears

to be the presence of vegetation (Machniak 1975). Marshes or

marsh-like conditions along small streams seem to be preferred

areas. Such areas are uncommon in the Muskeg River and it is

felt that any spawning that does occur in this tributary is minor.

This belief is supported by the fact that most of the pike passed

through the upstream trap are thought to have been immature or

maturing fish that would not have spawned in 1977. Of 40 fish

whose gonads were inspected, only four were ripe. Machniak and

Bond (in prep.) also reported many immature and spent fish in the

Steepbank River migration.

Despite its probable minor nature, some northern pike

spawning apparently does occur in the Muskeg River. Two small

young-of-the-year pike (23 and 30 mm) were captured on 12 June

1977 approximately 0.5 km downstream of the fence site. Four

others (96 to 129 mm) were captured in the Muskeg River between

18 July and 13 August, one of which was taken at Site 4 (Figure 2).

Four pike fry were captured on 22 June 1978 near the upper part of

the canyon, approximately 9 km upstream from the mouth of the

tributary.

Page 120: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

106

Bond and Berry (in prep.b) captured ripe pike in the

Athabasca River from 27 April to 9 May 1977, and spent fish from

7 May on. Young-of-the-year measuring 19 to 36 mm were captured

between 16 and 18 June.

5.4.4.3 Length-frequency distribution. Pike captured during

the 1977 upstream run in the Muskeg River ranged in fork length

from 244 to 788 mm, with the majority (86.3%) being in the 300 to

524 mm size range (Figure 23). Male pike varied from 244 to 565 mm

while females had fork lengths between 330 and 788 mm. Fish less

than 400 mm in fork length made up 59.2% of the total sample,

whereas in the Steepbank River, 66.7% of all pike measured

exceeded 400 mm fork length (Machniak and Bond in prep.).

5.4.4.4 Age and growth. Northern pike examined during 1977 ranged in age from 0+ to seven years, with most fish (75.0%) being

three to five inclusive. Seven was also the maximum age reported

during the 1976 study (Bond and Machniak 1977). The maximum age

reported for pike in the AOSERP study area is 13 years (McCart

et al. 1977). Pike increased in fork length at a constant rate

throughout life. Females tended to be longer than males of the

same age with significant differences (p< 0.05) occurring in age

groups 3, 4, and 5 lTable 31). The growth rate of northern pike

compares favourably with that reported in previous studies on pike

in the AOSERP study area (Griffiths 1973; McCart et ala 1977; Machniak and Bond in prep.; Bond and Berry in prep.a~ in prep.b;

Jones et al. 1978). Muskeg River pike grew more rapidly than

those from Lake Athabasca and Great Bear Lake (Miller and Kennedy

1948) and the Kakisa River (Falk and Dahlke 1975), but slower than

was reported by Pinsent (1967) for pike from Beaver Lake, Alberta

(Fi gure 24).

Northern pike gained weight slowly up to age 3,

but more rapidly thereafter. Female pike were significantly

heavier (p > 0.05) than males in age groups 4 and 5 (Table 32).

Page 121: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

250 300 400 500 600 800 FORK LENGTH (mm)

Figure 23. Length-frequency distribution for northern pike during the upstream migration in the Muskeg River, 1977.

Page 122: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 31. Age-length relationship (derived from scales) for northern pike captured in the Muskeg River, 1977, sexes separate and combined sample (includes unsexed fish).

Males Females All Fi sh Age t-test

N Mean S.D. Range N Mean 5 0 Range N Mean S.D. Range

0+ 129.0 123.0 6 86.5 47.84 23-129

0 167.0 167.0

2 0 2 275.0 26 256-294 2 275.0 26.87 256-294

3 13 337.4 14.78 315-364 9 35201 19.76 320-378 342.7 18.08 315-378 2.000a

4 6 384.2 28.74 356-434 5 8.8 26. 469 11 404.5 35. 14 356-469 2.657a 0 co

5 8 469.9 16.92 442-497 6 524.7 45 3 448-560 14 493.4 41.58 442-560 3.184a

6 522.0 599.0 2 560.5 54.45 522-599

7 0 648.0 648.0

Totals 29 26 60

a Indicates significant difference between means r males and females (Student1s t-test, P< 0.05).

Page 123: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

700

600

E E 500

I r ~ 400 w ..-I

~

0::: 300 ~

200

109

NORTHERN PIKE

100 T I 0+1 2 3 4 5 6 7 8 9 10 II 12

AGE (years)

Figure 24. Growth in fork length for northern pike from the Muskeg River and from several other areas. 1. Beaver Lake, Alta. (Pinsent 1967); 2. Kakisa River, N.W.T. (Falk and Dahlke 1975); 3. Lake Athabasca, Alta. (Miller and Kennedy 1948); and 4. Great Bear Lake, N.W.T. (Miller and Kennedy 1948). Circles represent means and vertical 1 ines the ranges in fork length within age groups for Muskeg River fish.

Page 124: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 32. Age-weight relationship for northern pike captured in the Muskeg River, 1977, sexes separate and combined sample (includes unsexed fish).

Ma les Females All Fi sh Age t test

N Mean S.D Range N Mean S.D Range N Mean S.D. Range

0+ 15.5 2,5 6 7.0 6. 0.2-15.5

0 .0 34.0

2 0 2 .35 2 205.0 134.35 110-300

3 13 .8 • 18 180- 9 50 220-370 23 267.8 48.52 180-370 o.

4 6 39607 79 41 340-540 5 .0 09.91 420-720 11 463.6 117.92 340-720 2. 0

5 8 713.8 111.73 600-860 6 916.7 . 6 700-1160 14 800.7 172.20 600-11 2.633 a

6 1320.0 1220.0 2 1270.0 .71 1220-1320

7 0 2330.0 2330.0

Totals 29 26 60

a Indicates significant difference between means for males and females (Student's t-test, P< 0.05).

Page 125: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

111

Growth data for young-of-the-year pike are presented

in Table 29. Two fish, captured 12 June, measured 23 and 30 mm

in fork length, two taken in July had lengths of 96 and 118 mm,

while two pike caught in August measured 123 and 129 mm. A one

year old pike captured 3 May 1977 had a fork length of 167 mm.

Bond and Berry (in prep.b) reported young-of-the-year pike to

range in fork length from 19 to 36 mm in mid-June, from 39 to 44 mm

at. the end of June, and to reach a max i mum size of 185 mm and

41.6 g by mid-October.

5.4.4.5 Length-weight relationship. For male northern pike

taken from the Muskeg River in 1977 (n = 30, r = 0.973, range 129 to

522 mm), the length-weight relationship is described by the

equation:

lo910W = 3.084 (lo910L) - 5.372; sb = 0.444 The corresponding equation for female pike (n = 26, r = 0.986, range

123 to 648 mm) is:

lo910W = 2.899 (lo910L) - 4.913; sb = 0.099 No significant difference was found between the slopes of the

regression lines (F = 0.905) for male and female pike.

5.4.4.6 Sex and maturity. Age and sex were determined by by

gonadal inspection for 55 pike of which 29 (53%) were males

(Table 33). Bond and Berry (in prep.a) found that male and female

pike in the Athabasca River occurred in equal numbers, while Jones

et a1. (in prep.) reported female pike (58%) outnumbered males in

late fall.

Both sexes appear to achieve sexual maturity for the

first time at age 3 (Table 33). Over two years, 22% of females

and 33% of males were mature at this age. The earl iest age of

sexual maturity for pike in the Steepbank River was three years for

males and four years for females while Bond and Berry (in prep.a,

in prep.b) reported that some pike in the Athabasca River may spawn

at age 2.

5.4.4.7 Fecundity. Total egg counts were performed for two

northern pike captured at the Muskeg River counting fence in 1977.

Page 126: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

112

Table 33. Age-specific sex ratios and maturity for northern pike from the Muskeg River, 1977. Sex ratios were based only on fish for which sex was determined.

Fema 1 es Males Age Unsexed Total

% % Fish N % Mature N % Mature

0+ 50 0 50 0 4 6

100 0 0 0 0 0

2 2 100 0 0 0 0 0 2

3 9 41 22 13 59 46 23

4 5 45 60 6 55 83 0 11

5 6 43 83 8 57 100 0 14

6 50 100 50 100 0 2

7 100 100 0 0 0 0

Totals 26 47% 29 53% 5 60

Page 127: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

113

One fish (fork length 599 mm) contained 26 155 eggs while the

other (648 mm) had 36 763 (Table 34). Bond and Berry (in prep.b)

reported pike from the Athabasca River C5,44 to 656rnmfork length)

to have an average fecundity of 28 896 eggs per female (range

17 764 to 42 962). Fecundit!es reported for Athabasca River pike

by McCa rt et a 1. (1977) ranged from 20 267 to 53 295 wi th a mean

of 32 452 eggs per female (fork length 528 to 710 mm).

5.4.4.8 Food habits. During 1977, the stomachs of 42 northern

pike were examined in the field, of which 25 (59.5%) contained no

food. The remaining stomachs all contained fish, the food species

including white sucker, burbot, brook stickleback, Arctic gray­

ling, and northern pike. Bond and Berry (in prep.b) also report

AOSERP area pike to be mainly piscivorous with the major food

species being flathead chub, suckers, and trout-perch. These

authors determined that insects, Plecoptera, Odonata and Lepidop­

tera accounted for 1.4% of the food volume, while frogs and mice

made up 4.1%. Jones et al. (1978) found remains of rodents

in 5% of the stomachs they examined. Young-of-the-year pike from

the Muskeg River (Table 18) had fed mainly on Ephemeroptera nymphs

and fish, including white suckers, longnose suckers, and cyprinids.

5.4.4.9 Rearing and overwintering. Some pike do uti 1 ize the

Muskeg River for rearing purposes as small numbers of young-of­

the-year were captured in 1977 and 1978. These small fish were

taken in quiet, weedy areas along the stream margin, out of the

main current. One such area was found to be near the top of the

canyon, 9 km upstream of the river mouth, while another was a side

slough situated approximately 0.5 km downstream of the fence site.

Whether or not northern pike overwinter in the Muskeg

River is unknown. It is bel ieved, however, that the larger pike that

participated in the spring upstream migration left the tributary

prior to freeze-up to overwinter in the Athabasca River.

Page 128: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

114

Tab1e 34. Actual egg coun ts 0 f two northern pike females sampled during the 1977 spawning period, Muskeg River.

Fork Number of Eggs Relative

Length Weight Fecundity

(mm) (g) Left Right Total Ovary Ovary (cm) (g)

599 1220 11 483 14 672 26 155 436.6 21.4

648 2330 18 613 18 150 36 763 567.3 15.8

Page 129: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

115

5.4.5 Mountain Whltefish

5.4.5.1 Spring movements and distribution. Approximately 50

mountain whitefish were counted through the upstream trap in 1977,

with 68.4% of them passing the fence prior to 14 May (Table 8). Seventeen mountain whitefish had returned downstream by 15 June.

During the 1976 study, only 33 mountain whitefish were captured

moving upstream, but 101 were taken in the downstream trap (Bond

and Machniak 1977). The suggestion was that mountain whitefish

did not spend the summer in the Muskeg River but returned to the

Athabasca River. The 1977 fence was not operated long enough to

detect such a downstream run in the second year. In the Steepbank

River, a spring run of mountain whitefish had not returned down­

stream by 29 May (Machniak and Bond in prep.). The counting fence

in that study was not operated during the summer but a fall oper­

ation failed to detect any downstream movement of whitefish between

12 September and 15 October. Whether mountain whitefish left the

Steepbank River during the summer or remained in the tributary

beyond 15 October was unknown.

Davies and Thompson (1976) observed a complex movement

pattern for mountain whitefish in the Sheep River, Alberta, involv­

ing spring feeding, summer feeding, prespawning, spawning, and

post-spawning-overwintering movements. They found that white-

fish enter tributaries during the spring to feed and leave in

June, returning to the larger rivers when water levels decl ine and

water temperatures rise in the smaller tributaries. A similar

pattern of movement may also occur in the AOSERP study area,

although it should be noted that some stream-dwell ing populations

remain in tributaries all summer. In Idaho, mountain whitefish

are reported to move into tributaries during late spring and early

summer, remain in the upper reaches until spawning in November,

and then return to the large rivers to overwinter (Pettit and

Wallace 1975).

The locations occupied by mountain whitefish in the

Muskeg River are unknown as no specimens were captured in the

watershed during the present study apart from those taken at the

Page 130: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

116

counting fence. Shell (1975) reported capturing no mature mountain

whitefish in the Muskeg River during their study, although eight

juvenile fish were taken in Hartley Creek during August 1974.

5.4.5.2 Spawning. Mountain whitefish usually spawn in October

and early November, the young hatching about March (Paetz and

Nelson 1970). No young-of-the-year mountain whitefish \lIJere taken

in the Muskeg River in 1976 or 1977, and spawning is not believed

to occur in the tributary. Machniak and Bond (in prep.) found no

evidence that this species spawns in the Steepbank River.

Griffiths (1973), however, reported finding large numbers of

young-of-the-year mountain whitefish in the High Hill River as

well as the Clearwater River in late August and September. Tripp

and McCa t (in prep.) located young-of-the-year mountain whitefish

at the mouths of tributary streams in the Athabasca River upstream

of the Cascade Rapids"

5.4.5.3 Length-frequency distribution. Mountain whitefish

captured in the upstream trap in 1977 varied in fork ength from

198 to 395 mm vvith the majority (57%) being in the 320 to 379 mm

size range (Figure ).

5.4.5.4 rowth. During 1977, only 15 mountain white---==:---.:=----fish were sacrificed for biological analysis (Table 28). These

fish ranged in age up to seven years, which appears to be the

maximum age for mountain whitefish in the Muskeg River. Machniak

and Bond (in prep.) recorded a maximum age of eight years in the

Steepbank River. Eight was also the maximum age for stream popu­

lations in Montana (Brown 1971) ~nd in the Sheep River, Alberta

(Thompson and Davies 1976). Maximum ages reported for lake

populations of mountain whitefish are 17 to 18 in Bow Lake,

Alberta (McHugh 1942) and 16 in Rock Lake, Alberta (Lane 1969).

The growth rate observed for mountain whitefish from

the Muskeg River (Figure 26) was similar to that reported for the

Steepbank River (Machniak and Bond in prep.) and ranks among the

fastest reported for this species. Stream dwel ling mountain

Page 131: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

I CJ)

lL.

lL.

10

o 5 0::: W a:l ~ :::) Z

200

Mountain Whitefish

n = 53

220 240 260 280 300 320 340 FORK LENGTH (mm)

360 380 400

Figure 25. Length-frequency distribution for mountain whitefish during the upstream migration in the Muskeg River, 1977.

'-l

Page 132: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

400

E 300 E

I t­<.9 Z W

~ 200 ~ 0:::

E2

100

l'l // //

1 I

I I I

118

MUSKEG RIVER • 1976 o 1977

0+ I 2 3 4 5 6 7 8 9 10 II 12

AGE (years)

Figure 26. Growth in fork length for mountain whitefish from the Muskeg River and from several other areas. 1. Montana streams (Brown 1971); 2. Sheep River, Alta. (Thompson and Davies 1976);3. RockLake,Alta. (Lane 1969);and 4 . P Y ram i d La k e , Alta. ( Raw son and E 1 s e y 1 950). C i r c 1 e s represent means and vertical lines the ranges in fork length within age groups for Muskeg River fish.

Page 133: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

119

whitefish (this study; Brown 1971; Thompson and Davies 1976)

appear to grow faster than most reported lake populations in

Alberta (Lane 1969; Rawson and Elsey 1950) although the latter

achieve greater maximum ages.

5.4.5.5 Sex and maturity. Sex was determined for only 14

mountain whitefish in 1977, of which five were males (Table 28). Fish of both sexes a ppea r to reach sexua 1 ma tu r i ty a t age 3

in the Muskeg River (Bond and Machniak 1977). Machniak and Bond

(in prep.) reported that, in the Steepbank River, the earl iest

age of maturity was two years for males and three years for

females.

5.4.5.6 Length-weight relationship. Based on 1976 data (Bond

and Machniak 1977), the length-weight relationship for Muskeg

Rive r mo un t a i n w hit e f ish (n = 23, r = O. 977, ran g e 1 59 to 353 mm)

is described by the equation:

10910W = 2.751 (10910L) - 4.301; sb O. 131

5.4.5.7 Food habits. Twenty-nine mountain whitefish stomachs

were examined in the field during the two years of the study, of

which 21 contained no food 0 The remainder contained traces of

insects but only Hemiptera (Corixidae) could be identified.

Mountain whitefish are usually reported to be bottom feeders

consuming a variety of organisms but mainly immature aquatic

insects (Scott and Crossman 1973).

5.4.6 Other Large Fish Species

5.4.6.1 Lake whitefish. Small numbers of lake whitefish were

taken at the counting fence in 1976 (Bond and Machniak 1977) and

again in 1977 (Table 8). Machniak and Bond (in prep.) also report

the movement of small numbers of lake whitefish into the lower

Steepbank River during the spring migrations of other species.

No young-of-the-year lake whitefish were reported from

the Muskeg River in 1976. During 1977, however, 16 whitefish fry

Page 134: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

120

were collected in the lower reaches (Table 6). Fourteen of these

fish were collected at Site 2 on 12 and 13 June at a time when the

Athabasca River was backed up into the Muskeg River. Whitefish fry

ranged in fork length from 24 to 38 mm with a mean of 29.5 mm

(Table 19) and had fed mainly on aquatic insects (Table 18).

Lake whitefish are known to migrate through the AOSERP

study area in large numbers during late summer and fall (Bond and

Berry in prep.a, in prep. b). Spawning occurs below Mountain and

Cascade rapids, upstream of Fort McMurray in the Athabasca River

(Jones et al. 1978). The mouth of the Muskeg River is known

to be used as a resting area by lake whitefish in September

during the spawning migration as AOSERP fishery crews, working

on the Athabasca River, reported capturing large numbers in the

river mouth at that time. There is no evidence, however, that

lake whitefish util ize the Muskeg River for spawning purposes.

Machniak and Bond (in prep.) reported no fall migration of lake

whitefish into the adjacent Steepbank River.

5.4.6.2 Burbot. Only one burbot was captured at the counting

fence in 1977 (Table 8) while three were taken during the 1976

operation (Bond and Machniak 1977). One young-of-the-year burbot

(total length 54 mm) was seined from Site 2 (Figure 2) on 10 July

1977, while two yearl ings (105 and 110 mm) were collected from the

same area on 25 and 29 May. During May 1976, three immature

burbot were captured in minnow traps at Site 2 (Bond and Machniak

1977).

Bond and Berry (in prep.b) found large burbot to be

common in the Athabasca River during the early spring and reported

fry appearing in June. They speculated that burbot utilize the

Mildred Lake area of the Athabasca River or areas upstream of it

for spawning purposes. Recent evidence suggests that burbot may

spawn in the Clearwater River (Figure 1) upstream of its junction

with the Christina River (Tripp and McCart in prep.).

Page 135: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

121

5.4.6.3 Walleye. Although large numbers of walleye pass

through the AOSERP study area in April on their way to spawning

grounds (Bond and Berry in prep.a, in prep.b), they do not appear

to util ize the Muskeg River for this purpose. Eight walleye were

captured in the Muskeg River upstream trap between 10 May and

10 June 1977 while five were taken moving downstream between

12 May and 4 June (Table 8). Small numbers of walleye were also

taken during the 1976 fence operation (Bond and Machniak 1977).

Post-spawning movements of immature and spent male

walleye have been observed in the Steepbank River (Machniak and

Bond in prep.) and the MacKay River (Machniak et al. in prep.).

5.4.6.4 Dolly Varden. Three Dolly Varden were recorded at

the upstream trap of the Muskeg River counting fence in 1977

(Table 8). The one fish sampled was an immature, three year old

male, with a fork length of 202 mm and a weight of 77.0 g.

Dolly Varden are common in the headwaters of the Peace,

Athabasca, Red Deer, Bow, and Oldman drainages (Paetz and Nelson

1970). Their occurrence in the AOSERP area is rare although

several were taken in the Steepbank River (Machniak and Bond in

prep.) and Athabasca River (Bond and Berry in prep.b) during 1977.

5.4.6.5 Lake cisco. One lake cisco was captured at the

upstream trap on 2 May 1977. Cisco are common in lakes of the

Birch Mountains (Turner 1968) and lakes in the southern Athabasca

River drainage such as Lesser Slave Lake and Lac la Biche (Paetz

and Nelson 1970).

5.4.6.6 Yellow perch: A total of 33 young-of-the-year yellow

perch were captured at Sites 1 and 2 of the Muskeg River between

18 July and 13 August 1977. These fish ranged in size from 23

to 44 mm and had a mean fork length of 39.2 mm (Table 29). Of 18

fish for which sex was determined, 10 were males. The stomachs

of three young-of-the-year perch contained chironomid and

Trichoptera larvae and Ephemeroptera nymphs (Table 18).

Page 136: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

122

Perch are thought to have originated from headwater

lakes of the Athabasca River drainage and drifted down to the study

area. They are commonly found around tributary mouths in the

AOSERP study area during July and August (McCart et ale 1977;

Bond and Berry in prep.a, in prep.b).

5.4.7 Brook Stickleback

5.4.7.1 Distribution and relative abundance. A total of 308

brook stickleback were collected from the Muskeg River in 1977.

Excluding suckers, this species accounted for 48% of all small

fish taken (Table 6). Although captured at nine of the small

fish collection sites, brook stickleback were particularly abun­

dant in the upper reaches of the watershed. Over two years this

spec i es accounted for 84% of a 11 sma 11 fish captu red ups t ream of

Site 3 (excluding suckers).

5.4.7.2 rowth. Brook stickleback, captured from the

Muskeg River watershed in 1977, ranged from 15 to 71 mm in total

length. However, the length-frequency distribution (Figure 27)

varied throughout the summer. Stickleback captured in June were

predominantly one year old fish, most of which ranged from 36 to

49 mm in total length. Young-of-the-year first appeared in late

June and fish of this age class (15 to 35 mm) made up 83.7% of

the total catch during July and August.

