vol 31 photochemistry

69

Upload: ricardo-gamboa

Post on 16-Apr-2015

123 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Vol 31 Photochemistry
Page 2: Vol 31 Photochemistry
Page 3: Vol 31 Photochemistry

Contents

Introduction and Review of the Year By Andrew Gilbert

Part I Physical Aspects of Photochemistry

Photophysical Processes in Condensed Phases By Anthony Harriman

1 Introduction

2 General Aspects of Photophysical Processes

3 Kinetic and Theoretical Considerations

4 Photophysical Processes in Liquid or Solid Media 4.1 Detection of Single Molecules 4.2 4.3 Amplitude or Torsional Motion 4.4 Quenching of Excited States

Radiative and Non-radiative Decay Processes

4.4.1 Electron-transfer Reactions 4.4.2 Energy-transfer Reactions

4.5 Photophysics of Fullerenes

5 Applications of Photophysics

6 Advances in Instrument Design and Utilization

References

Part I1 Organic Aspects of Photochemistry

Chapter 1 Photolysis of Carbonyl Compounds By William M. Horspool

1 Norrish Type I Reactions

1

13

15

15

15

17

18 19 19 20 21 21 22 23

24

26

28

45

47

47

Photochemistry, Volume 3 1 0 The Royal Society of Chemistry, 2000

V

Page 4: Vol 31 Photochemistry

vi Contents

2 Norrish Type I1 Reactions 2.1 1,5-Hydrogen Transfer 2.2 Other Hydrogen Transfers

3 Oxetane Formation

4 Miscellaneous Reactions 4.1 SET Processes 4.2 Decarbonylation and Decarboxylation 4.3

4.4 Other Fission Processes

Reactions of Miscellaneous Haloketones and Acid Chlorides

References

Chapter 2 Enone Cycloadditions and Rearrangements: Photoreactions of Dienones and Quinones By William M. Horspool

1 Cycloaddition Reactions 1.1 Intermolecular Cycloaddition

1.1.1 Open-chain Systems 1.1.2 Additions to Cyclopentenones and Related

Systems 1.1.3 Additions to Cyclohexenones and Related

Systems 1.2 Intramolecular Additions

1.2.1 Intramolecular Additions to Cyclopentenones 1.2.2 Additions to Cyclohexenones and Related

Systems

2 Rearrangement Reactions 2.1 a,P-Unsaturated Systems

2.1,l Isomerisation 2.1.2 Hydrogen Abstraction Reactions 2.1.3 Rearrangement Reactions

2.2.1 2.2 P,y-Unsaturated Systems

The Oxa Di-n-methane Reaction and Related Processes

3 Photoreactions of Thymines and Related Compounds 3.1 Photoreactions of Pyridones 3.2 Photoreactions of Thymines etc.

50 50 55

57

61 61 64

67 69

71

75

75 75 75

76

80 81 83

83

86 86 86 86 87 88

88

89 89 90

3.3 Miscellaneous Processes 93

Page 5: Vol 31 Photochemistry

Con tents vii

4 Photochemistry of Dienones 93 4.1 Cross-conjugated Dienones 93 4.2 Linearly Conjugated Dienones 95

5 1,2-, 1,3- and 1,4-Diketones 96 5.1 Reactions of 1,2-Diketones and other 1,2-Dicarbonyl

Compounds 5.2 Reactions of 1,3-Diketones 5.3 Reactions of 1,4-Diketones

5.3.1 Phthalimides and Related Compounds 5.3.2 Fulgides and Fulgimides

6 Quinones 6.1 o-Quinones 6.2 p-Quinones

References

Chapter 3 Photochemistry of Alkenes, Alkynes and Related Compounds By William M. Horspool

1 Reactions of Alkenes 1.1 cis,trans-Isomerisation

1.1.1 Stilbenes and Related Compounds 1.1.2 The Dithienylethene System and Related

Compounds

1.2.1 Addition Reactions 1.2.2 Electron Transfer Processes 1.2.3 Other Processes

1.2 Miscellaneous Reactions

2 Reactions Involving Cyclopropane Rings '2.1 The Di-n-methane Rearrangement and Related

Processes 2.1.1 The Aza-di-n-methane Rearrangement and

Related Processes 2.1.2 SET Induced Reactions

Ring Compounds 2.2 Miscellaneous Reactions Involving Three-membered

3 Reactions of Dienes and Trienes 3.1 Vitamin D Analogues

96 99

100 101 103

104 104 104

106

112

112 112 113

116 120 120 122 122

124

124

125 125

127

128 132

4 (2+2)-Intramolecular Additions 133

Page 6: Vol 31 Photochemistry

... Vlll

5 Dimerisation

Contents

134

6 Miscellaneous Reactions 137 6.1 Reactions Involving Cations and Radicals 137 6.2 Miscellaneous Rearrangements and Bond Fission

Processes 138

References 140

Chapter 4 Photochemistry of Aromatic Compounds By Alan Cox

145

1 Introduction 145

2 Isomerisation Reactions 145

3 Addition Reactions 154

4 Substitution Reactions 163

5 Cyclisation Reactions 165

6 Dimerisation Reactions 171

7 Lateral Nuclear Shifts 175

8 Miscellaneous Photochemistry 176

References 182

Chapter 5 Photo-reduction and -oxidation By Alan Cox

193

1 Introduction 193

2 Reduction of the Carbonyl Group 193

3 Reduction of Nitrogen-containing Compounds 202

4 Miscellaneous Reductions 205

5 Singlet Oxygen 209

6 Oxidation of Aliphatic Compounds

7 Oxidation of Aromatic Compounds

21 1

217

Page 7: Vol 31 Photochemistry

Con tents

8 Oxidation of Nitrogen-containing Compounds

9 Miscellaneous Oxidations

References

Chapter 6 Photoreactions of Compounds Containing Heteroatoms Other than Oxygen By William M. Horspool and Albert C. Pratt

1 Introduction

2 Nitrogen-containing Compounds 2.1 E,Z-Isomerisations 2.2 Photocyclisations 2.3 Photoadditions

2.3.1 Intramolecular Processes 2.3.2 Intermolecular Processes 2.3.3 Other Addition Reactions

2.4 Rearrangements 2.5 Other Processes

3 Sulfur-containing Compounds

4 Compounds Containing Other Heteroatoms 4.1 Silicon and Germanium 4.2 Phosphorus 4.3 Other Elements

References

Chapter 7 P hot oeliminat ion By Ian R Dunkin

1 Introduction

2 Elimination of Nitrogen from Azo Compounds and Analogues

3 Elimination of Nitrogen from Diazo Compounds and Diazirines 3.1 Generation of Alkyl and Alicyclic Carbenes 3.2 Generation of Aryl Carbenes 3.3 Photolysis of a-Diazo Carbonyl Compounds

ix

220

225

226

234

234

235 235 238 244 244 245 245 25 1 256

27 1

277 277 280 283

285

2w

297

297

299 299 300 302

Page 8: Vol 31 Photochemistry

X

4 Elimination of Nitrogen from Azides and Related Compounds 4.1 Aryl Azides 4.2 Heteroaryl Azides

5 Photoelimination of Carbon Monoxide and Carbon Dioxide 5.1 Photoelimination of CO and CO;! from

Organometallic Compounds

6 Photoelimination of NO and NO;!

Con tents

303 304 307

307

309

312

7 Miscellaneous Photoelimination and Photofragmentations 3 14 7.1 Photoelimination from Hydrocarbons 314 7.2 Photoelimination from Organohalogen Compounds 3 14 7.3 Photofragmentations of Organosilicon and

7.4 Photofragmentations of Organosulfur and

7.5 Photolysis of o-Nitrobenzyl Derivatives 7.6 Other Phot ofragmen tations

Organogermanium Compounds

Organoselenium Compounds

References

Part 111 Polymer Photochemistry By Norman S. Allen

1 Introduction

2 Photopolymerisation 2.1 Photoinitiated Addition Polymerisation 2.2 Photocrosslinking 2.3 Photografting

3 Luminescence and Optical Properties

4 Photodegradation and Photooxidation Processes in Polymers 4.1 Polyolefins 4.2 Poly(viny1 halides) 4.3 Poly(acry1ates) and (alkyl acrylates) 4.4 Polyamides and Polyimides 4.5 Poly(a1kyl and aromatic ethers) 4.6 Silicone Polymers 4.7 Polystyrenes and Copolymers 4.8 Polyurethanes and Rubbers