Age-length and age-weight relationships (Table 35)

are similar to those reported in the 1976 results (Bond and

Machniak 1977) and to those presented by Machniak and Bond (in

prep.) for brook stickleback from the Steepbank River.

The maximum age recorded for brook stickleback in the

Muskeg River is three years. Eight age 3 stickleback were

captured during 1976 and 1977 of which only one was a female.

5.4.7.3 Sex and maturity. Female brook stickleback comprised

54% of all fish for which sex was determined (n= 160). However,

the sex ratio was not significantly different from unity (X2 =0.90,

P > 0.05) •

Page 137: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

45 -

40 -

35 -

30 -:c (J)

LL 25

LL -

0 0:: W 20 tIl

-~ :::> z

15 -

10 !-

5 -

I

10

123

~ Brook Stickleback

n = 262

l:::

:-::

I ~

::::

::

:::: ::::: I::

1° ::::: ::::::::: :::: ::::::::

.:::::: :::::::

.? < ::.

1':::::::,::

i':ii ,:::>;:

}::::: 7: ::: -:.:::. ~ r::::: '7:'

(;>\\\1[\,:: ::::::~ ~

:;:::: :\\:.\\:::::::}:>:::. ::::::: I ,

20 30 40 50 60 TOTAL LENGTH (mm)

rm I

70

Figure 27. Length-frequency distribution for brook stickleback from the Muskeg River, 1977.

Page 138: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 35. Age-length (derived from otol iths) and age-weight relationships, age-specific sex ratios and maturity of small fishes captured in Muskeg River, 1977.

Fork or Total a Females Males Unsexed Samp 1 e Length (mm) Weight (g)

Species/Age Fish Size % %

N % Mature N % Mature Mean S.D. Range Mean S.D. Range

Brook sticklebacka

0+ 6 50 0 6 50 0 10 22 25.3 5.80 15-36 0.2 0.13 0.1-0.5 1 14 48 79 15 52 80 2 31 39.3 5.49 29-49 0.6 0.27 0.2-1.3 2 5 33 100 10 67 100 0 15 51.1 4.18 47-58 1 .4 0.32 1.2-2.0 3 1 25 100 3 75 100 0 4 60.0 7.62 54-71 2.3 1.22 1.5-4.1 N

~

Totals 26 34 12 72

Lake chub

0+ 2 100 0 0 16 18 28.3 5.39 19-36 0.3 0.16 0.1-0.6 1 13 45 0 16 55 0 3 32 41 . 1 5.60 33-58 0.7 0.42 0.3-2.4 2 1 100 0 0 1 2 60.0 0.00 70-81 2.2 o. 14 2.1-2.3 3 1 50 100 1 50 100 0 2 75.5 7.78 4.3 1 .48 3.2-5.3 4 1 100 100 0 0 1 93.0 10.2

Totals 18 17 20 55

Slimy sculpina

0+ 0 1 100 0 8 9 28.2 6.32 17-36 0.3 0.16 0.1-0.5 1 7 54 0 6 46 0 1 14 43. 1 3.99 37-50 0.9 0.35 0.4-1.7

continued

Page 139: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 35. Continued.

Fork or Total a

Females Males Unsexed Sample Length (mm) Weight (g) Species/Age

% Fish Size

N % Mature N % Mature Mean S.D. Range Mean S.D. Range

Slimy sculpina

2 2 67 0 33 0 0 3 55.0 1 .00 54-56 2.2 o. 15 2.1-2.4 3 0 100 100 0 1 76.0 4.4

Totals 9 9 9 27

Longnose dace N

0+ 1 100 0 0 3 4 22.3 5.38 16-29 0.2 0.06 0.1-0.2 U"1

1 5 56 0 4 44 0 0 9 43. 1 5.60 34-49 0.9 0.44 0.3-1.5 2 2 100 50 0 0 2 59.0 2.83 57-61 2.3 0.42 2.0-2.5

Totals 8 4 3 15

Pea r 1 dace

1 3 50 0 3 50 0 1 7 38.0 7.28 27-47 0.6 0.27 0.2-1.0 4 0 1 100 100 0 1 103.0 10.9

Totals 3 4 8

Trout-perch

0+ 0 4 100 0 1 5 38.0 2.55 35-41 0.6 0.12 0.4-0.7 1 0 100 0 0 1 43.0 0.9

continued

Page 140: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 35. Concluded.

Fork or Total a Females Males Unsexed Sample Length (mm) Weight (g)

Species/Age Fish Size

% % n % Mature N % Mature Mean S.D. Range Mean S.D. Range

Trout-perch

2 0 100 100 0 54.0 1.0

Totals 0 6 7

Ninespine sticklebacka

N 0"

0+ 100 0 0 0 35.0 0.3

Total 0 0

Fathead minnow

2 0 100 0 56.0 1 .8

Total 0 0

Page 141: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

127

The smallest mature fish were observed in the 25 to

29 mm length range for males and in the 30 to 34 mm range for

females (Table 36). Results from 1976 showed the smallest mature

stickleback to be males in the 20 to 24 mm range while all fish

were mature in the 40 to 44 mm group (Bond and Machniak 1977).

Sexual maturity is first achieved at age 1 in both sexes (Table 35).

5.4.7.4 Length-weight relationship. The common length-weight

relationship for brook stickleback captured from the Muskeg River

in 1977 (n::::: 262, r::::: 0.962, range 15 to 71 mm) is descri bed by the

equation:

lo910W::::: 2.764 (lo910L) - 4.628; sb = 0.049 The value of the exponent (2.764) is intermediate

between that calculated for Muskeg River stickleback in 1976

(3.0435) and that reported by Machniak and Bond (in prep.)

for Steepbank River fish (2.4260).

5.4.7.5 Spawning. Most brook stickleback in Alberta spawn in

late spring and early summer (Paetz and Nelson 1970). Mature and

ripe females were captured between 3 and 19 June 1977 at Site 3

(Muskeg River) and Site 7 (Hartley Creek). The first young-of-the­

year (19 mm total length) were collected at Site 10 (Kearl Creek)

on 19 June. Many young-of-the-year stickleback were observed in

Kearl Creek on 22 June 1978. A sample of 39 fish captured on this

date ranged in total length from 11 to 18 mm.

By 18 July 1977, young-of-the-yearstickleback, captured

at Site 10, ranged in total length from 19 to 27 mm while fish

taken 30 July at Site 6 had total lengths of 15 to 24 mm. Stickle­

back fry captured 13 October at Site 6 ranged from 23 to 36 mm in

tota 1 length.

5.4.7.6 Food habits. Brook stickleback from the Muskeg River

watershed had fed primarily on immature aquatic insects of the

orders Diptera, Trichoptera, Plecoptera, Ephemeroptera, and

Hemiptera. Other food items included Ostracoda, Nematoda, and

Nematomorpha (Table 37). Scott and Crossman (1973) report brook

Page 142: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 36. Sex and maturity ratios, by size class, for brook stickleback captured from the Muskeg River watershed, 1977. Sex ratios were based only on fish for which sex was determined.

Total Maturity Sex Rat i 0

Length Sample Males Females % Unsexed (mm) Size % Female % Male

% Immature % Mature % Immature % Mature

0-14 0

15-19 17 100 0 100 0 76 50 50

20-24 75 100 0 100 0 72 86 14

25-29 47 83 17 100 0 60 63 37

30-34 26 92 8 90 10 15 45 55 N 00

35-39 16 56 44 20 80 13 36 64

40-44 38 0 100 33 67 3 63 34

45-49 25 0 100 0 100 48 52

50-54 8 0 100 0 100

55-59 9 0 100 0 100 22 8

60-64 0

65-69 0

70-74 0 100 100 0

Totals 262 39% 54% 46%

Page 143: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 37. Food hab its of sma 11 fishes collected from the Muskeg River, 1977.

Species

Food Items Brook stickleback Lake Chub Sl imy Sculpin Longnose Dace Pearl Dace

% Freq.a % No. % Freq.a % No. % Freq.a % No. % Freq.a % No. % Freq.a % No.

Class Insecta

Diptera Chironomidae

larvae 40.0 66. I 0.0 0.0 33.0 72.7 28.6 89.3 0.0 0.0 pupae 20.0 16.1 5.6 5.9 0.0 0.0 0.0 0.0 0.0 0.0

Unidentified Dipterans 5.0 1.7 11. I 23.5 13.3 9.1 0.0 0.0 16.7 50.0 Tri choptera 10.0 2.5 0.0 0.0 13.3 3.9 0.0 0.0 0.0 0.0 Plecoptera 5.0 0.8 0.0 0.0 13.3 9.1 14.3 10.7 0.0 0.0 Ephemeroptera 10.0 3.4 0.0 0.0 6.7 1.3 0.0 0.0 0.0 0.0 N

\.0 Hemiptera 10.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Insect Remains 30.0 64.7 40.0 42.9 16.7

Hi sce II aneous

Nematoda 5.0 2.5 16.7 41.2 13.3 2.6 0.0 0.0 0.0 0.0 Nematomorpha 5.0 1.7 0.0 0.0 6.7 1.3 0.0 0.0 16.7 50.0 Ostracoda 10.0 3.4 5.6 11.8 0.0 0.0 0.0 0.0 0.0 0.0 Vegetation (algae, seeds) 0.0 5.6 17.6 0.0 0.0 0.0 0.0 Digested Hatter 20.0 27.8 20.0 14.3 0.0 33.3 Debris (sand, gravel) 5.0 5.6 6.7 0.0 0.0 16.7

Total stomachs 24 24 15 8 8

Empty (% of Total) 16.7 25.0 0.0 12.5 25.0

a Percentage frequency of occurrence, based on stomachs that contained some food.

Page 144: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

130

stickleback to consume aquatic insects and crustacea as well as

Gastropoda, Oligochaetes, Arachnida, and fish eggs. Some individ­

uals are also reported to feed on algae (Winn 1960).

5.4.8 lake Chub

5.4.8.1 Distribution and relative abundance. Excluding suckers,

lake chub made up 26% of all small fish captured in the Muskeg

River watershed during 1977 (Table 6). This species was present

throughout the watershed and was taken at eight of the 10 collec­

tion sites. Chub were taken at Sites 2, 3, 4, 6, 7, 8, and 9

during both years of the study, but were never captured at Sites

5 and 10 (Figure 2). The largest catches of this species were

made at Site 7 of Hartley Creek during 1976 (Bond and Machniak

1977) and at Site 3 in 1977. Lake chub occurred in association

with brook stickleback at Site f.

5.4.8.2 Age and growth. lake chub, captured from the Muskeg

River watershed in 1977, ranged in fork length from 19 to 93 mm

(Figure 28), with those in the 25 to 44 mm size range accounting

for 82% of the total sample. The length-frequency distribution

was not constant throughout 1977, but varied, largely as a result

of the disappearance of one year old fish (mostly 34 to 45 mm) in

late June and the appearance and subsequent growth of young-of­

the-year in July and August. Young-of-the-year captured in July

had a mean fork length of approximately 27 mm (range 21 to 31 mm)

while those taken in August averaged about 30 mm in fork length

(range 19 to 41 mm). One year old chub, captured in June, ranged

from 31 to 49 mm in length.

Otolith ages were determined for 55 lake chub, the

oldest being a four year old female, 93 mm in fork length (Table

35). Five years appears to be the maximum age for lake chub in

the Muskeg River (Bond and Machniak 1977) and in the adjacent

Steepbank River (Machniak and Bond in prep.). lake chub live to

age 4 in western Labrador (Bruce and Parsons 1976) and age 5 in

British Columbia (Geen 1955).

Page 145: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

20

I 15 en LL

LL o 10 a::: w en ~ ::> 5 z

20 30

Lake Chub n = 160

40 50 60 70 80 FORK LENGTH (mm)

90

Figure 28. Length-frequency distribution for lake chub from the Muskeg River, 1977.

w

100

Page 146: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

132

Growth rates, determined from 1977 data (Table 35),

are similar to those produced in 1976 (Bond and Machniak 1977) for

the Muskeg River as well as to those for lake chub in the Steep­

bank River (Machniak and Bond in prep.). Geen (1955) reported

that females grow faster and live longer than males.

5.4.8.3 Sex and maturity. Sex was determined for 85 lake chub,

of which 51% were females. Most chub examined were immature.

Only five fish, two males and three females, were judged to be

sexually mature. Sexual maturity in Muskeg River lake chub

appears to occur at age 3 for both sexes (Table 35) (Bond and

Machniak 1977).

The smallest size at sexual maturity was 62 mm for

males and 70 mm for females. Bond and Machniak (1977) found the

smallest mature males and females to be in the 55 to 59 and 70 to

74 mm size classes respectively.

5.4.8.4 Length-weight relationship. The length-weight rela-

tionship for lake chub (sexes combined) captured from the Muskeg

R i ve r d r a ina g e d uri n g 1 977 (n = 1 46, r = O. 96 1, ran gel 9 to 33 mm)

is described by the equation:

l0910W = 2.950 (l0910L) -4.892; sb = 0.071

5.4.8.5 Spawning. Lake chub probably spawn in late Mayor

early June in the Muskeg River watershed. A mature male (62 mm)

was captured on 3 June 1977 at Site 3 (Figure 2) and a spent male

(81 mm) and female (70 mm) were taken 19 June at Site 7 (Hartley

Creek). The first young-of-the-year were captured on 18 July at

Sites 2 (21 to 29 mm) and 3 (27 to 31 mm). Young-of-the-year

lake chub were also captured later in the year at Sites 1, 6,

and 8 (Figure 2). Machniak and Bond (in prep.) report capturing

a ripe lake chub on 7 May in the Steepbank River. Lake chub in

the Montreal River, Saskatchewan, spawn in shallow water (about

5 cm) amongst and underneath large rocks at water temperatures

of 10°C (Brown 1969).

Page 147: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

133

5.4.8.6 Food habits. Muskeg River lake chub fed primarily on

aquatic insects, Nematoda, Ostracoda, and plant materials (Table 37).

A similar diet was reported for lake chub in the Steepbank River

(Machniak and Bond in prep.). Stomachs of lake chub from the

Athabasca River contained immature insects of seven orders as

well as some fish remains (Bond and Berry in prep.b).

5.4.9 Sl imy Sculpin

5.4.9.1 Distribution and relative abundance. The sl imy sculpin

is a common forage fish in gravelly areas of the lower Muskeg

River and Hartley Creek. It was taken at Sites 1,2, 3, and 7

during both years of the study, but was never captured at sites

upstream of Hartley Creek (Sites 4, 5, 6, 9, and 10). Excluding

suckers, this species accounted for 6% of all small fish captured

in the Muskeg River in 1977. However, in 1976, sculpins made up

26% of all small fish captured (Bond and Machniak 1977) and are

probably more abundant than our 1977 data indicate.

5.4.9.2 Age and growth. Sl imy scu1pins captured in the Muskeg

River watershed during 1977 ranged from 7 to 76 mm in total length

(Figure 29). Otolith ages were determined for only 27 sculpins,

the oldest of which was a three year old male, 76 mm in total

length. The maximum age reported for sl imy scu1pins in the

AOSERP area is four years (Bond and Machniak 1977; Machniak and

ond in prep.).

Growth patterns for sl imy sculpins in the Muskeg River

(Table 35) (Bond and Machniak 1977) are similar to those reported

for the Steepbank River (Machniak and Bond in prep.), the

Chandalar River, Alaska (Craig and Wells 1976), and the Mackenzie

Delta (de Graaf and Machniak 1977).

5.4.9.3 Sex and maturity. Sex was determined for 18 sl imy

sculpins, of which 50% were males. Only one mature sculpin was

captured during 1977, that being a three year old male, 76 mm in

total length (Table 35). Most sl imy sculpins captured in 1976

Page 148: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

5. Slimy Sculpin

n = 38 I

4 J: (J) -LL3 LL 0 0::

--> ::g 2l rtl \.AJ r»t .t:-~W? ::E ::> z

10 20 30 40 50 60 70 80 TOTAL LENGTH (mm)

Figure 29. Length-frequency distribution for sl imy sculpin from the Muskeg River, 1977.

Page 149: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

135

were also immature fish. The sma1 lest size at sexual maturity was

60 to 64 mm for males and 75 to 79 mm for females (Bond and

Machniak 1977). In the Steepbank River, the smallest mature

scu1pins were males in the 45 to 49 mm size class and both sexes

matured at age 2 (Machniak and Bond in prep.).

5.4.9.4 Length-weight relationship. The mathematical relation-

ship between total length and body weight for sl imy sculpins

(sexes combined) captured in the Muskeg River during 1977 (n = 34,

r=0.941, range 17 to 76 mm) is described by the equation:

10g 10W = 3.059 (10910L) - 5.059; sb = 0.194

5.4.9.5 ~pawning. Sl imy sculpins spawn in the early spring

over rocky bottoms. Spawning occurred in late April in Valley

Creek, Minnesota fry were first observed in June (Petrosky

and Waters 1975). Craig and Wells (1976) estimated that sl imy

sculpins spawned a week after spring breakup in the Chandalar

River drainage, Alaska. Scott and Crossman (1973) state that

scu1pins spawn at water temperatures of SoC in northern Saskat­

chewan with the eggs hatching in about four weeks. Slimy scu1pins

spawned between late April and mid-May in the Muskeg River, both

in 1976 and 1977. In the first year, ripe sl imy sculpins were

captured on Sand 9 May at Site 2 and young-of-the-year, 11 mm in

total length, were taken on 9 June in Hartley Creek (Bond and

Machniak 1977). Young-of-the-year (n=4), 7 to 9 mm in total

length, were captured in a drift net near the fence site on 6

and 7 June 1977.

5.4.9.6 Food habits. Slimy scu1pins had fed primarily on

Chironomidae and other Diptera larvae, Trichoptera, P1ecoptera,

and Ephemeroptera (Table 37). Petrosky and Waters (1975)

indicated that the most important foods of Minnesota sculpins

we re GammaPU3 (Amph i poda), 0 i pte ra and Tr i chopte ra 1 arvae, and

Gastropodn. Other food items included Ephemeroptera, I sopoda ,

Coleoptera adults and larvae, Annel ida, Ostracoda, Nematoda,and

sculpin eggs.

Page 150: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

136

5.4.10 Longnose Dace

5.4.10.1 Distribution and relative abundance. Longnose dace are

characteristic of gravel or bouldery areas of swift-flowing streams

(Scott and Crossman 1973). Because adults live in crannies

between stones, they are difficult to capture (McPhail and

Lindsey 1970) and, therefore, are probably under-represented in

seine catches. Only 28 longnose dace were captured from the

Muskeg River in 1977. They were most commonly found in the lower

reaches of the Muskeg River (Site 2), where 19 specimens were

collected (Table 6). Of 73 longnose dace captured in 1976, 72

were found at Site 2 (Bond and Machniak 1977). Over two years,

six longnose dace were taken at Site 1, while single specimens

were captured at Sites 3, 7, and 8 (Figure 2).

5.4.10.2 Age and growth. Longnose dace captured in the Muskeg

River in 1977 ranged from 15 to 62 mm in fork length (Figure 30)

and from 0+ to two years in age (Tab 1 e 35) . The largest dace

taken in 1976 was 89 mm long and three years old (Bond and

Machniak 1977).

5.4.10.3 Sex and maturi Only two mature longnose dace were

captured in the Muskeg River during the two years of the study.

Both were females, one two years old and the other age 3.

5.4.10.4 Length-weight relationship. The mathematical relation­

ship between fork length and body weight for longnose dace (sexes

combined) captured in the Muskeg River during 1977 (n=28,

r= 0.968, range= 15 to 62 mm) IS described by the equation:

lo91oW = 2.827 (lo910L)- 4.722; sb = 0.143

5.4.10.5 Spawning. Bartnik (1970) reported that, in streams of

southern Manitoba, longnose dace spawned in late May when daily

maximum water temperatures exceeded 15°C, and that spawning

occurred over a gravel substrate in water velocities greater, than

45 cm/s. However, in Alberta, dace are reported to spawn from

Page 151: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

5. 1:-:-:.:-. Longnose Dace n = 28

I r'] ~~~~~:~

4 I CJ)

LL

LL 3 0 0:: w

21 F",] r:\] F:q CD ~ => z

20 30 40 50 60 70 FORK LENGTH (mm)

Figure 30. Length-frequency distribution for longnose dace from the Muskeg River, 1977.

-\.,.to.)

-.....J

Page 152: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

138

early June to mid-August (Paetz and Nelson 1970). Spawning in the

Muskeg River probably occurs between late May and early July. The

only ripe longnose dace (not yet free running) was taken near the

fence site (Site 2) in early May 1976. During 1977, young-of-the­

year (n = 4) were fi rst collected from the mouth of the Muskeg

River on 16 July (range 15 to 23 mm). Dace fry were also captured

at Site 2 during early August 1976. At that time fork lengths

ranged from 18 to 37 mm (Bond and Machniak 1977). Young-of-the­

year dace captured in the lower Steepbank River between 18 July

and 2 August 1977 had a mean fork length of 21.5 mm and varied

from 17 to 25 mm (Machniak and Bond in prep.).

5.4.10.6 Food habi Stomach analysis of 8 longnose dace

revealed the main food in the Muskeg River to be Diptera

(Chironomidae) larvae which comprised 89.3% of the identifiable

food items (Table 37).

5.4.11 Other Small Fish S ies

5.4.11.1 Pearl dace. Pearl dace are a common forage fish in the

AOSERP study area. This species was found throughout the Steep­

bank River watershed and made up 31% of all small fish taken in that

stream (Machniak and Bond in prep.). However, they do not appear

to be abundant in the Muskeg River as sampling over a two year

period produced only 15 specimens. Fourteen of these were

captured at Site 2 while one specimen was taken at Site 10,

the outlet of Kearl Lake (Table 6) (Bond and Machni~k 1977).

The largest pearl dace taken was a four year old male, 103 mm

in fork length (Table 35). Peail dace had fed primarily on

aquatic insects.

5.4.11.2 Trout- rch Trout-perch are widely distributed through-

out the AOSERP study area and are extremely abundant in the

Athabasca River (Bond and Berry in prep a, in prep.b). Ripe males

and females can be found in the Athabasca River in late April and

early May. These fish move into tributaries during May to spawn

Page 153: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

139

in late Mayor early June. Trout-perch are known to spawn in the

lower reaches of the Ells River as W~ A. Bond collected ripe males

and a 10 mm long fry there on 8 June 1977. Spawning also occurs

in the lower Steepbank River (Machniak and Bond in prep.) and in

the MacKay River (Machniak et al. in prep.). From our observa­

tions in 1976 and 1977, it would appear that the lower Muskeg River

(downstream of the fence site) also serves as a spawning area for

this species. During 1976, a ripe three year old female was

captured near the fence site on 14 May and young-of-the-year

(10 to 17 mm) were caught near the mouth of the tributary (Site 1)

on 15 June (Bond and Machniak 1977). Five young-of-the-year (35

to 41 mm) were captured at Site 1 on 13 August 1977 (Table 35).

The food habits of trout-perch were not examined during

the present study. However, in the Athabasca River, trout-perch

were observed to have fed primarily on immature aquatic insects,

Copepoda and Ostracoda (Bond and Berry in prep.b).

5.4.11.3 Ninespine sticklebac~. One young-of-the-year ninespine

st i ck 1 eback (35 mm tota 1 1 ength) was captured at Site 2 of the

Muskeg River on 6 August 1977 (Table 35). This species is rarely

found in the AOSERP study area, either in tributaries or in the

Athabasca River. Intensive sampling of the Athabasca River with

small mesh seines produced only two ninespine stickleback during

1977 (Bond and Berry in prep.b).

5.4.11.4 Fathead minnow. Fathead minnows are common in the upper

Athabasca watershed and Wood Buffalo National Park (Paetz and

Nelson 1970). They appear to be rare in the Athabasca River down­

stream of Fort McMurray (Bond and Berry in prep.a, in prep. b),

although Tripp and McCart (in prep.) captured them in considerable

numbers in the Athabasca River upstream of Fort McMurray. Only

one fathead minnow was captured in the Muskeg River during the

present study. That specimen was a two year old male, 56 mm in

fork length (Table 35).

Page 154: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

140

5.4.11.5 Spottail shiner. No spottail shiners were taken in the

Muskeg River in 1977 and only one was captured during 1976 (Bond

and Machniak 1977). They are reported to be common in the

Athabasca River, and Bond and Berry (in prep.a, in prep.b) provide

information relative to the 1 ife history of this species in the

AOSERP study area.

5.5 HABITAT ANALYSIS

5.5. 1 River Mainstem

The mainstem of the ~uskeg River was divided into five

reaches on the basis of gradient differences, flow characteristics,

substrate, channel form, and other physical features (Table 38,

Figure 31). Point samples taken at nine locations during June

1978 provided site-specific information with respect to certain

physical and chemical parameters (Table 39) as well as additional

information on fish (Table 40) and benthic macroinvertebrates

(Table 41). This information collectively defines the aquatic

habitat of the Muskeg River mainstem and permits an assessment

of fish util ization in each reach.

5.5.1.1 Reach 1M. This reach extends from the confluence of

the Muskeg and Athabasca rivers to approximately 0.5 km upstream.

Because it 1 ies within the flood plain of the Athabasca River it

is subject to periodic flooding by Athabasca River water which

can greatly affect its width and depth. This mouth region has

1 ittle gradient (0.3 m/km) , low velocity, and pool-l ike conditions

often prevail. The substrate is very homogeneous, comprised

mainly of fines (90%) and small gravels (10%).

Because Reach 1M is frequently inundated by Athabasca

River water it is to be expected that, at some time or other,

virtually all fish species occurring in the Muskeg or Athabasca

rivers will be found in this area. That this is so is demonstra­

ted by Table 42 which shows that documented fish presence in this

reach includes the adults of eight species and the fry and/or

juveniles of 20 species.

Page 155: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

FIGURE 31.

MUSKEG RIVER BIO-PHYSICAL MAP LEGEND

KILOMETRES I 0 I 2 3 l:a:a:::a:a:L I :l

REACH SYHBOLS SutsUatf' Hater! ills

GENERAL: fiSH SPECIES

CHANN~l SUBS TRATE

SpCl.ic;, Abbreviations

~s I./hi te

longf1ose sucker

Arctic grayl inc;;

NP Northern pike

Mountain whi lef!:.h

l~ who tefish

Yellow walleye

OS Other speCies

Channel

1. long j tudinal P~ofi le::

2, Stope

3. CrO~S-5c:ct ion:

BS.KS

r <0.1

I, fines naterials In 0-2 O\'TI siz!? class

gravels - mtltcrldis jr, 2-64 Il\ITI s;ze class

larges - l1'..aterials greater than 6lj mm In sl ze

Example

'Site Spec i ric Stream Symbols

A point sample si tc WI th biophysical data available

Beach seine sampl irtg 51 tc

Gl t 1 net sampl ing

Angl ing sampling si te

Kick sa"'pl log site

Beaver dall' ;('ot all shown)

R~ach OOundi) r'l wi th reach

SJrvey boun1ary

BS,AS

WS LNS NP AG as r 0.1 u I F

..... .....

WS LNS NP AG as r 0.2 c I 45

WS LNS AG as r 0.5 c I 12

..... ..... WS LNS LW YW NP AG MW os s 0.4 c I 15R I

WS LNS NP AG os r 0.1 ul F

WS LNS AG os r 0.3 c I 63

BS,KS,AS

WS LNS AG os c I 73

WS LNS AG os r <0.1 c I 81

K BS,DN

LONGITUDINAL PROFILE OF THe:

>­ill

ti: :::l (/)

5M

MUSKEG RIVER

REACH NUMBER 4M

3M

100 75 50 25 0

DISTANCE FROM ATHABASCA RIVER ( Km)

350

300

E

z o ti > W ...J I.IJ

os c I F

LONGITUDINAL PROFILE OF

HARTLEY CREEK

>­Ct:

;3 Z :::l o rn

5HI"--

REACH NO.

3H....j.. 4H 2H IH

~ 0 DISTANCE FROM MUSKEG RIVER ( Km )

350

300

E

200

Page 156: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 38. Physical characteristics of the Muskeg River mainstem, 22 to 23 June 1978.

Distance Upstream of Confluence (km)

Width (m)

Gradient (m/km)

Velocity (m/s)b

Mean Depth (ml b

River Channel Characteristics

Thread

Form

Flow Character

Reach 1M

o - 0.5

16

0.3

NO

NO

90

10

0

0

)

-0

-5

j

sand

single

straight

placid

a Survey ended at km 88 - not necessarily end of reach.

b Based on data from point samples.

Reach 2M

0.5 - 8

14

4.1

1.0

0.6

10

50

30

10

single

meander i ng

sw i rl i ng to broken

Reach 3M

8 - 13

15

1.5

0.9

0.5

40

50

10

0

5

40

50

5

clay, sand, gravel

single

straight, irregular

placid

Reach 4M Reach 5M

13 - 75 75 - 88a

13 9

0.4 2·9

0.4 0.6

0.9 0.2

90 90

5 5

5 5

0 0

0 10

10 20

80 65

10 5

clay clay

single single

irregular meander straight to irregular

placid placid

.s:-w

Page 157: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 39. Summary of physical and chemical informati watershed, 22 to 23 June 1

collected at each sampl ing point in the Muskeg River

Pa rameter Ml M2

Stream width (m)

Mean depth (m)

Velocity (m/s)

Substrate (%)

15 13

0.6 0.6

1.0 1.0

Fines «2 I'IITI) 20

Grave I s (2 to 64 mm)m 80

Larges (>64 I'IITI) 0

Bedrock o

o 50

50

o

M3

14

0.7

1.0

5

75

20

o

Muskeg River Mainstem

M4

15

0.5

0.8

20

80

o o

M5

44

0.3

0.9

30

70

o o

M6

13

1.0

0.5

80

o 20

o

M7

16

0.7

0.5

90

o 10

o Bank Stabi Ii ty L-Stable L-Unstable .

Stable Stable Stable R-Unstable R-Stable Stable Stable

Bank Materials Sand Gravel Gravel L-gravel Sand Gravel Large~Larges R-sand,clay Gravel

Riparian vegetation

Grasses

Dogwood

Wi I lows

Alder

Aspen

Aquatic vegetation

Algae

Vascular

+ +

+ +

+

+

Time of day (hr) 0900 1145

Water temperature (OC) 14.0 NO

pH 8.5

Conductivity (~mhos/cm@25°C) 305

o i sso I ved oxygen (mg/ I) 9

NO

NO

+

+

+

+

+

1215

14.5

8.5

305

9

+ +

+

+ +

+

Cladophora Cladophora

+

1245

NO

NO

NO

NO

+

1315

14.0

8.5

310

9

Clay

+

+

+

1445

NO

NO

NO

NO

Clay

+

+

Cladophora

+

1600

14.0

8.0

300

8

M8

11

1.5

0.2

100

o o o

Stable

Clay

+

+

+

1130

13.0

8.0

300

7

M9

9

0.2

0.5

o 10

90

o Stable

Clay Larges

+

+

+

Cladophora

+

1030

13.0

8.5

260

8

Hl

8

0.7

0.3

100

o o o

Ha rt I ey Creek

H2

10

0.4

1.1

5

20

75

o

H3

5

0.7

0.4

10

15

75

o

Kearl Creek

Kl

6

0.5

0.3

100

o o o

K2

16

0.4

Ni I

100

o o o

Unstable Stab I e Stab Ie Uns tab J e Q.uaki ng

Sand,cJay Clay,larges Clay

+

+

+

+ 1430

14.0

8.5

200

9

+

+

+

+

+

1600

14.0

8.0

190

10

+

+

+

+

+

1630

13.0

8.0

195

9

Clay

+

+

+ 1300

14.0

8.0

220

8

Ground

+ Typhaceae

+

+

0930

16.0

8.0

160

8

.J:'"

..s:-

Page 158: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 40. Number of fish captured in small mesh seines at each sampl ing point in the Muskeg River watershed, 22 to 23 June 1978.

Muskeg River Mainstem Hartley Creek Kearl Creek Total Species

M1 M2 M3 M4 M5 M6 M7 M8 M9 Hl H2 H3 K1 K2 Numbe r %

Arc tic gray 1 in g 0 21 4 22 7 NO 0 NO 0 0 0 0 0 0 54 23.8

Northern pike 0 0 4 0 0 NO 0 NO 0 0 0 0 0 0 4 1 .8

Trout-perch 0 0 0 0 NO 0 NO 0 0 0 0 0 0 0.4

Longnose dace 2 0 0 0 NO 0 NO 0 0 0 0 0 0 3 1.3 .:::-

White sucker 0 2 NO NO 0 0 0 0 0 0 6 2.6 V1

Longnose sucker 0 0 0 0 0 NO 0 NO 0 0 0 0 2 0.9

Brook stickleback 0 0 0 0 NO NO 23 30 0 21 39 116 51 . 1

Lake chub 0 0 0 0 20 NO NO 18 0 0 0 0 40 17.6

Pea rl dace 0 0 0 0 NO 0 NO 0 0 0 0 0 0 0.9

Total 5 21 11 23 29 NO 3 NO 24 49 0 22 39 227 99.9

Page 159: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 41. Percentage composition by numbers for the major benthic macro-invertebrate groups taken at each sampl ing point in the Muskeg River watershed, 22 to 23 June 1978

Muskeg River Mainstem Ha rt 1 ey Creek Kea rl Creek

M1 M2 M3 M4 M5 M6 M7 M8 M9 H1 H2 H3 K1 K2

Chironomidae 25 6 10 ND 10 ND ND 40 92 18 47 46 29 44

Epheme ropte ra 11 20 47 ND 66 ND ND 0 4 19 7 8 < 1 2

Pl ecoptera 0 0 0 ND 0 ND ND 0 0 0 0 0 0 0

Tri choptera 9 21 14 ND 3 ND ND 0 2 13 21 7 2 < 1

Simuli idae 0 0 O ND 0 ND ND 0 0 0 0 0 47 0 ..t:-(j'\

Oligochaeta < 1 < 1 ND 1 ND ND 0 < 1 2 7 12 5 7

Other taxa 55 53 27 ND 20 ND ND 60 48 18 27 16 48

Number Animals Counted 453 683 985 ND 897 ND ND 10 1393 738 431 303 154 657

Percentage of Sample Counted 50 25 13 ND 25 ND ND 6 13 25 13 13 25 25

Page 160: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 42. Documented distribution of adult and young fish in the Muskeg River mainstem based on catch data obtained in 1976-1978, and on reports by other individua1so

Reach 1M Reach 2M Reach 3M Reach 4M Reach 5M Species

Fry/ Fry/ Fry/ Fry/ Fry/ Adults J 01 Adults J °1 Adul ts J °1 Adults J °1 Adults J 01 uven I es uvenl es uvenl es uvenl es uvenl es

Lake whitefish + + + + +

Mounta in wh i tefi sh + +a + +

Lake cisco +

Arct i c grayl i ng + + + + + + + +

Dolly Varden + + .,J:-

Northe rn pike + + + + + + +c + ~

Pearl dace +

Redbe 11 y dace +b

Lake chub + + + + + + + +

Longnose dace + + + +

Emerald shiner +a

Spottai 1 sh i ne r +

Fathead minnow +b +

White sucker + + + + + +c + +

Longnose sucker + + + + + +c +

con t i nued •. 0

Page 161: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 42. Concluded.

Species

Trout-perch

Bu rbot

B roo k s tic k 1 e b a c k

Reach 1M

F-ry/ Adults Juveniles

+c +

+

+

Ninespine stickleback +

Slimy sculpin +

Walleye + +

Ye llow pe rch +

Reach 2M

Fry/ Adults Juveniles

+

+

+ +

+ +

+ +

+

a Reported by Bond and Berry (inprep.a).

b Reported by Bond and Berry (in prep.b).

Reach 3M

Fryl Adults Juveniles

+ +

+

c Reported by Shell Canada Ltd. (1975) in mouth of Hartley Creek.

Reach 4M

Fry/ Adults Juveniles

+ +

Reach 5M

Fry/ Adults Juveniles

+ +

J:-ex>

Page 162: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

149

Reach 1M has little potential for spawning by any

species encountered within the Muskeg River. Although white

suckers, longnose suckers, northern pike, Arctic gray1 ing, and

(probably) trout-perch are known to migrate through this reach in

April and May in order to reach spawning areas upstream in the

Muskeg River, none of these species, with the possible exception

of northern pike, is bel ieved to spawn in Reach 1M. The placid

water conditions of this reach appear to provide excellent rearing

habitat for the young of most species. Young-of-the-year suckers,

brook stickleback, sl imy sculpin, yellow perch, mountain whitefish,

Arctic grayl ing, and ninespine stickleback have all been captured

from this reach. These young-of-the-year probably came from

upstream areas of the Muskeg River as well as from the Athabasca

River. Although no benthos was collected from Reach 1M during the

study, the small particle size of the substrate and the lack of

substrate diversity would indicate a sparse bottom fauna. Thus,

poor feeding conditions obtain for such fish as lake whitefish,

mountain whitefish, white ~nd longnose suckers, that feed predomi­

nantly on benthic invertebrates. On the other hand, the large

numbers of young-of-the-year fish (especially suckers) found in

the mouth area of the Muskeg River, would provide excel lent

forage for piscivorous species such as northern pike and walleye.

Reach 1M appears to be of importance to lake whitefish, and

probably also walleye, in terms of providing resting areas during

upstream spawning migrations in the Athabasca River (Bond and

Berry in prep.a, in prep.b). The potential of Reach 1M as an

overwintering area is unknown.

5.5.1.2 Reach 2M. Reach 2M, the canyon of the Muskeg River,

extends from km 0.5 to approximately km 8 (Figure 31). Through

this region the stream has cut a deep, narrow, tortuously

meandering channel into Waterways 1 imestone, by which it is

largely confined. The gradient in this reach is generally steep

(4.1 m/km) and the water velocity is rapid (1.0 m/s). However,

the river is stepped in such a way that riffles and pools alter­

nate providing a wide range of habitat types. In the upper

Page 163: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

150

canyon (Figure 6), short rapid riffles alternate with long shallow

pools while in the lower end of Reach 2M (Figure 5) the pools are

generally smaller and separated by long gravel riffles. The

substrate in Reach 2M is mostly gravels (50%) and 1arges (30%) but

some silt occurs with gravel in pool areas and the stream passes

occasionally over 1 imestone ledges. Substrate particle size tends

to decrease from the upper to the lower end of this reach.

Riparian vegetation was estimated as 65% deciduous trees (aspen,

alder), 20% spruce, and 10% deciduous shrubs (willows). In many

areas, however, where the river contacts the limestone cl iffs

1 ittle riparian vegetation is found. At low water levels, much

gravel and bounder is exposed and the riparian vegetation seldom

overhangs the stream.

Benthic samples were taken at two sites (M1 and M2)

within Reach 2M. At the lower site, where the substrate consisted

primarily of small gravels (Table 39), the most abundant benthic

forms were Chironomidae, Ephemeroptera, and Trichoptera which made

up 25, 11, and 9% of the sample respectively (Table 41). Trichop­

tera (21%) and Ephemeroptera (20%) were the most common inverte­

brates taken at point M2 where the substrate consisted of gravels

and 1arges in approximately equal amounts. The diversity of

substrates found in Reach 2M and the combination of pools and

riffles lead one to expect a great diversity of benthic forms in

this region. This is confirmed by the work of Barton and Wallace

(in prep.) who identified 166 invertebrate taxa within Reaches

2M and 3M.

The documented fish fauna of Reach 2M includes adult

fish of 11 species and fry and/or juveniles of 17 species (Table

42). Spawning potential in Reach 2M is excellent for white

suckers which have been seen spawning over gravel riffles at the

lower end of the reach. The riffle areas of this reach also

provide excellent spawning areas for longnose suckers, Arctic

grayl ing, longnose dace, sl imy scu1pins, lake chub, and trout­

perch. Areas suitable for northern pike and brook stickleback

spawning are few and limited to side sloughs out of the main

current. Although the Muskeg River in Reach 2M contains areas

Page 164: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

151

suitable for spawning of mountain whitefish, lake whitefish, and

walleye, these species are not believed to spawn within this

watershed. Rearing for Arctic grayling is excellent in the

shallow gravel riffles and shallow pools found in Reach 2M.

Although young-of-the-year grayling have been taken all along this

reach, they are apparently most abundant in the middle and upper

portion. At low water levels, small back eddies develop along the

shoreline of 2M in which large numbers of sucker fry are found

during June, July, and August. Rearing in this reach is also good

for longnose dace and sl imy sculpins. Within the canyon, large

grayl ing were found immediately below riffle areas at the extreme

upstream ends of pools. Northern pike are extremely limited by

the current in this reach and usually occur in quiet pools and

back eddies. Most pike that enter the Muskeg River in the spring

probably remain in the downstream areas of Reach 2M, although some

are known to traverse the canyon. The extremely abundant bottom

fauna in Reach 2M provides an excellent food source for Arctic

grayl ing, longnose and white suckers, and virtually all fish

species found in this section of the river. Forage for northern

pike and walleye is also excellent in the form of sucker fry. Of

the fish species captured at the Muskeg River upstream trap, only

Arctic grayl ing, northern pike, white suckers, and longnose suckers

have been recorded upstream of Reach 2M (Table 42). This suggests

that such species as lake whitefish, walleye, lake cisco, Dolly

Varden, and burbot, although entering the Muskeg River in small

numbers, probably do not ascend the tributary for any great

distance. The extent of overwintering in Reach 2M is unknown.

Measurements taken near the downstream end of this reach in

February 1975 (NHCL 1975) indicate a water depth of 0.1 m under

0.4 m of ice and a discharge of 0.3 m3/s suggesting that over­

wintering may be possible for some fish in this reach.

5.5.1.3 Reach 3M. Reach 3M comprises approximately 5 km

of stream between km 8 and km 13 (Figure 31), and is a

transitional zone between the low gradient Reach 4M and the steep

gradient Reach 2M. The top of this reach marks the approximate

Page 165: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

152

point at which the Muskeg River leaves the flat central portion of

its watershed and begins to cut through the McMurray Oil Sands

formation that overlies the Waterways 1 imestone referred to in

Reach 2M. Although the gradient is moderate (1.5 m/km) and the

stream velocity rapid (0.9 m/s) 9 the river flows fairly smoothly

over a uniform substrate of fines (40%, mostly sand) and small

gravels (50%). The current increases and the substrate material

gets coarser in the vicinity of point sample M3 (Figure 31) as the

stream begins to enter the canyon. Riparian vegetation in Reach

3M was mostly deciduous trees (40%) and shrubs (50%). The stream

banks in the upper parts of the reach were largely sand and clay

and were easi ly eroded. However, at the downstream end of the

reach, stable banks of gravel and larges occurred.

Benthic samples taken at sites M3 and M5 revealed a

diverse invertebrate fauna consisting largely of Ephemeroptera,

Trichoptera, and Chironomidae (Table 41), As mentioned previously,

Barton and Wallace (in prep.) identified 166 invertebrate taxa

between point M5 and point Ml. Because the substrate particle

size is smaller in most of the region between sites M5 and M3 than

it is at those sites, the invertebrate fauna is probably less

diverse through much of this reach than is indicated by Barton

and Wa 11 ace.

The fish fauna of Reach 3M appears to be limited to

eightor nine species (Table 42). Spawning potential for Arctic

grayling is excellent in the coarse gravel areas found at the

upstream and downstream ends of this reach, but is low in areas

of sandy substrate. Gravel areas also provide good spawning

sites for longnose and white suckers, longnose dace, lake chub

and slimy sculpins. The occasional area of quiet water with

emergent vegetation provides good spawning habitat for pike and

brook stickleback, but such areas are few in number. Rearing

for Arctic grayling, sl imy sculpin, and longnose dace is good in

shallow. gravelly areas of Reach 3M. Back-eddies, out of the

main channel, which become choked with weeds afford protection

for young-of-the-year suckers, pike, and brook stickleback. The

abundant benthic fauna, especially at the upper and lower ends

Page 166: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

153

of the reach, provides an excellent food source for all fish

species. The only piscivore taken in Reach 3M was northern pike

for which abundant forage occurs during the summer, especially in

the form of young suckers. No winter flow data are available for

Reach 3M and it is not known if overwintering conditions exist in

this area.

5.5.1.4 Reach 4M. Reach 4M extends from km 13 to km 75, running

through the large central area of the watershed. This area is flat,

poorly drained, and covered with marshland and treed muskeg. This

low gradient (0.4 m/km) reach is typically deep, slow moving

(0.4 m/s) and cluttered with large numbers of beaver dams. The

occurrence of such dams increases greatly upstream of Hartley

Creek (Figure 31). Through most of the reach the substrate is

composed of sand, silt, mud, and organic debris with occasional

boulderyareas. The low clay banks are vegetated with willows and

grasses. During periods of flood, water overflows these banks

through much of the reach and the limits of the stream become almost

impossible to define. Benthos was sampled only at point M8

(Figure 31) in which area the maximum depth exceeds 1.5 m. Chi ron­

omidae comprised 40% of this sample (Table 41). Barton and Wa1 lace

(in prep.) identified 81 invertebrate taxa from the same area and

found that Chironomidae (56%) and 01igochaeta (11%) accounted for

the majority of animals taken. They captured virtually no Ephemer­

optera, Plecoptera, or Trichoptera. Thus, the very uniform physical

conditions to be found in Reach 4M are reflected in the benthic

community by a greatly reduced species diversity.

The fish community in Reach 4M is also severely restrict­

ed. There appears to be little spawning potential in this area

for any species other than brook stickleback. Although large

numbers of sucker fry have been captured in Reach 4M downstream

of, and for approximately 300 m upstream of the confluence of

Hartley Creek, it seems more likely that these fish were spawned

in Hartley Creek than in the Muskeg River itself. Ripe pike and

longnose and white suckers have been reported from the mouth of

Hartley Creek (Shell Canada Ltd. 1975). Reach 4M of the Muskeg

Page 167: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

154

River, with its reduced current and abundance of small chironomid

larvae provides very good rearing habitat for young-of-the-year

fish. However, the only fry captured in large numbers in this

area were suckers and brook stickleback. Small numbers of young­

of-the-year grayling, pike, and lake chub have been taken from

Reach 4M downstream of Hartley Creek. The lower regions of

Reach 4M, between Hartley Creek and the lower boundary of the

reach, provide summer feeding grounds for adult Arctic grayl ing.

Grayling in this region are said to be found where water up to 1 m

deep flows with moderate current over beds of macrophytes and sand

(Dr. D. Barton, University of Waterloo, verbal communication with

W. A. Bond, April 1978). Winter measurements taken just upstream

of the mouth of Hartley Creek and near point 8M (Figure 31) by

NHCL (1975) indicate a water depth of from 0.5 to 0.7 m in mid­

February. This would suggest the potential exists for overwinter­

ing in Reach 4M, depending on dissolved oxygen levels. Although

no winter fish sampl ing was conducted in this study, yearl ing

white and longnose sucker~ have been captured in early spring at

the mouth of Kearl Creek which suggests overwintering by the

young of these species. Brook stickleback, the dominant fish

species in Reach 4M, is undoubtedly a year round resident of this

reach.

5.5.1.5 Reach 5M. Upstream of Reach 4M the gradient of the

Muskeg River increases (2.9 m/km) , but the flow is reduced in most

areas by beaver dams. The substrate in Reach 5M consists mainly

of sands and silts (90%) and the clay banks are well vegetated

with willows (80%) and grasses. The only point sample in this

reach was taken at the upper 1 imit of our survey (Figure 3,

Table 39) at a site that was atypical of the reach as a whole.

At this site (Figure 3) the stream bed was strewn with moss­

covered boulders and thick mats of CZadophora were found. The

benthic fauna was dominated numerically by Chironomidae which

made up 92% of our sample (Table 41). Barton and Wallace (in prep.)

identified only 78 invertebrate taxa from the vicinity of point

M9. The samples showed Chironomidae (31%) and Oligochaeta (27%)

Page 168: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

155

to be the most abundant benthic invertebrates in this area.

The fish fauna at point M9 is restricted to brook stickle­

back and lake chub which are~ undoubtedly, year round residents of

this reach. Movement of fish between Reach 5M and downstream areas

is restricted by beaver dams, although one young-of-the-year sucker

fry did manage to ascend as far as site M9.

5.5.2 Hartley Creek and Kear1 Creek

Hartley Creek was divided into five reaches on the basis

of gradient differences, flow characteristics, substrate, and

channel form (Table 43, Figure 31). Point samples were taken

at only three sites, one each in Reaches 1H, 3H, Gnd 5H (Figure 31).

At these locations, site-specific information was collected with

respect to certain physical and chemical parameters (Table 39),

fish (Table 40), and -thic macro-invertebrates (Table 41). This

information, in combination with fish data gathered in 1976 and

1977, permits an assessment of fish utilization in each reach

and defines the aquatic habitat of this tributary. Point samples

were also taken at two locations on Kear1 Creek (Figure 31). One

of these was situated just upstream from the Muskeg River and

the other at the outlet from Kearl Lake.

5.5.2.1 Reach 1H. The lower 3.0 km of Hartley Creek are charac-

terized by relatively low gradient (1.0 m/km) , slow current

(0.3 m/sl~ and sandy substrate (Table 43). The riparian vegeta­

tion is mostly willows and grasses, and beaver activity is

evidenced by the presence of several beaver dams (Figure 31).

The most abundant invertebrate groups in samples taken at point H1

(Figure 31, Table 41) were Chironomidae (18%), Ephemeroptera

(19%), and Trichoptera (13%).

Six species of fish have been documented from Reach 1H

(Table 44). Ripe Arctic grayl ing, white suckers, and longnose

suckers have been reported from this reach by Shell Canada Ltd.

(1975) but were not captured during the present study. The

spawning potential of Reach lH is considered to be poor for these

species. However, they probably migrate through it to reach

Page 169: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 43. Physical characteristics of Hartley Creek, 22 to 23 June 1978.

Distance Upstream of Confluence (km)

Width (m)a

Grad i ent (m/km)

Ve10ci ty (m/s)a

Mean Depth (m)a

Substrate Composition (%)

Fines « 2 mm)

Gravels (2 to 64 mm)

La rges (> 64 mm)

Bedrock

Riparian Vegetation (%)

Coniferous Trees

Dec i d uous Trees

Deciduous Shrubs

Grasses

Bank Materials

River Channel Characteristics

Thread

Form

Flow Character

Reach 1H

0-3.0

8

1.0

0.3

0.7

100

o o o

o 10

70

20

clay, sand

single

irregular t meandering

placid

a Based on data from single point samples.

b End of survey, but not necessari Iy end· of reach.

Reach 2H

3.0-6.7

NO

2.9

ND

NO

60

30

10

o

10

60

20

10

sand, clay

single

irregular, meandering

moderate

Reach 3H

6.7-8.2

10

5.1

1 • 1

0.4

10

20

70

o

10

70 20

o

clay, gravel I arges

single

straight

swift

Reach 4H

8.2-14.7

NO

2.3

NO

NO

70

30

o o

10

60

30

o

sand, clay

single

irregular, meander i ng

moderate

Reach 5H

14.7- 17. Ob

5

NO

0.4 0.7

80

10

10

o

o 10

80 10

clay

single

i rregu 1ar, meander i ng

placid

\n (T'\

Page 170: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Tab1e 44. Documented distributjon of adult and young fish in Hartley Creek and Kear1 Creek based on catch data obtained in 1976-1978, and on reports by other individuals.

Hartley Creek Kearl Creek

Reach 1H Reach 2H Reach 3H Reach 4H Reach 5H Point K1 Point K2

Fry/ Fry/ Fry/ Fry/ Fry/ Fry/ Fry/ Adults Juveniles Adults Juveniles Adults Juveniles Adults Juveniles Adults Juveniles Adults Juveniles Adults Juveniles

Mountain whltefisha

Arctic grayl ing +b + + + + + +

Northern pike +b

Pearl dace +

Lake chub + + + + + + +

Longnose dace + + +

White sucker +b + + + + +

Longnose sucker +b + + +c + +

Brook stickleback + + + + + + + + + + + +

Slimy sculpin + + + + +

a Reported by Shell Canada Ltd. (1975) but location not given.

b Ripe specimens trapped near mouth of Hartley Creek in May 1973 (Shell Canada Ltd. 1975).

c Reported by Dr. R. Hartland-Rowe (University of Calgary, verbal communication with W. A. Bond, May 1976).

\on -.......J

Page 171: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

158

suitable spawning areas further upstream. Shell also reported

ripe northern pike from the mouth of Hartley Creek. Some pike

spawning may occur near the mouth of the tributary but beaver

dams probably 1 imit the upstream movement of this species.

Reach lH has good spawning potential for brook stickleback and

lake chub. The beaver ponds and placid water conditions of Reach

lH provide favourable rearing conditions for young fish but the

fry of only four species were captured in this region (white and

longnose suckers, lake chub, and brook stickleback). Winter

measurements, taken in Hartley Creek just upstream of its con­

fluence with the Muskeg River in February 1975, showed a water

depth of 0.5 m (NHCL 1975). This would suggest some overwintering

potential in this area, depending on oxygen levels.

5.5.2.2 Reaches 2H, 3H and 4H. Upstream of Reach lH the

gradient of Hartley Creek increases for approximately the next

12 km. This region has been divided into three reaches because

of the extremely steep nature of the stretch between km 6.7 and

km 8.2 (Table 43). The stream gradient within Reach 3H is 5.1 mlkm

and the water velocity is more than 1 m/s. The substrate consists

mainly of larges with smaller areas of gravel. Because of the very

rapid current and large substrate size the spawning potential of

much of Reach 3H may be limited, although some Arctic grayl ing may

spawn there. No fish were collected from most of the reach because

the nature of the substrate and the water velocity made seining

very difficult. The larger boulders in this reach, however, do

provide holding places for Arctic grayl ing which can be captured

from this area throughout the summer by angling (Mr. R. Crowther,

International Environmental Consultants, Calgary, Alberta, telephone

communication with W. A. Bond, January 1979). Upstream and down­

stream of Reach 3M, the stream gradient is 2.3 to 2.9 m/km and the

velocity is somewhat less than 1 m/s. Conditions in Reaches 2H

and 4H are very similar. The substrate is largely sand (60 to 70%)

with gravel riffles accounting for about 30%. The gravel in

Reaches 2H and 4H provide excellent spawning potential for Arctic

grayl ing, suckers, sl imy sculpins, and longnose dace. Although no

Page 172: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

159

fish sampling was conducted in Reach 4H, fry of seven species were

taken in Reaches 2H and 3H (Table 44). Sucker, lake chub~ and brook

stickleback fry were captured in quiet back eddies and in beaver

ponds, while young longnose dace, slimy sculpin, and Arctic grayling

were taken in gravel riffles. Overwintering potential apparently

occurs within Reaches 2H, 3H, and 4H, Not only have yearling and

two year old white and longnose suckers been captured in this area,

but young-of-the-year grayl ing were observed through the ice at

point H2 on 31 October 1976 (Dr. D. Barton, University of Waterloo,

verbal communication with W. A. Bond, December, 1976).

5.5.2.3 Reach 5H. Upstream of Reach 4H, Hartley Creek flows

through flat, poorly drained terrain in which there is little

gradient and pool conditions prevail. Beaver activity is

extensive through this reach. Reach 5H was sampled only at its

extreme downstream end (Figure 31) and the fish fauna at this

point (Table 44) is probably more similar to that in Reach 4H

than to that in most of Reach 5H.

5.5.2.4 Kearl Creek. Point samples were taken at two locations

on this tributary (Figure 31). Point Kl was situated near the

mouth of the stream, a short distance upstream of the confluence

of the tributary with the Muskeg River (Figure 4). This part of

Kearl Creek 1 ies within the flat, poorly drained area typical of

most of Reach 4M of the Muskeg River. There is little gradient

at this point. The stream is fairly deep (0.5 m), slow flowing

(0.3 m/s), and typical pool conditions prevail. The clay banks

are vegetated with willows and grasses and show some signs of

erosion. The substrate consists of clay and silts and is 1 ittered

with organic debris.

Only four species of fish were taken at point K1

(Table 44). The capture of yearl ing white and longnose suckers

in June suggests that such fish can and do overwinter in this

region. However, the area appears to have little potential

for sucker spawning. Fish movement into the area from downstream

is probably restricted by the increased incidence of beaver dams

Page 173: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

160

upstream of Hartley Creek (Figure 31). Brook stickleback and lake

chub, the only resident fish in the upper t1uskeg River watershed,

were also captured at point Kl.

Kearl Creek was also sampled at its upstream end where

it exits from Kearl Lake (Figure 31). Marsh-l ike conditions

occurred at this site as the stream passed through an area of

reeds and sedges. There was no perceptible current. and the

substrate consisted of silts covered with organic debris. The

benthos collected was largely Chironomidae and 01 igochaeta

(Table 41). Batton and Wallace (in prep.) identified 87 inverte­

brate taxa from this location with 01 igochaeta accounting for 48%

of their sample. The fish fauna at this site consists almost

exclusively of brook stickleback which inhabit Kearl Lake in

large numbers. The reedy area of point K2 is bel ieved to function

as a spawning and nursery area for this species as large numbers

of newly-hatched fry were observed here on 23 June 1978. The only

other fish captured at this location was a 103 mm, four year old

pearl dace taken in 1977 (Tab le 35).

Page 174: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

161

6. CONCLUSION

The Muskeg River provides spawning habitat for white

suckers, 10ngnose suckers, and Arctic grayling that migrate into

the tributary from the Athabasca River in late April and early

May. White suckers were observed spawning over gravel riffles in

the lower 1 km of the Muskeg River. No other precise spawning

areas were located although potential spawning sites for these

species occur and young-of-the-year of these species were

captured throughout the lower 35 km of the Muskeg River and in

the lower 15 km of Hartley Creek. Northern pike and trout-perch

from the Athabasca River also appear to spawn within the Muskeg

River watershed to a limited extent.

White and longnose suckers began to leave the Muskeg

River by mid-May, approximately two to three weeks after the

commencement of the upstream runs. This exodus continues at least

through July and probably throughout the summer. Sucker fry

began to emerge by the end of May and drifted out of the watershed

during the summer. Small numbers of young-of-the-year suckers

apparently overwintered within the Muskeg River watershed.

However, most fry, as well as the adults, probably overwinter in

Lake Athabasca.

Suckers are seldom highly ranked when considered in

terms of their direct importance to man. However, they occur in

large numbers in the lower Athabasca drainage and are known to

spawn in several other tributaries in addition to the Muskeg River.

Because of their high fecundity, an enormous amount of sucker

biomass is contributed annually to the system. Although the

significance of this contribution has not been quantified, it is i

likely that such piscivorous fishes as pike, walleye, burbot,

and goldeye depend on young suckers for a large part of their

annual food intake.

Arctic grayling, unl ike suckers, did not leave the

Muskeg River following the spawning period but remained in the

tributary throughout the summer to feed. Grayling were never

observed in the Muskeg River upstream of the confluence of

Hartley Creek. However, they are known to occur as far upstream

Page 175: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

162

as Slte 8 in Hartley Creek. Between Sites 3 and 4 of the Muskeg

River, grayling occurred in areas where water up to 1 m deep

flowed with a moderate current over beds of macrophytes and sand.

Within the canyon, most grayl ing occupied the upstream end of the

pools. Although it was not possible to monitor the fall down­

stream migration this event probably occurs just prior to freeze­

up as was reported in the Steepbank River (Machniak and Bond in

prep.). Large grayl ing still occurred in the Muskeg River on

13 October 1978. Young-of-the-year grayl ing are bel ieved to over­

winter within the Muskeg River watershed and join the migrant

population at the end of their second summer. Thus, the Muskeg

River provides not only spawning habitat for Arctic grayl ing, but

also summer feeding areas for adults and juveniles, rearing and

overwintering sites for young-of-the-year. It is also possible

that, in the tributary, grayl ing (especially young-of-the-year)

are less susceptible to predation and severe environmental

fluctuations than would be the case in the Athabasca River,

thereby increasing their sU,rvival rate.

The grayl Ing population in the Muskeg River does not

appear to be as large as that in the Steepbank River. Its

proximity to the proposed Alsands project places this population

in considerable jeopardy, This species is highly susceptible to

habitat disturbances and is easily over-exploited by angl ing.

Without adequate protection of its habitat and appl ication of a

sound fisheries management program, this population will be

quickly lost.

The Muskeg River provides some summer feeding for

northern pike and small numbers of mountain whitefish, walleye,

and lake whitefish. Pike have been observed as far upstream as

Hartley Creek, but most are bel ieved to remain in the lower

reaches of the tributary throughout the summer. We found no

evidence to suggest that mountain whitefish, lake whitefish, or

walleye uti 1 ize the Muskeg River for spawning purposes and most of

these fish are thought to leave the Muskeg River before freeze-upo

The mouth region of the Muskeg River may be important as a resting

area for walleye and lake whitefish during spawning migrations

Page 176: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

163

in the Athabasca River, and may provide nursery areas for young­

of-the-year fish of several species.

The resident fish fauna of the Muskeg River watershed

consists largely of four species of forage fish. The fauna of the

upper watershed is dominated by brook stickleback, a large

population of which occupies Kear1 Lake Lake chub are most

abundant in the mid-reaches of the watershed (Sites 3 and 7) and

were found in association with brook stickleback at Site 6. 51 imy sculpin and longnose dace were most common in gravelly

areas of the lower Muskeg River and Hartley Creek (Sites 1, 2, 3,

and 7). Pearl dace, which are abundant in the adjacent Steepbank

River, apparently occur only in small numbers in the Muskeg River

watershed.

Several species of fish considered to be more typical

of the Athabasca River than of the Muskeg are sometimes taken in

the extreme lower reaches of the tributary. Their presence in

the Muskeg River is probably incidental and it is felt that they

seldom proceed more than 1 km upstream in the tributary.

Page 177: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

164

7. REFERENCES CITED

Bailey, M.M. 1969. Age, growth, and maturity of the 10ngnose sucker Catostomus catostomus, of Western Lake Superior. J. Fish. Res. Board Can. 26:1289-1300.

Bartnik, V.G. 1970. Reproductive isolation between two sympatric dace, Rhinichthys atratuZus and R. cataractae, in Manitoba. J. Fish. Res. Board Cane 27:2125-2141.

Barton, ~.R., and R.R. Wallace. in prep. Ecological studies of the aquatic invertebrates of the AOSERP study area of northeast Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service. AOSERP Project AF 2.0.1.

Beamish, R.J. 1970. Factors affecting the ag~ and size of the white sucker, Catostomus commersoni, at maturity. Ph.D. Thesis. Univ. Toronto. 170 pp.

Beamish, R.J. 1973. Determination of age and growth of populations of the white sucker (Catostomus commersoni) exhibiting a wide range in size at maturity. J. Fish. Res. Board Can. 30:607-616.

Beamish, R.J., and H.H. Harvey. 1969. Age determination in the white sucker. J. -Fish. Res. Board Can. :644-638.

Bishop, F.G. 1967. The biology of the Arctic grayling ThymaZZus arcticus (Pallas) in Great Slave Lake, M.Sc. Thesis. Univ. Alberta. 162 pp.

Bishop, F.G. 1971. Observations on spawning habits and fecundity of Arctic grayling. Progr. Fish-Cult. 33:12-19.

Bond, W.A. 1972. Spawning migration, age, growth, and food habits of the white sucker, Catostomus commersoni (Lacepede), in the Bigoray River, Alberta. M.Sc. Thesis. Univ. Alberta. 125 pp.

Bond, W.A., and O.K.Berry. in prep.a. First interim report on an investigation of the fishery resources of the Athabasca River downstream of Fort McMurray, Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service, AOSERP Project AF 4.3.2. 218 pp.

Bond, W.A., and O.K. Berry. in prep.b. Second interim report on an investigation of the fishery resources of the Athabasca River downstream of Fort McMurray, Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service. AOSERP Project AF 4.3.2. 280 pp.

Page 178: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

165

Bond, W.A., and K. Machniak. 1977. Interim report on an intensive study of the fish fauna of the Muskeg River watershed of northeastern Alberta. Prep. for Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service. AOSE RP Repo rt 26. 137 pp.

Brown, A., M.J. Kent, J.O. Park, and R.D. Roberts. 1978. Preliminary recommendations for mapping of aquatic habitat parameters for the AOSERP study area. Prep. for the Alberta Oil Sands Research Program by Schultz International Ltd., Edmonton, Canada. AOSERP Project AF 4. 4. 1. 11 3 pp.

Brown, C.J.O. 1938. Observations on the life history and breeding habits of the Montana gray1 ing. Copeia 1938: 132-136.

Brown, C.J.D. 1971. Fishes of Montana. Montana State Univ. Press, Bozeman, Montana. 207 pp.

Brown, C.J.D., and R.J. Graham. 1954. Observations on the longnose sucker in Yellowstone Lake. Trans. Amer. Fish Soc. 83:38-46.

Brown, J.H. 1969. Breeding biology of the lake chub, Couesius plumbeus, at Lac la Ronge, Saskatchewan. M~Sc. Thesis. Univ. Saskatchewan.

Bruce, W.J., and R.F. Parsons. 1976. Age, growth and maturity of lake chub (Couesius plumbeus) in Mi le 66 Brook, Ten Mile Lake, western Labrador. Fish. Mar. Servo Res. Dev. Tech. Rep. 683. 13 pp.

Burton, W., and J.F. Flannagan. 1976. An improved river drift sampler. Fish. Mar. Servo Res. Dev. Tech. Rep. No. 641. 8 pp.

Craig, P.C., and V.A. Poulin. 1975. Movements and growth of Arctic grayling (Thymallus arcticus) and juvenile Arctic char (Salvelinus alpinus) in a small Arctic stream, Alaska. J. Fish. Res. Board Can. 32:689-697.

Craig, P.C., and J. Wells. 1976. Life history notes for a popUlation of sl imy sculpin (Cottus cognatus) in an Alaskan Arctic stream. J. Fish. Res. Board Can. 33: 1639-1642.

Davies, R.W., and G.W. Thompson. 1976. Movements of mountain whitefish (Pposopium williamsoni) in the Sheep River watershed, Alberta. J. Fish. Res. Board Can. 33: 2395-2401.

Page 179: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

166

de Graaf, D., and K. Machniak. 1977. Fisheries investigations along the Cross Delta pipeline route in the Mackenzie Delta.· in p. McCart, ed. Studies to determine the impact o~gas pipeline development on aquatic ecosys­tems. Canadian Arctic Gas Study Limited, Calgary, Alberta. Biological Report Series. Volo 39(4). 169 pp.

Fabricius, E., and H.J. Gustafson. 1955. Observations on the spawning behaviour of the grayling Thymallus thymallus. Rep. Inst. Freshw. Res, Drottning. 36:75-103.

Falk, M.R., and L.W. Dahlke. 1974. Data on the lake and round whitefish, 1ake cisco, northern pike, and Arctic grayling from Great Bear Lake, N.W.T~? Data Rept. Sere No. CEN/D-74-1. 52 pp.

Falk, M.R., and L.W. Dahlke. 1975. Cree and biological data from streams along the south shore of Great Slave Lake, 1971-74, Canada Dept. Environ., Fish. Mar Servo, Opere Dir. Data Rep. No. CEN/D-75-8. 87 pp.

Frankl in, D.R., and L.L. Smith. 1963. Early 1 ife history of the northern pike, Esox lucius L., with special reference to the factors influencing the numerical strength of year classes. Trans. Amer. Fish. Soc 92:91 110.

Geen, G.H. 1955. Some features of the 1 ife his of the lake chub (Couesius plwnbeus Jordan) i 8 itish Columbia. B A. Thesis. Univ. Brit sh Columbia. 33 pp.

Geen, G.H. 1958 Reproduction of three spec es of suckers (Catostomidae British Columbia. M.A. Thesis. Univ. British Columbi. 117 pp.

Geen. G.H., T.G. Northcote, G.F. Hartman, and C.C. Lindsey. 1966. Life histories of two species of Catostomid fishes in Sixteen Mile Lake, British Columbia, with particular reference to inlet stream spawning. J. Fish. Res. Board Can. 23:1761-1788.

Griffiths, W.E. 1973. Prel iminary fisheries survey of the Fort McMurray tar sands area, Alberta Dept of Lands and Forests, Fish and Wildl. Div., Edmonton, Alberta. 618 pp.

Harris, R.H.D. 1962. Growth and reproduction of the longnose sucker, Catostomus catostomus (Forster) in Great Slave Lake. J. Fish. Res. Board Can. 19:113-126.

Hatfield, C.T., J.N. Stein, M.R. Falk, and C.S. Jessop. 1972. Fish resources of the Mackenzie River Val lay, Interim Report 1, Vol. 1~ Dept. of the Environment~ Fisheries Service, Winnipeg, Manitoba. 247 pp.

Page 180: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

167

Hayes, M.L. 1956. Life history studies of two species of suckers in Shadow Mountain Reservoir, Grand County, Colorado. M.S. Thesis. Colo. A. M. Co11. 126 pp.

Healey, M.C., and C.W. Nicol. 1975, Fecundity comparisons of lake whitefish, Coregonus clupeaformis. J. Fish. Res. Board Can. 32:404-407.

Intercontinental Engineering of Alberta Ltd. 1973. mental study of the Athabasca Tar Sands. Alberta Environment. 112 pp.

An environ­Prep. for

Johnson, R.P. 1971. Limnology and fishery biology of Black Lake, northern Saskatchewan. Fish. Report No.9, Sask. Dept. Nat. Res. 47 pp.

Jones, M.L., G.J. Mann, and P.J. McCart. 1978. Fall fisheries investigations in the Athabasca and Clearwater rivers upstream of Fort McMurray: volume 1. Prep. for Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Report 36. 71 pp.

Kendel, R.E. 1975. Fisheries resource inventory of Giltana Creek, Yukon Territory, with particular reference to spawning popUlations of the 10ngnose sucker (Catostomus catostomus). Chapter IV A. Gibson, ed. Additional aquatic resource studies in the Aishihik system relative to hydroelectric development. Environment Canada. Fish. Mar. Sere PAC/T-75-4. 24 pp.

Kratt, L.F., and R.J.F. Smith. 1977. A post-hatching sub-gravel stage in the life history of the Arctic grayl ing, Thymallus arcticus. Trans. Amer. Fish. Soc. 106:241-243.

Kristensen, J., and S.A. Pidge. 1977. Fish populations in the Peace-Athabasca Delta and the effects of water control structures on fish movements. Prep. for Dept. of Supply and Services, Govt. of Canada by LGL Ltd. 128 pp.

Kruse, T.E. 1959. Grayl ing of Grebe Lake, Yellowstone National Park, Wyoming. Fish. Bull. 149, U.S. Fish. Wildl. Servo 59:307-351.

Lalancette, L.M. 1973. Studies on the growth, reproduction, and diet of the white sucker, Catostomus commersoni commersoni (Lacepede), of Gamelin Lake, Chicoutimi, Quebec. Ph.D. Thesis. Univ. Waterloo. 262 pp.

Lalancette, L.M., and E. Magnin. 1970. Croissance en longueur du meunier de 1 lest, Catostomus catostomus (Forster) du Saguenay. Natural iste Can. 97:667-677.

Lane, C.B. 1969. The 1 imnology and fishery management of Rock Lake, Alberta. Alberta Fish. Wildl. Div. Sur. Report No.8. 62 pp.

Page 181: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

168

Lombard-North Group Ltd. 973 Supplementary ecological basel ine measurements of tar sands lease C-13. Prep. for Shell Canada Ltd.

McCart, P.J., P.T.P Tsui, R. Green, and W. Grant. 1977. Base­line studies of aquatic environments in the Athabasca River near Lease 17. Volume le P • for ude Canada Ltd e by Aquatic Environments td~ pps

McCart, P.J., D. Tripp, P.T.P. Tsui, W. rant and R. Green, in prep. Basel ine study of the water qual ity and aquatic resources of the MacKay River Albe tao Prep. for Syncrude Canada Ltd. by Aquat c Environments Ltd. 200 pp.

McHugh, J.L. 1942. Growth of Rocky Mountain whitefish. J. Fish. Res. Board Can. 5: 7-343.

McPhail, J.D., and C C Lindsey. 970. northwestern Canada and Alaska. Board Can. No, 173. 381 pp.

reshwater fi hes of Bull. ish Res.

Machniak, K. The effects of hydroe ectric deve opment on the bio ogy of northern fishes (reproduction and population dynamics). I. Northe pike Esox (Linnaeus). A 1 terature rev ew and bibl iography. Fish. Mar Servo Res. Dev. Tech, rt. 528. 82 pp.

Machniak, K., and W.A. Bond. in prep. An nten ive tudy of the fish fauna of the Stee k River wa shed of no th-eastern Alberta. rep. fo the Albe Oil Sands Environmental rch Program by Isner sand Environment F sheries and rine Service, AOSERP P 5.2. 191 pp.

Machniak, K., W~ M R Or D. , D. M prep. Fisher es and aquatic habitat

Research

in in

the MacKay Rive watershed of northweste Prep. for Alberta Oil Sands Environmenta Program by Fisheries and Environment Ca and Marin~ Service AOSERP Project WS

da Fisheries .3. 1

Miller, R.B. 1946. Notes on the Arctic grayl ing~ signifer Richardson, from Great Bear Lake. Copeia 1946(4) :22 6.

Miller, R.B., and W.A. 1948 four no thern Canadian lakes. Can. 7:190-1

Pike ) from J. Fish. Res. Board

Northwest Hydraul ic Consu tants Ltd. 1974. Northeast Alberta regional plan, water resources study, sector 1. Prep. for Ekistic Des Consultants Ltd. 28 pp. and appendices.

Page 182: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

169

Northwest Hydraulic Consultants Ltd. 1975. A pre1 iminary inves­tigation of minimum low flows of selected rivers in the northeast Aloerta region. Prep. for Ekistic Design Consultants Ltd. 10 pp. and appendices.

Olsen, D.E., and W.J. Scidmore. 1963. Homing tendency of spawning white suckers in Many Point Lake, Minnesota. Trans. Amer. Fish. Soc. 92:13-16.

Paetz, M.J., and J.S. Nelson. 1970. Queen1s Printer, Edmonton.

The fishes of Alberta. 282 pp.

Pennak, R.W. 1953, Freshwater invertebrates of the United States. The Ronald Press Co., New York. 769 pp.

Petrosky, C.E., and T.F. Waters. 1975. Annual production by the slimy sculpin in a small Minnesota trout stream. Trans. Amer. Fish. Soc. 104:237-244.

Pettit, S.W., and R.L. Wallace. 1975. Age, growth, and movement of mountain whitefish (Prosopium ~iZZiamsoni Girard) in the North Fork Clearwater River, Idaho. Trans. Amer. Fish. Soc. 104:68-76.

Pinsent, M.E. 1967. A comparative limnological study of Lac la Biche and Beaver Lake, Alberta. M.Sc. Thesis. Univ. Alberta. 147 pp.

Raney, E.C., and D.A. Webster. 1942. The spring migration of the common white sucker, Catostomus c. commersoni (Lacepede), in Skaneateles Lake inlet, New York. Copeia 1942:139-148.

Rawson, D.S. 1950. The grayl ing (ThymaZZus signifer) in northern Saskatchewan. Can Fish-Cult. No. 6:3-10.

Rawson, D.S., and C.A. Elsey. 1950. Reduction in the longnose sucker population of Pyramid Lake, Alberta, in an attempt to improve ang1 ing. Trans. Amer. Fish. Soc. 78:13-31.

Reed, R.J. 1964. Life history and migration patterns of the Arc tic g ray 1 i n g Thyma Z (p all as) i n the Tanana River drainage of Alaska, Alaska Dept. Fish. Game Res. Report No.2. 30 pp.

Renewable Resources Consulting Services. 1974. Fisheries investigation of the Muskeg River and Hartley Creek. Prep. for Shell Oil Ltd. and Home Oil Ltd. 127 pp.

Renewable Resources Consulting Services. 1975. Northwest Alberta regional plan project. Fish. Res. Volume I I. Technical Append ices: Append i x I I I (Grad i ents of streams in north­east Alberta). Prep. for Ekistic Design Consultants Ltd. 389 pp.

Page 183: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

170

Schallock, E.W. 1966. Grayling 1 ife history related to a hydroelectric development on the Chatanika River in interior Alaska. M.S. Thesis. Univ. Alaska. 113 pp.

Scott, WeB., and E.J. Crossman. 1973. Freshwater fishes of Can a d a . B u 1 1. F ish. Res. Bo a rd. Can. 1 84 q 966 p p •

S e i d n e r, R. i n pre pol n t e rim r e po r ton the reg ion a 1 wa t e r qual ity of the AOSERP study areae Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Environment, Pollution Control Division. AOSERP Project HY 2.8 0 1.

Shell Canada Ltd. 1975. Envi ronmental Impact Assessment Lease 13 mining project, Alberta Oil Sands. Prep. for Alberta Environment. 257 pp.

Smith, M.W. 1952. Limnology and trout angling in Charlotte County lakes, New Brunswick. J. Fish Res. Board Can. 9:383-452.

Spoor, W.A. 1938. Age and growth of the sucker Catostomus commersoni (Lacepede) in Muskellunge Lake, Vilas County, Wisconsin. Trans. Wis. Acad. Sci. Arts Lett. 11:457-505.

Tack, S.L. 1972. Distribution, abundance, and natural history of the Arctic grayling in the Tanana River drainage. Alaska Dept. of Fish and Game. Fed. Aid in Fish Restoration, Ann. Rep. of Prog., 1971-1972, Proj. F-9-4, Vol. 13: StudyR-l. 36pp.

Thompson, G.E., and R W. Davies. 1976. Observations on the age, growth, reproduc on, and feeding of mountain whitefish (Prosopiwn wil in the Sheep River, Alberta. Trans. Amer. Fish. Soc. 105:208-219.

Tremblay, L. 1962. Temperature de 1 'eau dlun lac et 1a migration de frai du catostome, Catostomus c. commersoni. Naturaliste Can. 89:119-128.

Tr i pp, D.B., and P.J. McCart. 1974. Life histories of grayling (Thymallus arcticus) and longnose sucke (Catostomus catostomus) in the Donnelly River system, Northwest Territories, P.J. McCart, edt Life histories of anadromous and freshwater fish in the western Arctic. Canadian Arctic Gas Study Limited, Calgary, Alberta. Biol. Rep. Servo Vol. 20(1). 50 pp.

Tripp, D.B., and P.J. McCart. in prep. Investigations of the spring spawning fish populations in the Athabasca and Clearwater rivers upstream from Fort McMurray, Volume 1. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Project WS 1" 6. 1 •

Page 184: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

171

Turner, W.R. 1968, A prel iminary biological survey of waters in Th e B i r c h Mo u n t a ins, Alb e r t a . F ish and W i 1 d 1. D i v. , Alberta Dept. Lands and Forests, Survey Rep. No.3, 138 pp.

Verdon, R. 1977. Croissance en longueur et en masse du meunier noi r Catostomus commepsoni de la region de LG-2, territoire de la Baie James. Programme S.E.B.J. No.3, Rapport interne No. 27. 40 pp.

Ward, J.C. 1951. The biology of the Arctic grayl ing southern Athabasca drainage. M.A. Thesis.

. Alberta. 71 pp.

in the Univ .

Water Survey of Canada. 1978. Surface water data, Alberta, 1977. Inland Waters Directorate, Ottawa, Canada.

Winn, H.E. 1960. Biology of the brook stickleback, Eucalia inconstans (Kirtland). Amer. Midl. Nat. 63:424-438.

Wojcik, F.J. 1955. Life history and management of the grayling in interior Alaska. M.S. Thesis. Univ. Alaska. 54 pp.

Page 185: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

172

8 APPENDICES

8.1 MAXIMUM AND MINIMUM DAILY WATER TEMPERATURES RECORDED

AT THE MUSKEG RIVER COUNTING FENCE, 1977.

Page 186: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

173

Table 45. Maximum and minimum daily water temperatures recorded at the t4uskeg River counting fence, 1977.

Daily Water Temperatures (OC) Date

Maximum Minimum Mean

Apri I 28 9.0 29 8.0 30 5.0 4.0 4.50

May 1 6.5 4.0 5.25 2 7.5 4.0 5.75 3 7.0 5.5 6.25 4 9.0 6.0 7.50 5 9.5 6.5 8.00 6 10.0 6.0 8.00 7 11.5 5.0 8.25 8 11.5 8.0 9.75 9 11.5 7.0 9.25

10 14.0 9.0 11.50 11 14.0 10.0 12.00 12 12.0 10.0 11.00 13 12.0 8.0 10.00 14 12.0 7.5 9.75 15 11.0 7.0 9.00 16 10.5 9.0 9.75 17 8.5 5.5 7.00 18 7.0 5.0 6.00 19 7.0 5.5 6.25 20 8.5 6.0 7.25 21 9.5 5.0 7.25 22 10.0 6.0 8.00 23 12.0 7.0 9.50 24 12.0 8.5 10.25 25 11.5 9.0 10.25 26 13.0 10.0 11.50 27 13.0 10.0 11.50 28 13.5 8.5 11.00 29 13.5 10.0 11.75 30 13.0 9.0 11.00 31 13.0 9.5 11.25

June 1 13.0 10.0 11.50 2 12.0 9.0 10.50 3 11.5 9.0 10.25 4 12.0 9.0 10.50 5 14.0 10.0 12.00 6 15.0 10.5 12.75 7 15.5 11.5 13.50 8 15.5 12.5 14.00 9 14.0 11.0 12·50

10 12.5 10.5 11.50 11 13.0 9.5 11.75 12 14.0 10.0 12.00 13 13.0 11.0 12.00 14 13.0 12.0 12.50 15 15.0 12.5 13.75

Page 187: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

174

8.2 DATES OF TAGGING AND RECAPTURE, LOCATION OF RECAPTURE,

DISTANCES TRAVELLED, AND ELAPSED TIME BETWEEN RELEASE

AND RECAPTURE FOR FISH TAGGED AT THE MUSKEG RIVER

COUNTING FENCE IN 1976 AND 1977, AND SUBSEQUENTLY

RECAPTURED OUTSIDE THE MUSKEG WATERSHED IN 1977 AND

1978. .

Page 188: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 46. Dates of tagging and recapture, location of recapture, distances travelled, and elapsed time between release and recapture for fish tagged at the Muskeg River counting fence in 1976 and 1977, and subsequently recaptured outside the Muskeg watershed in 1977 and 1978.

Date Location Date Distance a Elapsed Species Tagged Recaptured Recaptured Travelled T- (D ) (km) I me ays

White sucker 20 May!76 Muskeg River Upstream Trap 8 May!77 0 353 Second Recap. Athabasca De 1 ta 21 June!77 -224 399

19 May!76 Mouth MacKay River 24 Apri 1!77 -5 340 10 May!76 Mouth MacKay River 27 April!77 -5 352 19 May!76 Mouth MacKay River 2 May!77 -5 348 24 May!76 Mou th MacKay Rive r 14 May!77 -1 355 20 May/76, MacKay River Upstream Trap 14 May!78 -13 724 16 July!76 Steepbank River Upstream Trap 4 May!77 +18 282 6 May!76 Muskeg River Downstream Trap 20 May!76 0 14

Second Recap. Muskeg River Upstream Trap 8 May!77 0 367 Third Recap_ Near GCOS Intake (Athabasca River) 28 June!77 +16 418

9 May!77 Mouth Muskeg River 19 June!77 -1 41 14 May!77 Mouth Athabasca Riverb 19 June!77 -250 36 18 May!77 Old Fort Bayb 19 June!77 -272 32 24 May!77 Mouth Fletcher Channe1 b 16 June!77 -250 23 11 May!77 Muskeg River Downstream Trap 27 May!77 0 16

Second Recap_ MacKay River Upstream Trap 15 May!78 -13 369 Third Recap_ Mouth Athabasca River b June!78 -250 385-415

25 May!77 MacKay River Upstream Trap 15 May!78 -13 355 4 May!77 MacKay River Upstream Trap 3 May!78 -13 364

17 May!77 Mouth Athabasca River b June!78 -250 380-410 6 May!77 Muskeg River Downstream Trap 26 May!77 0 20

Second Recap. Mouth Athabasca River b June!78 -250 369-399 continued ...

-.......J V1

Page 189: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 46. Cont i nued.

Date Location Date Distance Elapsed Species T~~~~,.I Recaotured Recaptured Trave 11 Ti me (Days ) (km)

White sucker 6 May/77 Mu River Downstream Trap 22 May/77 0 16 Second Recap. Mouth Athabasca River b June/78 -250 369-399

10 May/77 Muskeg River Downstream Trap 25 May/77 0 15 Second Recap. Mouth Athabasca River b June/78 -250 386-416

13 May/77 Mouth Athabasca River b June/78 -250 389-419 13 May/77 Mouth A habasca River b June/78 -250 389-419 3 May/77 MacKay Rver Upstream Trap 30 Apr i 1/78 -13 362

11 May/77 Muskeg River Downstream Trap May/77 0 14 Second Recap. MacKay River Upstream Trap 15 May/78 -13 369

""'-J

May/76 0'

Longnose sucke rs Mouth Ri ver 23 Apri 1/77 -1 331 4 May/76 Steepbank River Upstream Trap 4 May/77 +18 365

22 May/76 Steepbank River Downstream Trap 14 May/77 +18 357 22 May/76 Steepbank River Upstream Trap 1 May /77 +18 344 29 May/76 Steepbank Rver Upstream Trap 8 May/77 +18 344

Second Steepbank Rver Downstream Trap 24 May/77 +18 360 29 May/ Steepbank River ream Trap 2 May/77 +18 338

5 June/ Steepbank Rive Upstream Trap 2 May/77 +18 331 Second Reca p. Steepbank River Downstream Trap 24 May/77 +18 341

10 June/76 Steepbank River Downstream Trap 15 +18 339 28 June/76 Steepbank River Upstream Trap 7 +18 313 16 July/76 Steepbank River Upstream Trap 4 +18 292 13 July/76 Muskeg River Upstream Trap 6 May.77 0 358

Second Muskeg River Downstream Trap 9 June/77 0 361 Third Mouth Clark Creek 23 June/77 +46 375

continued

Page 190: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Table 46. Concluded.

Date Locat ion Date Distance a Elapsed Species Tagged Recaptured Recaptured Travelled T' (D ) (km) I me ays

Longnose sucker 29 May/76 Lower Beaver River 14 May/77 +2 350 15 May/77 Goose Island b 22 June/77 -264 38 28 May/77 Old Fort Bayb 19 June/77 -280 22 25 May/77 Old Fort Bayb 31 May/77 -296 6 18 May/77 MacKay River Upstream Trap 1 May/78 -13 348

Northern pike 21 July/76 Mouth Muskeg River 15 Sept/76 -1 56 Second Recap. Mouth Muskeg River 24 Ju.y/77 -1 369

24 JLlly/76 Mouth Muskeg River 27 Sept/77 -1 430 14 May/76 Mouth Poplar River 8 May/77 +29 360 2 May/77 Mouth Muskeg River 24 JUly/77 -1 83 2 May/77 Mile 27 (km 43) Athabasca River 28 Sept/77 +13 149 3 May/77 Mile 60 (km 96) Athabasca River 5 Oct/77 -41 155 3 May/77 Muskeg River Downstream Trap 13 June/77 0 41

Second Recap, Mouth MacKay River 21 Aug/77 -5 110 3 May/77 Mouth MacKay River 22 Sept/77 -5 142 4 May/77 Mouth MacKay River 16 June/77 -5 43

Arct i c grayl i ng 30 Apri 1/76 Steepbank River 10 Oct/77 +18 528

a Distance shown is approximate distance from counting fence to recapture point and + or - designates upstream or downstream from Muskeg River in the Athabasca River. On occasion movement was upstream or downstream in the Athabasca and then upstream in a tributary.

bLake Athabasca.

.........

.........

Page 191: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

178

9. AOSERP RESEARCH REPORTS

1-2. AF 4. 1 . 1

3. HE 1. 1 • 1 4. VE 2.2

5. HY 3.1

6. 7. AF 3.1.1

8. AF 1 .2. 1

9. ME 3.3

10. HE 2.1

11- AF 2.2.1

12. ME 1.7

13. ME 2.3.1

14. 15. ME 3.4

16. ME 1 .6

17. AF 2. 1 . 1

18. HY 1.1

19. ME 4.1

20. HY 3. 1 . 1

21. 22. HE 2.3

23. AF 1. 1 .2

24. ME 4.2. 1

25. ME 3.5. 1

AOSERP First Annual Report, 1975 Walleye and Goldeye Fisheries Investigations in the Peace-Athabasca Delta--l Structure of a Traditional Baseline Data System A Preliminary Vegetation of the Alberta Oil Sands Environmental Research Program Study Area The Evaluation of Wastewaters from an Oil Sand Extraction Plant Housing for the North--The Stackwal1 System A Synopsis of the Physical and Biological Limnology and Fisheries Programs whithin the Alberta Oil Sands Area The Impact of Saline Waters upon Freshwa er Biota (A Literature Review and Bibliography) Prel iminary Investigations into the Magnitude of Fog Occurrence and Associated Problems in he Oil Sands Area Development of a Research Design Related to Archaeological Studies in the Athabasca Oil Sands Area Life eyc 1es of Some Common Aquat i c I nsects of the Athabasca River, Alberta Very High Resolution Meteoro ogical Satell ite Study of 0 i 1 Sands \>Jeathe r: IIA Feas i b 1 ty t udy" Plume Dispersion Measurements f an Oil Sands Extraction Plant, March 1976

A C1 ima of Low Level Air T ector es in the Alberta Oi Sands Area The Feasi i ity of a Weather Radar near Fort McMurray, Alberta A Survey of Baseline Levels of Contaminants in Aquatic Biota of the AOSERP Study Area Interim i1ation of Stream Gauging Data to December 1976 for the Alberta Oil Sands Environmental Research Program Calculations of Annual Averaged 5 lphur Dioxide Concentrations at Ground Level in the AOSERP Study Area Characterization of Organic Constituents in Waters and Wastewaters of the Athabasca Oil Sands Mining Area AOSERP Second Annual Report, 1976-Maximization of Technical Training and Involvement of Area Manpower Acute Lethality of Mine Depressurization Water on Trout Pe and Rainbow Trout Air System Winter Field Study in the AOSERP Study Area, February 1977. Review of Pollutant Transformation Processes Relevant to the Alberta Oil Sands Area

Page 192: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

26. AF 4.5.1

27. ME 1. 5. 1

28. VE 2. 1

29. ME 2.2

30. ME 2.1 31. VE 2.3

32. 33. TF 1.2

34. HY 2.4

35. AF 4.9.1 36. AF 4.8.1

37. HE 2.2.2 38. VE 7.1.1 39. ME 1.0

40. WS 3.3

41. AF 3.5. 1 42. TF 1 .1.4

43. TF 6.1

44. VE 3. 1

45. VE 3.3

46. VE 3.4

47. TF 1. 1. 1

48. HG 1.1

49. WS 1 .3.3

50. ME 3.6 51. HY 1.3

52. ME 2.3.2

179

Interim Report on an Intensive Study of the Fish Fauna of the Muskeg River Watershed of Northeastern Alberta Meteorology and Air Quality Winter Field Study in the AOSERP Study Area, March 1976 Interim Report on a Soils Inventory in the Athabasca Oil Sands Area An Inventory System for Atmospheric Emissions in the AOSERP Study Area Ambient Air Quality in the AOSERP Study Area, 1977 Ecological Habitat Mapping of the AOSERP Study Area: Phase I AOSERP Third Annual Report, 1977-78 Relationships Between Habitats, Forages, and Carrying Capacity of Moose Range in northern Alberta. Part I: Moose Preferences for Habitat Strata and Forages. Heavy Metals in Bottom Sediments of the Mainstem Athabasca River System in the AOSERP Study Area The Effects of Sedimentation on the Aquatic Biota Fall Fisheries Investigations in the Athabasca and Clearwater Rivers Upstream of Fort McMurray: Volume Community Studies: Fort McMurray, Anzac, Fort MacKay Techniques for the Control of Small Mammals: A Review The Climatology of the Alberta Oil Sands Environmental Research Program Study Area Mixing Characteristics of the Athabasca River below Fort McMurray - Winter Conditions Acute and Chronic Toxicity of Vanadium to Fish Analysis of Fur Production Records for Registered Traplines in the AOSERP Study Area, 1970-75 A Socioeconomic Evaluation of the Recreational Fish and Wildlife Resources in Alberta, with Particular Reference to the AOSERP Study Area. Volume I: Summary and Conclusions Interim Report on Symptomo10gy and Threshold Levels of Air Pollutant Injury to Vegetation, 1975 to 1978 Interim Report on Physiology and Mechanisms of Air-Borne Pollutant Injury to Vegetation, 1975 to 1978 Interim Report on Ecological Benchmarking and Biomonitoring for Detection of Air-Borne Pollutant Effects on Vegetation and Soils, 1975 to 1978. A Visibil ity Bias Model for Aerial Surveys for Moose on the AOSERP Study Area Interim Report on a Hydrogeological Investigation of the Muskeg River Basin, Alberta The Ecology of Macrobenthic Invertebrate Communities in Hartley Creek, Northeastern Alberta Literature Review on Pollution Deposition Processes Interim Compilation of 1976 Suspended Sediment Date in the AOSERP Study Area Plume Dispersion Measurements from an Oil Sands Extraction Plan, June 1977

Page 193: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

53.

54.

55. 56.

57.

58.

59. 60. 61 .

62. 63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

HY 3. 1 .2

ws 2.3

HY 2.6 AF 3.2.1

LS2.3.1

AF 2.0.2

TF 3. 1 WS 1. 1 . 1 AF 4.5.2

TF 5.1

LS 21.6. 1

LS 21.6.2

AS 4.3.2

WS 1. 3.2

AS 1.5.3 AS 3.5.2 HS 40. 1

LS 28. 1 .2

HY 2.2

LS 7.1.2

LS 23.2

AS 4.5

Baseline States of Organic Constituents in the Athabasca River System Upstream of Fort McMurray A Preliminary Study of Chemical and Microbial Characteristics of the Athabasca River in the Athabasca Oil Sands Area of Northeastern Alberta Microbial Populations in the Athabasca River The Acute Toxicity of Saline Groundwater and of Vanadium to Fish and Aquatic Invertebrates Ecological Habitat Mapping of the AOSERP Study Area (Supplement): Phase I Interim Report on Ecological Studies on the Lower Trophic Levels of Muskeg Rivers Within the Alberta 0,. 1 Sands Envi ronmental Research Program Study Area S~mi-Aquatic Mammals: Annotated Bibliography Synthesis of Surface Water Hydrology An Intensive Study of the Fish Fauna of the Steepbank River Watershed of Northeastern Alberta Amphibians and Reptiles in the AOSERP Study Area An Overview Assessment of In Situ Development in the Athabasca Deposit ------A Review of the Baseline Data Relevant to the Impacts of Oil Sands Development on Large Mammals in the AOSERP Study Area A Review of the Baseline Data Relevant to the Impacts of Oil Sands Development on Black Bears in the AOSERP Study Area An Assessment of the Models LIRAQ and ADPIC for Application to the Athabasca Oil Sands Area Aquatic Biological Investigations of the Muskeg River Watershed Air System Summer Field Study in the AOSERP Study Area, June 1977 Native Employment Patterns in Alberta's Athabasca Oil Sands Reg ion An Interim Report on the Insectivorous Animals in the AOSERP Study Area Lake Acidification Potential in the Alberta Oil Sands Environmental Research Program Study Area The Ecology of Five Major Species of Small Mammals in the AOSERP Study Area: A Review Distribution, Abundance and Habitat Associations of Beavers, Muskrats, Mink and River Otters in the AOSERP Study Area, Northeastern Alberta Interim Report to 1978 Air Qual ity Modelling and User Needs

These reports are not available upon request. For further information about availabil ity and location of depositories, please contact:

Alberta Oil Sands Environmental Research Program 15th Floor, Oxbridge Place 9820 - 106 Street EDMONTON~ Alberta T5K 2J6

Page 194: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification: "The source of the materials is Alberta Environment and Sustainable Resource Development http://www.environment.gov.ab.ca/. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.

Page 195: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(Consolidated up to 127/2011)

ALBERTA REGULATION 139/2007

Climate Change and Emissions Management Act

SPECIFIED GAS EMITTERS REGULATION

Table of Contents

Part 1Interpretation and Application

1 Definitions 2 Application

Part 2Emissions Intensity Limits, True‑up,Emission Offsets, Fund Credits,Emission Performance Credits

3 2007 emissions intensity limits 4 Emissions intensity limits for 2008 and subsequent years 5 True‑up 6 Duty to comply 7 Emission offsets 8 Fund credits 9 Emission performance credits 10 Nature of emission offsets, fund credits and emission performance credits

Part 3Reporting, Records, Confidentialityand Third Party Auditors

11 Compliance report 12 Further information, verification, resubmission 13 Access to application for baseline or compliance report 14 Publishing application for baseline or compliance report 15 Retention of records 16 Request for confidentiality 17 Annual report to Information and Privacy Commissioner 18 Qualifications of third party auditors 19 Prescribing forms

Part 4Emissions Intensity Baselines

20 Application for establishment of baseline emissions intensity

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

1 of 17 9/26/12 10:42 PM

Page 196: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

21 Determination of baseline emissions intensity 22 Establishment of baseline emissions intensity 23 Establishment of new baseline emissions intensity

Part 5Exemptions

24 Application for exemption

Part 6Enforcement

25 Inspections, investigations, audits 26 Order where net emissions intensity limit exceeded 27 Offences 28 Penalties 29 Due diligence

Part 7Expiry

30 Expiry

Schedule

Part 1Interpretation and Application

Definitions1(1) In this Regulation,

(a) “Act” means the Climate Change and Emissions Management Act;

(b) “actual emissions intensity” means total direct emissions, not including industrial processemissions, per unit of production from a facility;

(c) “baseline emissions intensity” means the baseline emissions intensity for a facility established inaccordance with Part 4;

(d) “CO2e” means the 100 year time horizon global warming potential of a specified gas expressedin terms of equivalency to CO2 set out in column 3 of the Schedule;

(e) “direct emissions” means the release of specified gases from sources actually located at afacility, expressed in tonnes on a CO2e basis;

(f) “emission offset” means

(i) a reduction in the release of specified gases, expressed in tonnes on a CO2e basis, thatmeets the requirements of section 7(1), but does not include an emission performance credit,

(ii) a geological sequestration of specified gases, expressed in tonnes on a CO2e basis, thatmeets the requirements of section 7(1.1), and

(iii) a capture of specified gases that are geologically sequestered that meets the requirementsof section 7(1.2);

(g) “emission performance credit” means a reduction in the release of specified gases, expressed in

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

2 of 17 9/26/12 10:42 PM

Page 197: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

tonnes on a CO2e basis, that meets the requirements of section 9(1);

(h) “emissions intensity” means the quantity of specified gases released by a facility per unit ofproduction from that facility;

(i) “established facility” means, subject to subsection (2), a facility that

(i) completed its first year of commercial operation before January 1, 2000, or

(ii) has completed 8 years of commercial operation;

(j) “facility” means

(i) a plant, structure or thing where an activity listed in section 2 of the Schedule of Activitiesto the Environmental Protection and Enhancement Act occurs, and

(ii) a site or 2 or more contiguous or adjacent sites that are operated and function in anintegrated fashion where an activity listed in any of sections 3 to 11 of the Schedule ofActivities to the Environmental Protection and Enhancement Act occurs,

including all the buildings, equipment, structures, machinery and vehicles that are an integralpart of the activity;

(k) “Fund” means the Climate Change and Emissions Management Fund established by the Act;

(l) “fund credit” means a fund credit described in section 8;

(m) “industrial process emissions” means direct emissions from an industrial process involvingchemical or physical reactions other than combustion, and where the primary purpose of theindustrial process is not energy production;

(n) “net emissions intensity” means the net emissions intensity for a facility determined inaccordance with section 3(4) or 4(3), as the case may be;

(o) “net emissions intensity limit” means the applicable maximum net emissions intensity permittedunder section 3 or 4;

(p) “new facility” means

(i) a facility that

(A) completed its first year of commercial operation on December 31 of 2000 or asubsequent year, and

(B) has completed less than 8 years of commercial operation, or

(ii) a facility designated as a new facility under subsection (2);

(q) “person responsible” means, where the release of the specified gas occurs

(i) at a facility that is the subject of an approval or registration under the EnvironmentalProtection and Enhancement Act, the holder of the approval or registration,

(ii) at a facility that is not the subject of an approval or registration referred to in subclause (i)but is the subject of an approval or other authorization issued by the Energy ResourcesConservation Board or the Alberta Utilities Commission, the holder of that approval orauthorization, or

(iii) at any other facility, the owner of the facility;

(r) “production” means the quantity, expressed in the applicable unit of production, of

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

3 of 17 9/26/12 10:42 PM

Page 198: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(i) end product produced by a facility, or

(ii) any input, output or other thing specified under subsection (4);

(s) “specified gas” means a gas listed in column 1 of the Schedule;

(t) “third party auditor” means a person who meets the requirements set out in section 18;

(u) “total annual emissions” means total direct emissions in a year, not including industrial processemissions;

(v) “total half year emissions” means total direct emissions in the period July 1, 2007 to December31, 2007, not including industrial process emissions;

(w) “unit of production” means the unit of measure of production of a facility, unique to the facility,as approved or determined by the director in establishing a baseline emissions intensity for thefacility under Part 4;

(x) “year” means a calendar year unless otherwise specified.

(2) The director may designate an established facility as a new facility if the director considers itappropriate to do so.

(3) In determining whether it is appropriate to make a designation under subsection (2), the director mayconsider

(a) the nature and extent of any expansion or significant change undergone by the facility and thetechnologies employed in the expansion or significant change that affect specified gas emissions,and

(b) any other matter that in the director’s opinion is relevant.

(4) If a facility does not produce an end product, the director may specify an input, output or other thing asthe standard of measurement of production of the facility for the purposes of this Regulation.

AR 139/2007 s1;254/2007;127/2011

Application2 Subject to section 3(1), this Regulation applies to a facility that has direct emissions totalling 100 000tonnes or more in 2003 or any subsequent year.

Part 2Emissions Intensity Limits, True-up, Emission Offsets, Fund

Credits,Emission Performance Credits

2007 emissions intensity limits3(1) This section applies to a facility that had direct emissions totalling 100 000 tonnes or more in a year ofcommercial operation in any of the years 2003, 2004, 2005 or 2006.

(2) The net emissions intensity for a facility that is an established facility on January 1, 2007 for the periodcommencing on July 1, 2007 and ending on December 31, 2007 shall not exceed 88% of the baselineemissions intensity for the facility.

(3) If the period commencing on July 1, 2007 and ending on December 31, 2007 is the last 6 months of

(a) the 4th year of commercial operation of a new facility, the net emissions intensity for the facilityfor that period shall not exceed 98% of the baseline emissions intensity for the facility,

(b) the 5th year of commercial operation of a new facility, the net emissions intensity for the facility

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

4 of 17 9/26/12 10:42 PM

Page 199: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

for that period shall not exceed 96% of the baseline emissions intensity for the facility,

(c) the 6th year of commercial operation of a new facility, the net emissions intensity for the facilityfor that period shall not exceed 94% of the baseline emissions intensity for the facility,

(d) the 7th year of commercial operation of a new facility, the net emissions intensity for the facilityfor that period shall not exceed 92% of the baseline emissions intensity for the facility, or

(e) the 8th year of commercial operation of a new facility, the net emissions intensity for the facilityfor that period shall not exceed 90% of the baseline emissions intensity for the facility.

(4) For the purposes of subsections (2) and (3), the net emissions intensity for a facility must be determinedby the following formula:

NEI = (THYE ‑ (EO+FC+EPC)) P

where

NEI is net emissions intensity for the facility;

THYE is total half year emissions from the facility;

EO is allowable emission offsets applied by the person responsible;

FC is allowable fund credits applied by the person responsible;

EPC is allowable emission performance credits applied by the person responsible;

P is production for the period July 1, 2007 to December 31, 2007.

Emissions intensity limits for 2008 and subsequent years4(1) Commencing with the year 2008, the net emissions intensity for a year

(a) for an established facility shall not exceed 88% of the baseline emissions intensity for thefacility, and

(b) for a new facility shall not exceed

(i) 98% of the baseline emissions intensity for the facility, in the case of the 4th year ofcommercial operation of the facility,

(ii) 96% of the baseline emissions intensity for the facility, in the case of the 5th year ofcommercial operation of the facility,

(iii) 94% of the baseline emissions intensity for the facility, in the case of the 6th year ofcommercial operation of the facility,

(iv) 92% of the baseline emissions intensity for the facility, in the case of the 7th year ofcommercial operation of the facility, and

(v) 90% of the baseline emissions intensity for the facility, in the case of the 8th year ofcommercial operation of the facility.

(2) The Minister may, by order, establish net emissions intensity limits in addition to or in substitution forthose set out in subsection (1).

(3) For the purposes of this section, the net emissions intensity for a facility must be determined by thefollowing formula:

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

5 of 17 9/26/12 10:42 PM

Page 200: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

NEI = (TAE ‑ (EO+FC+EPC)) P

where

NEI is net emissions intensity for the facility;

TAE is total annual emissions from the facility;

EO is allowable emission offsets applied by the person responsible;

FC is allowable fund credits applied by the person responsible;

EPC is allowable emission performance credits applied by the person responsible;

P is production for the year.

True-up5(1) The emission offsets, fund credits and emission performance credits that may be subtracted from totalhalf year emissions under section 3(4) or from total annual emissions under section 4(3) are those emissionoffsets, fund credits and emission performance credits that are described in sections 7, 8 and 9 respectivelyand that are available to the person responsible on the earlier of the date the compliance report required bysection 11 is submitted and the deadline for submitting the compliance report.

(2) The determination required by section 3(4) or 4(3) must be made on or before the deadline forsubmitting the compliance report required by section 11.

Duty to comply6(1) The person responsible shall comply with the net emissions intensity limits established by sections3(2) and (3) and 4(1) and, if applicable, under section 4(2).

(2) If there is more than one person responsible for a facility for the period referred to in section 3(2) or (3)or in the year 2008 or a subsequent year, subsection (1) applies only to the person who is the personresponsible on

(a) December 31, 2007, in the case of the period referred to in section 3(2) or (3), or

(b) December 31 of the relevant year, in any other case.

Emission offsets7(1) The following requirements must be met in order for a reduction in specified gas emissions toconstitute one or more emission offsets:

(a) the specified gas emissions reduction must occur in Alberta;

(b) the specified gas emissions reduction must be from an action taken that is not otherwise requiredby law at the time the action is initiated;

(c) the specified gas emissions reduction must

(i) result from actions taken on or after January 1, 2002, and

(ii) occur on or after January 1, 2002;

(d) the specified gas emissions reduction must be real and demonstrable;

(e) the specified gas emissions reduction must be quantifiable and measurable, directly or byaccurate estimation using replicable techniques.

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

6 of 17 9/26/12 10:42 PM

Page 201: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(1.1) The following requirements must be met in order for a geological sequestration of specified gas toconstitute one or more emission offsets:

(a) the specified gas that is geologically sequestered must be captured through a dedicated processfrom sources located at a facility in Alberta;

(b) the specified gas must be stored in a geological formation that is located wholly or partly inAlberta;

(c) the geological sequestration of the specified gas must not be required by law at the timegeological sequestration of specified gas is initiated;

(d) the construction of the infrastructure used to geologically sequester the specified gas must havebeen initiated on or after January 1, 2002;

(e) the geological sequestration of the specified gas must occur after January 1, 2002;

(f) the quantity of specified gas that is geologically sequestered must be quantifiable andmeasurable, directly or by accurate estimation using replicable techniques.

(1.2) The following requirements must be met in order for a capture of specified gas to constitute one ormore emission offsets:

(a) the specified gas must be captured through a dedicated process from sources located at a facilityupgrading or refining bitumen in Alberta;

(b) the capture of the specified gas must not be required by law at the time capture of specified gasis initiated;

(c) the construction of the infrastructure used to capture the specified gas must have been initiatedon or after January 1, 2012 and use of the infrastructure to capture specified gas must have beeninitiated before December 31, 2017;

(d) the specified gas must be

(i) captured by infrastructure capable of capturing, and

(ii) stored in geological formations capable of storing

1 000 000 tonnes of specified gas per year, expressed on a CO2e basis;

(e) at least 51% of the volume of specified gas captured through the dedicated process from sourceslocated at a facility upgrading or refining bitumen in Alberta in a year must be sequestered in ageological formation in respect of which a pore space tenure agreement has been entered into withthe Government of Alberta on or after January 1, 2011;

(f) the quantity of specified gas that is captured must be quantifiable and measurable, directly or byaccurate estimation using replicable techniques;

(g) the captured specified gas must be geologically sequestered in accordance with subsection (1.1);

(h) the amount established under section 8(2) must be $80 or less at the time the captured specifiedgas is geologically sequestered.

(1.3) The calculation of the amount of

(a) a reduction in specified gas emissions, or

(b) specified gas that is geologically sequestered

must accord with any Ministerial guidelines issued under section 62 of the Act.

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

7 of 17 9/26/12 10:42 PM

Page 202: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(1.4) A one tonne reduction in specified gas emissions, expressed on a CO2e basis, that meets therequirements of subsection (1) constitutes one emission offset.

(1.5) A geological sequestration of one tonne of specified gas, expressed on a CO2e basis, that meets therequirements of subsection (1.1) constitutes one emission offset.

(1.6) The quantity of emission offsets constituted by a capture of specified gas that meets the requirementsof subsection (1.2) is determined in accordance with the following:

(a) if the amount established under section 8(2) is equal to or less than $40 at the time that thecaptured specified gas is geologically sequestered, the quantity of emission offsets constituted iscalculated in accordance with the following formula:

A x 1

where

A equals the emission offsets constituted by the geological sequestration of the capturedspecified gas in accordance with subsection (1.1);

(b) if the amount established under section 8(2) is more than $40 but not more than $80 at the timethat the captured specified gas is geologically sequestered, the quantity of emission offsetsconstituted is calculated in accordance with the following formula:

A x (80-B)/40

where

A equals the emission offsets constituted by the geological sequestration of the capturedspecified gas in accordance with subsection (1.1);

B equals the amount established under section 8(2).

(2) An emission offset may be used in meeting net emissions intensity limits under section 3 or 4 subject tothe following rules:

(a) an emission offset must be held by the person responsible using it;

(b) an emission offset may only be used once;

(c) if an emission offset is jointly held, each holder may only use a portion of the offset on a pro ratabasis;

(d) the use of an emission offset must accord with any Ministerial guidelines issued under section62 of the Act.

AR 139/2007 s7;127/2011

Fund credits8(1) A person responsible may obtain fund credits by contributing money to the Fund.

(2) The Minister may, by order, establish the amount of money that a person responsible must contribute tothe Fund to obtain one fund credit equal to a one tonne reduction in emissions, expressed on a CO2e basis.

(3) A fund credit may be used in meeting net emissions intensity limits under sections 3 and 4 subject to thefollowing rules:

(a) a fund credit obtained on or before March 31, 2008 may only be used in meeting net emissionsintensity limits applicable to the period commencing on July 1, 2007 and iending on December 31,2007;

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

8 of 17 9/26/12 10:42 PM

Page 203: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(b) except as provided in clause (a), a fund credit obtained on or before March 31 in a year mayonly be used in meeting net annual emissions intensity limits for the previous year;

(c) a fund credit obtained after March 31 in a year may only be used in meeting net annualemissions intensity limits for that year;

(d) a fund credit may not be used by more than one party;

(e) the use of a fund credit must accord with any Ministerial guidelines issued under section 62 ofthe Act.

AR 139/2007 s8;127/2011

Emission performance credits9(1) When a facility to which this Regulation applies achieves actual emissions intensity for a period that isless than the applicable net emissions intensity limit for that period, the reduction in specified gas emissionsthat is not used in meeting the net emissions intensity limit constitutes an emission performance credit orcredits.

(2) An emission performance credit may be used in meeting net emissions intensity limits under sections 3and 4 subject to the following rules:

(a) an emission performance credit created at a facility in a year may be used in meeting netemissions intensity limits

(i) for another facility for that year, or

(ii) for the facility at which it was created or for another facility, for a subsequent year;

(b) an emission performance credit must be held by the person responsible using it;

(c) an emission performance credit may only be used once;

(d) if an emission performance credit is jointly held, each holder may only use a portion of thecredit on a pro rata basis;

(e) the use of an emission performance credit must accord with any Ministerial guidelines issuedunder section 62 of the Act.

Nature of emission offsets, fund credits and emission performance credits10(1) For greater certainty, emission offsets, fund credits and emission performance credits are revocablelicences authorizing persons responsible, subject to this Part, to use the quantity of specified gas emissionreductions from or represented by the emission offsets, fund credits and emission performance credits inmeeting net emissions intensity limits under sections 3 and 4.

(2) Nothing in this Regulation ensures or guarantees the availability of emission offsets or emissionperformance credits.

Part 3Reporting, Records, Confidentiality and Third Party Auditors

Compliance report11(1) The person responsible for a facility on December 31 of a year shall submit to the director acompliance report with respect to that facility for that year by March 31 of the following year.

(2) The report must contain the information and data required in a form prescribed by the director.

(3) The person responsible shall report by electronic means as prescribed by the director.

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

9 of 17 9/26/12 10:42 PM

Page 204: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(4) The report must

(a) either confirm that the net emissions intensity limit for the facility has been met or provide anacknowledgement that the net emissions intensity limit for the facility has not been met, with anexplanation and proposal to address and remedy the non‑compliance,

(b) be certified by a person and in a manner required by the form, and

(c) be verified by a third party auditor.

(5) The person responsible may submit one report in a form prescribed by the director for all of thefacilities in respect of which the person is the person responsible if, in the report, the information requiredby subsection (4) is provided in respect of each facility.

Further information, verification, resubmission12 The director may do one or more of the following regarding a report or information submitted to thedirector:

(a) require that additional information or data be provided;

(b) require verification or further verification by a third party auditor of any information or data;

(c) collect any additional information or conduct any review that the director considers necessary;

(d) direct the person responsible to resubmit information in accordance with any directions that thedirector considers necessary.

Access to application for baseline or compliance report13(1) Within a reasonable time after receiving a request in writing to review an application for theestablishment of a baseline emissions intensity or a compliance report, the director shall, except with respectto prescribed information within the meaning of section 16(6) and (7) and information that is the subject ofenforcement proceedings under the Act or this Regulation,

(a) make the application or report available for review by the person requesting it during normalbusiness hours at the location where the application or report is kept, and

(b) provide a copy of the application or report free of charge to the person requesting it.

(2) The director may refuse to comply with subsection (1) unless the director is satisfied that the personmaking the request to inspect has first made a request to obtain a copy of the application or report from theappropriate person responsible and that the request

(a) was refused, or

(b) was not satisfied within 30 days after the request was made.

Publishing application for baseline or compliance report14 Subject to section 59 of the Act and any order made under section 16(4)(a) of this Regulation, thedirector may publish an application for the establishment of a baseline emissions intensity or a compliancereport or information in an application or a report in any form and manner the director considersappropriate.

Retention of records15(1) A person responsible who submits an application for the establishment of a baseline emissionsintensity or compliance report shall, for at least 7 years following the submission of the application orreport, retain

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

10 of 17 9/26/12 10:42 PM

Page 205: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(a) a copy of the application or report, and

(b) the records, information and data on which the application or report was based.

(2) A person responsible shall retain all records, information and data respecting emissions intensity for atleast 7 years after the date of their creation.

(3) The material retained under subsections (1) and (2) must be located

(a) at the head or principal office, in Alberta, of the person responsible, or

(b) at the facility to which the application, report, records, information or data relate.

Request for confidentiality 16(1) A person responsible who submits an application for the establishment of a baseline emissionsintensity or a compliance report may include a written request that certain information in the application orreport be kept confidential for a period of up to 5 years after the date of submission on the basis that theinformation is commercial, financial, scientific or technical information that would reveal proprietarybusiness, competitive or trade secret information about a specific facility, technology or corporate initiative.

(2) The director shall have regard to the following when making a decision on a request for confidentialitymade under subsection (1):

(a) whether disclosure of the information could reasonably be expected to harm significantly thecompetitive position of the person responsible;

(b) whether disclosure of the information could reasonably be expected to interfere significantlywith the negotiating position of the person responsible;

(c) whether disclosure of the information could reasonably be expected to result in undue financialloss or gain to any person or organization;

(d) the availability of the information or the means to obtain the information from other publicsources;

(e) whether there are any other competing interests that would suggest that disclosure of theinformation is warranted.

(3) The director may require a person responsible to provide additional reasons, in writing, in support of arequest for confidentiality made under subsection (1).

(4) The director shall

(a) if the director considers that the request is well founded, approve the request and order that theinformation to which the request relates be kept confidential and not be disclosed for the periodprescribed by the director, or

(b) refuse the request if the director considers that the request is not well founded.

(5) The director shall, in writing, notify the person responsible of the director’s decision under subsection(4) within 150 days after receiving the request.

(6) If the director is considering a request for confidentiality under this section, the information to which therequest relates is prescribed information for the purposes of section 59 of the Act until a decision is made.

(7) If the director makes an order under subsection (4)(a), the information that is the subject of the order isprescribed information for the purposes of section 59 of the Act for the period prescribed in the order.

Annual report to Information and Privacy Commissioner

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

11 of 17 9/26/12 10:42 PM

Page 206: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

17 The director shall provide annually to the Information and Privacy Commissioner, in the form andmanner the director considers appropriate, a report setting out the following:

(a) the number of requests received by the director under section 16(1) in the year;

(b) the number of requests approved by the director under section 16(4)(a) in the year;

(c) the period prescribed by the director under section 16(4)(a) for each approved request.

Qualifications of third party auditors18(1) A person is eligible to be a third party auditor under this Regulation if the person

(a) is

(i) registered as

(A) a professional engineer under the Engineering, Geological and GeophysicalProfessions Act, or

(B) a chartered accountant under the Regulated Accounting Profession Act,

(ii) a member of a profession that has substantially similar competence and practicerequirements as a profession referred to in subclause (i)

(A) in a province or territory of Canada, or

(B) approved by the director, in a jurisdiction outside of Canada,

(b) has technical knowledge of

(i) specified gas emission quantification methodologies,

(ii) audit practices, and

(iii) any other matters considered relevant by the director,

and

(c) has any other qualifications that the director considers necessary.

(2) A person is not eligible to be a third party auditor for a facility if

(a) that person is the person responsible for the facility or is a director, officer or employee of theperson responsible for the facility or of an affiliate, within the meaning of section 2 of the BusinessCorporations Act, of the person responsible, or

(b) the person is an employee or agent of the Government.

(3) The director may request evidence of a person’s qualifications and eligibility as a third party auditor andmay determine that the person is not eligible to perform the functions of a third party auditor if the directoris not satisfied that the person possesses the necessary qualifications or that the person is eligible.

Prescribing forms19 The director may prescribe forms for the purposes of this Regulation.

Part 4Emissions Intensity Baselines

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

12 of 17 9/26/12 10:42 PM

Page 207: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Application for establishment ofbaseline emissions intensity

20(1) The person responsible for a facility shall apply for the establishment of a baseline emissionsintensity by

(a) December 31, 2007, in the case of a facility that is subject to an emissions intensity limit undersection 3,

(b) the later of June 1, 2008 and June 1 of the 4th year of commercial operation of the facility, in thecase of a new facility that

(i) has direct emissions of 100 000 tonnes or more in any of its first 3 years of commercialoperation, and

(ii) is not subject to an emissions intensity limit under section 3,

or

(c) June 1 of the year following the year of commercial operation of a facility in which the facilityfirst has direct emissions totalling 100 000 tonnes or more, in any other case.

(2) An application for the establishment of a baseline emissions intensity for a facility must

(a) be submitted by the person responsible to the director on a form prescribed by the director,

(b) include the information and supporting data required by the form, and

(c) include the verification by a third party auditor of the information and data provided with theapplication form as required by the form.

AR 139/2007 s20;156/2007;210/2007

Determination of baseline emissions intensity21(1) The baseline emissions intensity for a facility that is an established facility on January 1, 2007 mustbe determined by one of the following methods:

(a) by calculating the average of the ratio of total annual emissions to production for the years 2003,2004 and 2005, as expressed in the following formula:

where

BEI is baseline emissions intensity;

TAE is total annual emissions for the year indicated;

P is production for the year indicated;

(b) by an alternative method specified in writing by the director where the director determines thatthe method in clause (a) is not appropriate.

(2) The baseline emissions intensity for a new facility must be determined by one of the following methods:

(a) by calculating the ratio of total annual emissions to production for the 3rd year of commercial

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

13 of 17 9/26/12 10:42 PM

Page 208: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

operation of the facility as expressed in the following formula:

where

BEI is baseline emissions intensity;

TAE3 is total annual emissions for the 3rd year of commercial operation;

P3 is production for the 3rd year of commercial operation;

(b) by an alternative method specified in writing by the director where the director determines thatthe method in clause (a) is not appropriate.

Establishment of baseline emissions intensity22(1) On considering an application for the establishment of a baseline emissions intensity, the directormay do one or more of the following:

(a) request additional information or data;

(b) require verification or further verification by a third party auditor of any information or data;

(c) collect any additional information or conduct any review that the director considers necessary inorder to determine the baseline emissions intensity for the facility;

(d) direct the applicant to resubmit the application and give any directions about the resubmissionthat the director considers necessary.

(2) The director may establish a baseline emissions intensity for a facility

(a) as requested in an application, or

(b) that is different from the baseline emissions intensity requested in an application and may, forthat purpose, determine the unit of production for the facility.

(3) The director shall give written notice of a decision under subsection (2) to the person responsible.

(4) In making a decision under subsection (2), the director may consider factors the director considersrelevant, including, but not limited to,

(a) technologies that affect specified gas emissions that are in use at comparable facilities, and

(b) the best available technology economically achievable for the facility, integrating sustainabilityand economics, accounting for project technology and design characteristics.

Establishment of new baseline emissions intensity23 The director may at any time review the baseline emissions intensity for a facility and establish a newbaseline emissions intensity or direct the person responsible to apply for a new baseline emissions intensityif the director is of the opinion that

(a) the baseline emissions intensity is inaccurate,

(b) the facility has undergone an expansion or significantly changed, or

(c) for any other reason, a revised baseline emissions intensity is appropriate.

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

14 of 17 9/26/12 10:42 PM

Page 209: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Part 5Exemptions

Application for exemption24 The director may, on application, exempt the person responsible for a facility from the duties imposedby Parts 2 and 3 subject to any terms or conditions the director considers appropriate for a period notexceeding one year if the director is of the opinion that

(a) for a prolonged period the facility was operated under unusual conditions or was shut down, and

(b) the conditions or shutdown caused a material reduction in the specified gas emissions for theapplicable period.

Part 6Enforcement

Inspections, investigations, audits25 An inspector or investigator may, in accordance with the Act, undertake an inspection, investigation oraudit of a person responsible or a facility, or both, in respect of obligations under this Regulation.

Order where net emissions intensity limit exceeded26(1) The director may issue an order to the person responsible for a facility requiring the personresponsible to take the measures specified in the order to minimize or remedy the effects of the facilityreleasing specified gases into the environment in amounts in excess of those within the net emissionsintensity limit for the facility where

(a) a compliance report indicates that the net emissions intensity limit for the facility has not beenmet,

(b) the director determines that the calculation of the net emissions intensity of the facility wasincorrect or was based on inaccurate, incorrect or false information and that the net emissionsintensity limit for the facility was exceeded, or

(c) the value for the emission offsets that was used to calculate the net emissions intensity of thefacility for a year is no longer valid because some or all of the tonnes of specified gases which theemissions offsets represented as not being released into the environment have subsequently beenreleased.

(2) An order under subsection (1) may require the person responsible to take the following measures:

(a) obtain emission offsets or emission performance credits;

(b) make contributions to the Fund;

(c) any other measures that the director considers advisable.

(3) An emission offset or emission performance credit obtained to comply with the terms of an order underthis section may not be used under section 3 or 4.

(4) This section applies whether or not a person has been charged with or convicted of an offence orrequired to pay an administrative penalty in relation to the matter with respect to which the order is made.

Offences27 A person who

(a) contravenes section 6,

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

15 of 17 9/26/12 10:42 PM

Page 210: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

(b) contravenes section 11, 15 or 20,

(c) performs the functions of a third party auditor and does not meet the requirements set out insection 18,

(d) retains a person as a third party auditor who does not meet the requirements set out in section 18,or

(e) does not comply with an order issued under section 26

is guilty of an offence.

Penalties28(1) A person who is guilty of an offence under section 27(a) is liable to a fine of not more than $200 forevery tonne of CO2e by which the total release of specified gases exceeds the net emissions intensity limitfor the facility established by section 3(2) or (3) or 4(1) or under section 4(2), as the case may be.

(2) A person who is guilty of an offence under section 27(b), (c), (d) or (e) is liable

(a) to a fine of not more than $50 000, in the case of an individual, or

(b) to a fine of not more than $500 000, in the case of a corporation.

Due diligence29 No person shall be convicted of an offence under this Regulation if that person establishes on a balanceof probabilities that the person took all reasonable steps to prevent its commission.

Part 7Expiry

Expiry30 For the purpose of ensuring that this Regulation is reviewed for ongoing relevancy and necessity, withthe option that it may be repassed in its present or an amended form following a review, this Regulationexpires on September 1, 2014.

Schedule

Specified Gases and TheirGlobal Warming Potentials

Specified Gas Chemical Formula Global Warming Potential

(100 year time horizon)Carbon dioxide CO2 1Methane CH4 21Nitrous oxide N2O 310HFC-23 CHF3 11700HFC-32 CH2F2 650HFC-41 CH3F 150HFC-43-10mee C5H2F10 1300HFC-125 C2HF5 2800HFC-134 C2H2F4 1000HFC-134a CH2FCF3 1300HFC-152a C2H4F2 140

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

16 of 17 9/26/12 10:42 PM

Page 211: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Specified Gas Chemical Formula Global Warming Potential(100 year time horizon)

HFC-143 C2H3F3 300HFC-143a C2H3F3 3800HFC-227ea C3HF7 2900HFC-236fa C3H2F6 6300HFC-245ca C3H3F5 560Sulphur hexafluoride SF6 23900Perfluoromethane CF4 6500Perfluoroethane C2F6 9200Perfluoroproprane C3F8 7000Perfluorobutane C4F10 7000Perfluorocyclobutane c-C4F8 8700Perfluoropentane C5F12 7500Perfluorohexane C6F14 7400

AR 139/2007 SPECIFIED GAS EMITTERS REGULATION http://www.qp.alberta.ca/574.cfm?page=2007_139.cfm&leg_ty...

17 of 17 9/26/12 10:42 PM

Page 212: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Oil sands mining and reclamation cause massiveloss of peatland and stored carbonRebecca C. Rooney, Suzanne E. Bayley, and David W. Schindler1

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9

Contributed by David W. Schindler, November 3, 2011 (sent for review August 30, 2011)

We quantified the wholesale transformation of the boreal land-scape by open-pit oil sands mining in Alberta, Canada to evaluateits effect on carbon storage and sequestration. Contrary to claimsmade in the media, peatland destroyed by open-pit mining willnot be restored. Current plans dictate its replacement with uplandforest and tailings storage lakes, amounting to the destruction ofover 29,500 ha of peatland habitat. Landscape changes caused bycurrently approved mines will release between 11.4 and 47.3million metric tons of stored carbon and will reduce carbon se-questration potential by 5,734–7,241 metric tons C/y. These losseshave not previously been quantified, and should be included withthe already high estimates of carbon emissions from oil sandsmining and bitumen upgrading. A fair evaluation of the costsand benefits of oil sands mining requires a rigorous assessmentof impacts on natural capital and ecosystem services.

wetland reclamation | tar sands

An area larger than the state of Rhode Island will eventually bemined by oil sands companies in northern Alberta. These

boreal lands must be reclaimed, but despite claims to the contrary(1), operators are not required to return the land to its originalstate (2). This study was precipitated by the disparity betweenstatementsmade by the oil sands industry regarding the extent andanticipated success of mine reclamation and their official closureplans, which serve as agreements between mine operators and theAlberta government regarding actual reclamation expectations.Oil sands deposits accessible by open-pit surface mining cover

about 475,000 ha of boreal Alberta, 99% of which is alreadyleased (3). Currently, 10 mines have government approval tooperate, covering about 167,044 ha (Fig. 1). This is a conserva-tive estimate that excludes the pipelines, roads, seismic lines, andother infrastructure that support the mines. It also excludesimpacts from aerial deposition (4) and aquifer dewatering (5)that extend off-site and the area of land associated with the threeadditional mines currently undergoing environmental review.Constraints imposed by the postmining landscape and the

sensitivity of peatland vegetation prevent the restoration ofpeatlands that dominated the premining landscape. Mine pro-ponents are required to describe the premining landscape andproduce closure plans that detail the postmining landscape.Current reclamation regulations do not require the restorationof previous land covers or the restitution of lost carbon formerlystored in soils and vegetation. In place of destroyed peatlands,operators plan to construct upland forest with well-defineddrainage channels and subsaline shallow open water wetlandsdraining into large tailings ponds capped with freshwater. Thenet effect of this landscape transformation on biodiversity andecosystem functions has not been assessed. Here we quantify theland cover changes that will result from approved oil sands mineprojects and their impact on carbon storage.

Pre- Versus Postmining LandscapesThe oil sands mining area was originally wetland-rich, covered inforested and shrubby fens. In 2002, Canadian Natural ResourcesLtd. mapped vegetation cover types within a 2,277,376-ha areathat encompasses the surface-mineable area (Fig. 1) (details in

ref. 6). They found that 64% of the land supported wetland vege-tation, whereas only 23% of the land supported upland vegetation(Table 1). The most common land cover type was fen vegetation,whereas deep water, shallow open water, and marsh habitat werescarce (Table 1). Due to the heterogeneous distribution of wetlandsin the region, the exact proportion of wetland habitat differs amongthe 10 approved mining projects (Table 2). Generally, the east bankof the Athabasca River supports more wetland habitat than the drierwest bank (Fig. 1 and Table 2).Despite efforts to standardize industry reporting (SI Text),

many inconsistencies remain that impede assessment of cumula-tive effects and direct comparison between pre- and postmininglandscapes. For example, the taxonomic and spatial resolutionsused to make predictions about the postmining landscape arecoarser than those detailing baseline conditions, mainly due todifficulty in predicting drainage and nutrient conditions.A direct comparison of pre- and postmining landscapes is only

possible for 4 of the 10 approved mines: The Horizon, Jackpine–Phase 1, Muskeg, and Kearl mine closure plans provided therelative abundance of pre- and postmining vegetation cover (7–10) (Table 3 and Table S1). These four mines represent only 42%of the area approved for mining, although they are representativein their distribution: 59% on the wetter east bank and 41% on thedrier west bank, compared with 61% and 39% of the total leasedarea approved for mining on the east and west banks, respectively.Suncor Energy Inc. and Syncrude Canada Inc. did not providedata on the relative abundance of vegetation covers for the sixmines they operate, but did provide figures contrasting the pre-and postmining landscapes (e.g., Fig. 1 and Fig. S1). Thus, al-though we cannot quantify changes to land cover across the entireregion, we can make generalizations about vegetation changeswith confidence that they apply to all mines.The most striking change to result from reclamation will be

the conversion of wetland habitat to upland forest. According tocompany closure plans, uplands will increase by 15,030 ha on theleaseholds of the four mines, mainly at the expense of peatlands,which will decrease by 12,414 ha (67% of their premining cov-erage). Wetlands in general will decrease by 11,761 ha, with theloss of peatlands slightly offset by the creation of marsh and ri-parian shrublands (Table 3). Operators will create end-pit lakesby capping tailings ponds with freshwater (SI Text), boosting theamount of deep water and littoral habitat (Table 3). End-pitlakes will be fed by extensive drainage networks (e.g., Fig. 1) thatmay support riparian habitat (Table 3). Scaling up, assumingsimilar land conversion ratios for the additional six mines, about29,555 ha of peatlands will be lost as a result of currently ap-proved mining (net wetland loss = 28,002 ha).

Author contributions: R.C.R. designed research; R.C.R. performed research; R.C.R. contrib-uted new reagents/analytic tools; R.C.R. analyzed data; and R.C.R., S.E.B., and D.W.S.wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.1To whom correspondence should be addressed. E-mail: [email protected].

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1117693108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1117693108 PNAS Early Edition | 1 of 5

ENVIRONMEN

TAL

SCIENCE

S

Page 213: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

Fig. 1. Map of the surface-mineable area and the footprints of oil sands mining projects with approval to operate as of March 2011. Data are adapted fromthe Energy Resources Conservation Board’s online Scheme Approval Map Viewer. Gray lease areas are included in our detailed comparison of pre- andpostmining land cover. Short arrows connect labels to smaller lease areas. (Insets titled Suncor 2009) Pre- and postmining land cover for the Millenium andNorth Steepbank mines, adapted from Suncor (11). An expanded version of the Insets is available as Fig. S1.

2 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1117693108 Rooney et al.

Page 214: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

In terms of the vegetation, reclamation will mean the re-placement of low-productivity tamarack (Larix larcina) and blackspruce (Picea mariana) fens and bogs with higher-productivityforests of white spruce (Picea glauca), jack pine (Pinus banksiana),and trembling aspen (Populus tremuloides). Understory vegetationwill change from sedges, ericaceous plants such as labrador tea(Ledum groenlandicum), and mosses such as Sphagnum spp. andDrepanocladus spp. (which can deposit up to severalmeters of peat)to blueberry (Vaccinium myrtilloides), dogwood (Cornus spp.), andlow-bush cranberry (Viburnum edule) (which accumulate much lesscarbon in the soil). Reclamation will also mean a shift in agestructure, as reclaimed forests will begin as seedlings and will take50–70 y to reach harvestable age (11). The shift to a drier forest willalso mean a change in fire regime, as drier forest types are moresusceptible to fire (12) and thus support younger stands than wetterforests on average.

Impediments to Wetland RestorationThere are several reasons closure plans favor the creation of well-drained habitat over wetlands (e.g., 8, 11). First, Alberta has nowetland policy requiring compensation for wetland loss inthe boreal region. Second, because the volume of tailings andupgrading by-products exceeds the size of mine pits, the closurelandscapes will consist of hills instead of the level topography thatdominated the region before mining. Thus, wetlands will be re-stricted to the depressions between hills and surrounding end-pitlakes (e.g., Fig. 1, Inset). Third, to foster geotechnical stability, theclosure landscapes are channelized to drain quickly (e.g., Fig. 1,Inset). Creating wetland habitat that slows the flow of water canresult in soil saturation, gully formation, and landform collapse(13). Fourth, end-pit lakes are designed to remediate tailingswater (SI Text), and extensive wetlands would increase the evap-orative surface area of the closure landscape, reducing end-pitlake function. Given that precipitation is less than potentialevapotranspiration in the oil sands-mineable area, water avail-ability will limit wetland area in the reclaimed landscape.

No closure plan calls for the restoration of lost peatlands (7–9,11, 14). Cattails and other marsh plants may tolerate the salt,metals, and naphthenic acids present in groundwater and surfacerunoff in reclaimed areas (15), but peatland vegetation is verysensitive to high conductivity and ion concentrations (16). Twopilot fen construction projects are under way to study survival offen species in a tailings-contaminated environment and the ca-pacity of reclamation materials to support fen-type hydrology.Recreating fen-type hydrology in the postmining landscape ispossible, but requires a minimum 2:1 upland to peatland ratio foruplands to supply adequate seepage to maintain peat wetness(17). Thus, even if the entire closure landscape were designed tomaximize fen habitat, it could not recreate the area of fens thatwas lost. Other considerations, such as the need for end-pit lakesand the limited availability of suitable substrate and vegetation(e.g., pilot fens were constructed by transfer of live peat fromnatural fens), ensure that constructed fens will only constitutea small fraction of the postmining landscape.

ImplicationsNo large-scale oil sands reclamation project has undergone in-dependent evaluation, and thus the ultimate success of closureplans remains uncertain (18). Upland habitat has been created(e.g., the 104 ha of Syncrude’s Gateway Hill certified as re-claimed in 2008, representing 0.15% of land reported as dis-turbed by industry), but efforts to create marsh and shallow openwater wetlands are less successful at restoring biological integrity(19, 20). Even if the goals outlined in closure plans are achieved,peatland loss will occur with substantial impacts to ecosystemservices, including carbon storage.Oil sands mining is frequently criticized as a carbon-intensive

means of acquiring oil. Its contribution to the global carbon im-balance has provoked numerous calls to slow oil sands de-velopment, including, most recently, a letter to Canada’s primeminister signed by eight Nobel Peace Laureates. Greenhouse gasemissions from mining and upgrading oil sands bitumen are

Table 1. Vegetation cover within and surrounding the surface mineable oil sands area.

Land cover class Total area (ha) Regional study area (%)

Terrestrial vegetationConiferous 25,309 1Deciduous 273,050 12Mixedwood 217,990 10Terrestrial vegetation subtotal 516,349 23

WaterDeep water (>2 m) 13,352 1Shallow open water (<2 m) 27,728 1Water subtotal 41,080 2

WetlandsGraminoid fen 61,395 3Marsh 41,320 2Poor wooded fen/wooded bog 187,349 8Shrubby fen 231,109 10Wooded fen 923,895 41Wetlands subtotal 1,445,068 64

OtherBurn (within 20 y) 144,227 6Cloud 25 <1Cutblocks 57,648 3Disturbances 63,492 3Shrubland 8,619 <1Urban/industrial 868 <1Other subtotal 274,879 12

Total 2,277,376 100

Data are adapted from table B3-2 in Raine et al. (6).

Rooney et al. PNAS Early Edition | 3 of 5

ENVIRONMEN

TAL

SCIENCE

S

Page 215: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

estimated at between 62 and 164 kg CO2 equivalents per barrel ofoil produced, two to three times more than emissions from con-ventional oil production (21). With daily production of mined bi-tumen exceeding 1,142,000 barrels in 2010 (22), emissions add upquickly (>70,000 t CO2/d) and hundreds of millions of dollars arebeing invested in reducing and capturing CO2 (23). These tallies,however, completely neglect the carbon emissions resulting frompeatland loss, yet our analysis suggests that carbon storage losscaused by peatland conversion could be equivalent to 7-y worth ofcarbon emissions by mining and upgrading (at 2010 levels).

The boreal forest is the world’s largest and most importantforest carbon storehouse (24), but its continued storage dependson future landmanagement practices (SI Text). Based on extensivework in the Mackenzie River Basin, the range in peatland carbonstorage is estimated at 530–1,650 metric tons (t) C/ha (25),equivalent to 1,943–6,050 t CO2/ha. The breadth of this rangereflects uncertainties associated with variability in peat depth,composition, and bulk density. Unfortunately, this information isnot available from baseline studies, and we therefore chose to beconservative and represent the effects of this uncertainty on therange of C values. Reclamation prescriptions for postmining soils

Table 2. Summary of baseline vegetation cover within the development (DA) or local study areas (LSA) of mines with approval tooperate granted by March, 2011

Horizonmine

MildredLake andexpansion

SuncorBasemine

Muskegand expansion

Jackpinemine–phase 1 Kearl mine

Suncor Steepbankand Millenium

mines Fort Hills mineAurora

North mine

Bank West West West West East East East East EastUnits ha in LSA ha in LSA ha in LSA ha in LSA ha in DA ha in LSA ha in DA ha in DA ha in LSATerrestrial vegetation 17,040 14,662 16,745 2,775 4,408 15,416 2,806 3,350 17,733Peatlands 5,355 1,870 16,813 3,075 1 9,986 6,422 751 19,714Riparian communities 2,600 708 0 1,216 1,434 7,804 100 1,012 199Graminoid marsh 318 0 0 36 523 1 19 6 435Shallow open water 332 175 61 61 21 42 8 0 249Wetlands subtotal 8,605 2,753 16,874 4,388 1,979 17,833 6,549 1,769 20,597Lakes and rivers 267 175 61 43 1,359 561 0 0 580Disturbed land 1,874 909 1,300 5,270 38 206 0 419 1,197Total 27,786 18,499 34,980 12,476 7,784 34,016 9,355 5,538 40,107% wetland 31 15 48 35 25 52 70 32 51% terrestrial 61 79 48 22 57 45 30 60 44

The west bank is typically drier and supports more upland habitat relative to the east bank, which supports more wetland habitat. As a part of theirenvironmental impact assessments (EIAs), mine operators designate DAs, which represent the footprint of all facilities directly associated with mining, i.e.,mine pits, tailings storage, bitumen recovery plants, etc., and LSAs, which include both the DA and a buffer around the DA that is intended to accommodateany potential indirect effects of the proposed development. Baseline conditions are typically presented for either the DA or LSA, but not for both. Thevegetation cover values were obtained through a review of baseline studies in EIAs and the most recently updated reclamation, conservation, and closureplans (see SI Text for references).

Table 3. Net change in land cover types to result from oil sands mining reclamation based on baseline reports and closure plans for theHorizon, Jackpine–Phase 1, Kearl, and Muskeg mines

Net change

Description Total pre (ha) Total post (ha) (ha) (%)

Upland forest 39,114 54,587 15,473 40Meadow 1 0 −1 −100Shrubland 524 82 −442 −84Bog 5,179 1,320 −3,859 −75Fen 13,238 4,683 −8,555 −65Graminoid marsh 878 2,595 1,717 196Swamp 13,054 9,795 −3,259 −25Shallow open water 456 94 −362 −79Lake 2,059 5,702 3,643 177River 171 152 −19 −11Riparian shrubland 1 2,327 2,326 232,600Littoral zone 0 230 230 InfiniteClearcut 730 98 −632 −87Disturbance 6,658 395 −6,263 −94Peatland subtotal (bog and fen) 18,417 6,003 −12,414 −67Wetland subtotal(peatland, graminoidmarsh, swamp, shallow open water,riparian shrubland, and littoral zone)

32,806 21,045 −11,761 −36

Total 82,060 82,060 0 0

This constitutes 42% of the total area approved for mining as of March 2011, but is a representative sample of the region in terms of east and west bankdistribution.

4 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1117693108 Rooney et al.

Page 216: W.A. BOND and K. MACHNIAK Environment Canada Freshwater ... · W.A. BOND and K. MACHNIAK Environment Canada Freshwater Institute Winnipeg, Manitoba for ALBERTA OIL SANDS ENVIRONMENTAL

contain much less carbon: between 50 and 146 t C/ha (26). Thus,the replacement of 12,414 ha of peatlands with reclaimed soils willresult in the loss of 4.8–19.9 million t of stored carbon. Based onthe carbon value estimated by the Intergovernmental Panel onClimate Change at $52/t of carbon sequestered (27), this equatesto a $248 million to $1 billion loss of natural capital, yet we haveonly considered 42% of the area currently approved for mining.Scaling up, as we did with land cover, a loss of between 11.4 and47.3 million t of stored carbon (between $590 million and $2.5billion of carbon storage capital) will occur. Converting from unitsof carbon to CO2 equivalents, this is between 41.8 and 173.4 t ofCO2 lost, as much as 7-y worth of mining and upgrading emissionsat 2010 production levels.Peatland loss will also influence the region’s potential to se-

quester carbon in the future. Vitt et al. (28) estimated thatwestern continental peatlands sequester 19.4 g C/m2 of peatland/y.Accounting for forest fires, Turetsky et al. (29) suggest that thetrue rate of carbon sequestration is 24.5 g C/m2 of peatland/y.Thus, the loss of 12,414 ha of peatland translates into 2,408–3,041 t of annual carbon sequestration potential. Scaling up, aswith carbon storage, this equates to 5,734–7,241 t C/y (21,025–26,550 t CO2/y) lost due to approved mines. The reclaimedlandscape will sequester carbon at a much lower rate (28), de-termined by complex interactions between plant species (and thechemical composition of their litter), climate, soils, management,and the fire regime (30). Looking at Imperial Oil’s Kearl Lakemine, Welham found that the vast majority of carbon seques-tered in the reclaimed landscape was derived from peatamendments made to the soil during the first stages of reclama-tion (31). Given that the peat used in these amendments is obtainedby stripping and stockpiling peat from adjacent land in preparationfor mining, this fraction is actually residual storage from historical

peatlands, not newly sequestered carbon. Additionally, Turcotte’sstudy of soil organic matter in reclaimed land on oil sands mineleases has demonstrated unexpectedly rapid decomposition of thepeat in soil amendments, even the relatively recalcitrant ligninphenols (32). This suggests that conversion of peatlands to uplandswith peat soil amendments transforms a relatively permanent car-bon storage pool (historical peatlands) to a temporary one thatleaks carbon rather than sequesters it. This is supported by Wel-ham’s model, which predicts that reclaimed forests will require 15 yof growth before carbon sequestration by vegetation begins to ex-ceed the carbon emissions from decomposing peat amendments,suggesting that for years following mining and reclamation,reclaimed land will be a net carbon source (31).

ConclusionClaims by industry that they will “return the land we use - in-cluding reclaiming tailings ponds - to a sustainable landscapethat is equal to or better than how we found it” (33) and that it“will be replanted with the same trees and plants and formedinto habitat for the same species” (34) are clearly greenwashing.The postmining landscape will support >65% less peatland. Oneconsequence of this transformation is a dramatic loss of carbonstorage and sequestration potential, the cost of which has notbeen factored into land-use decisions. To fairly evaluate the costsand benefits of oil sands mining in Alberta, impacts on naturalcapital and ecosystem services must be rigorously assessed.

ACKNOWLEDGMENTS. We thank Tanya Richens and John Keeler forassistance collecting data; Maria Strack for recommending carbon storagestudies; and Suncor Energy Inc. for permission to reprint the Inset of Fig. 1.Funding was provided by Killam Trusts and Alberta Innovates TechnologyFutures in the form of scholarships to R.C.R.

1. Hoag H (2010) Impacts of Canada’s oil sands operations “exaggerated.” NATNEWS,10.1038/news.2010.676.

2. Government of Alberta (2010) Reclamation. http://www.oilsands.alberta.ca/reclamation.html.

3. Government of Alberta (2010) Alberta’s Leased Oil Sands Area. http://www.energy.alberta.ca/LandAccess/pdfs/OSAagreesStats.pdf.

4. Kelly EN, et al. (2010) Oil sands development contributes elements toxic at low con-centrations to the Athabasca River and its tributaries. Proc Natl Acad Sci USA 107:16178–16183.

5. Hackbarth DA (1980) Regional aquifer parameters evaluated during mine de-pressurization in the Athabasca Oil Sands, Alberta. Can Geotech J 17:131–136.

6. Raine M, Mackenzie I, Gilchrist I (2002) CNRL Horizon Project environmental impactassessment. Vol 6 Appendix B. Terrestrial Vegetation, Wetlands and Forest ResourcesBaseline (Golder Associates, Calgary, AB), Report no. 012-2220.

7. Imperial (2006) Kearl Oil Sands Project Environmental Impact Assessment (Imperial OilResources Ventures Ltd. and ExxonMobil Properties, Calgary, AB), Report no. WW0185.

8. Shell (2007) Jackpine Mine Expansion and Pierre River Mine Project (Shell Canada Ltd.,Calgary, AB).

9. Canadian National Resources Ltd. (2006) Horizon Oil Sands Project Life of Mine Clo-sure Plan (Canadian National Resources Ltd., Calgary, AB).

10. Shell (2005) Application for the Approval of the Muskeg River Mine Expansion Project(Shell Canada Ltd., Calgary, AB).

11. Suncor (2010) Supplemental Information Request—Suncor Tailings Reduction Oper-ations Energy Resources Conservation Board (Suncor Energy, Calgary, AB), Applica-tion no. 1626702, Alberta Environment Application no. 56-94, Round 1, Suncor 2009,p 172.

12. Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency innorthern Alberta. J Biogeogr 24:1027–1057.

13. Harris ML (2007) Guideline for Wetland Establishment on Reclaimed Oil Sands Leases(Lorax Environmental for CEMA Wetlands and Aquatics Subgroup of the ReclamationWorking Group, Fort McMurray, AB).

14. Syncrude (2006) Application for Renewal of Approvals (Syncrude Canada Ltd.,Calgary, AB).

15. Rooney RC, Bayley SE (2011) Setting reclamation targets and evaluating progress:Submersed aquatic vegetation in natural and post-oil sands mining wetlands inAlberta, Canada. Ecol Eng 37:569–579.

16. Vitt DH, Chee W-L (1990) The relationships of vegetation to surface water chemistryand peat chemistry in fens of Alberta, Canada. Plant Ecol 89:87–106.

17. Price JS, McLaren RG, Rudolph DL (2009) Landscape restoration after oil sands mining:Conceptual design and hydrological modelling for fen reconstruction. Int J MinReclam Environ 24:109–123.

18. Grant J, Woynillowicz D, Dyer S (2008) Fact or Fiction: Oil Sands Reclamation (PembinaInst, Edmonton, AB).

19. Rooney RC, Bayley SE (2010) Quantifying a stress gradient: An objective approach tovariable selection, standardization and weighting in ecosystem assessment. Ecol Indic10:1174–1183.

20. Rooney RC, Bayley SE (2011)Development and testingof an index of biotic integrity basedon submersed and floating vegetation and its application to assess reclamation wetlandsin Alberta’s oil sands area, Canada. Environ Monit Assess, 10.1007/s10661-011-1999-5.

21. Charpentier AD, Bergerson JA, MacLean H (2009) Understanding the Canadian oilsands industry’s greenhouse gas emissions. Environ Res Lett 4:014005.

22. Energy Resources Conservation Board (2011) Alberta’s Energy Reserves 2010 andSupply/Demand Outlook 2011–2020 (Energy Resources Conservation Board, Calgary,AB), Report no. ST98-2011.

23. Government of Alberta (2011) Clean Energy Project Agreement in Place. http://alberta.ca/acn/201107/309936C704039-C791-2E11-450AA4194BD5C4C0.html.

24. Anielski M, Wilson S (2010) Real Wealth of the McKenzie Region: Assessing theNatural Capital Values of a Northern Boreal Ecosystem (Canadian Boreal Initiative,Ottawa, ON).

25. Beilman DW, Vitt DH, Bhatti JS, Forest S (2008) Peat carbon stocks in the southernMackenzie River Basin: Uncertainties revealed in a high-resolution case study. GlobChange Biol 14:1221–1232.

26. Cumulative Effects Management Association (2010) Results from Long Term Soil andVegetation Plots Established in the Oil Sands Region (2009): Soils Component (Para-gon Soil and Environmental Consulting, Edmonton, AB).

27. Intergovernmental Panel on Climate Change (2007) Summary for Policymakers (In-tergovernmental Panel on Climate Change, Cambridge, UK), pp 7–22.

28. Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends in carbonstorage of peatlands of continental Western Canada through the Holocene. Can JEarth Sci 37:683–693.

29. Turetsky MR, Wieder RK, Halsey LA, Vitt DH (2002) Current disturbance and the di-minishing peatland carbon sink. Geophys Res Lett 29:21–24.

30. Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258.31. Welham C (2010) Simulating the carbon balance in reclaimed forest ecosystems with

the FORECAST model. Proceedings of Reclamation and Restoration of Boreal Peat-land and Forest Ecosystems: Toward a Sustainable Future, 25–27 March 2010, Ed-monton, AB. http://www.peatnet.siu.edu/Assets/presentations/Welham.pdf.

32. Turcotte I (2009) Soil organic matter quality in northern Alberta’s oil sands recla-mation area. MSc thesis (University of Alberta, Edmonton, AB).

33. Canadian Association of Petroleum Producers (2011) Land—Technology and In-novation. http://www.capp.ca/energySupply/innovationStories/land/Pages/default.aspx#W0rMweesqmr9.

34. Burton B (February 20, 2010) Tapping into a prehistoric beach. National Post.Available at http://wwwnationalpost.com/news/story.html?id=2590054), but can stillbe accessed online here http://www-static.shell.com/static/can-en/downloads/media/2010/heavy_oil_series_jan_martindale.pdf.

Rooney et al. PNAS Early Edition | 5 of 5

ENVIRONMEN

TAL

SCIENCE

S