317

3 19 32 1 322

324

333

335

335 336 340 345

346

357 357 358 359 359 359 360 360 360

Page 9: Vol 31 Photochemistry

Contents xi

4.9 Polyesters 4.10 Photoablation of Polymers 4.1 1 Natural Polymers 4.12 Miscellaneous Polymers

5 Photostabilisation of Polymers

6 Photochemistry of Dyed and Pigmented Polymers

References

Part IV Photochemical Aspects of Solar Energy Conversion By Alan Cox

1 Introduction

2 Homogeneous Photosystems

3 Heterogeneous Photosystems

4 Photoelectrochemical Cells

5 Biological Systems

6 Luminescent Solar Concentrators

References

360 360 36 1 36 1

362

363

364

393

395

395

396

398

399

400

400

Author Index 403

Page 10: Vol 31 Photochemistry
Page 11: Vol 31 Photochemistry

Part III

Polymer Photochemistry

By Norman S. Allen

Page 12: Vol 31 Photochemistry
Page 13: Vol 31 Photochemistry

Polymer Photochemistry

BY NORMAN S. ALLEN

1 Introduction

The ®eld of polymer photochemistry continues to play a major role inphotochemistry with many new areas of academic interest and industrialdevelopment. Photolithography continues to be developed particularly withregard toward designing systems for molecular devices. Interest in active ionicinitiators and radical/ionic processes continues while the photocrosslinking ofpolymers is attractive in terms of enhancing the physical and mechanicalproperties of materials. The optical properties of polymers, particularly theuse of probes and excimer formation continues to be an active area as ameans of studying their macromolecular structure, energy migration andmolecular mobility. Polymer interactions and behavioural features in micellarmedia provide a valuable probe for determining molecular sizes and forces insurfactant systems. In fact, over ®fty articles have been devoted to this topicin the last review period. In terms of growth, interest in polymeric lightemitting diodes has increased at a phenomenal rate, since there are obviouscommercial implications. Within the last review period there have been overeighty articles dealing alone with this topic. Further developments in terms ofexpansion have seen a major shift toward photochromic materials and liquidcrystalline polymers.

The photooxidation of polymers on the other hand continues to decline inattention although there is special interest in natural cellulosic-based materials.Bio- and photodegradable plastics are important for agricultural usagealthough interest here is again in decline. The same applies to polymerstabilisation where commercial applications dominate very much with muchemphasis on the practical use of stabilisers. For dyes and pigments stabilitycontinues to be a major issue.

2 Photopolymerisation

Activity in a ®eld is often a re¯ection of the number and variety of papers thathave appeared of a topical or review nature. This last year has seen less thantwenty articles to date, slightly less than the previous review period. Anextensive review has appeared on the function of different types of photo-

335

Photochemistry, Volume 31

# The Royal Society of Chemistry, 2000

Page 14: Vol 31 Photochemistry

initiators and their future development1. A number of articles have targetedinterest in photosensitive polymers2, novel highly catalytic systems3, cyclisationsystems4, vinyl ether materials5, stereolithography6, organometallic7 and redoxinitiators8. Ring opening metathesis by ruthenium complexes9 has beenreviewed for the formulation of positive tone high resolution microresists10 ashave electron photoejection processes11 and volatile initiator fragments12.Cationic photoinitiation has been covered in depth13 as have vinyl polymerisa-tions14, sulfonium initiators15 and polymeric initiators with benzophenone sidegroups16.

2.1 Photoinitiated Addition Polymerisation ± Many new photoinitiatorsystems continue to be developed. Three novel water soluble copolymers withpendant benzil groups have been synthesised and characterised17. The poly-meric systems were found somewhat more reactive for photoinducing polymer-isation than the corresponding monomeric structure. Ketyl radical formationby hydrogen atom abstraction was the prime mechanism with the radicalanion being formed through a triplet exciplex in the presence of an amine co-synergist.

336 Photochemistry

O CH2 CH2 O CO C

Me

CH2

COOCH2

CH2

O

C O

CCH2

Me

n CHCH2 m

COO

OCH2

CH2

O

C O

CCH2

Me

n CHCH2 m

CO

OCH2

CH2

O

C O

CCH2

Me

n CHCH2 m

C

CH2 CH2 N+

Me

Me

Me, Cl–

NH C

Me

Me

CH2 SO3–, Na+

NH2

O

MBz

Bz co Cl

Bz co SO3Na

Bz co AAm

CO

CO CO

CO CO

CO CO

Page 15: Vol 31 Photochemistry

III: Polymer Photochemistry 337

Novel structural derivatives of thioxanthone continue to be developed witha number of 1-chloro-4-oxy derivatives having been synthesised.18 Alkoxysubsitution in the 4-position of the molecule enhances the rate of photoinducedpolymerisation in visible light with the 4-hydroxy derivative exhibiting leastactivity. The 1-chloro group was also implicated in the photoreactions inundergoing direct photolysis and forming active chlorine radicals. This gaverise to high polymerisation activity in the presence of oxygen. A number ofnovel water soluble derivatives of thioxanthone have also been developed19,20.Those with hydroxyethylaminopropoxy groups were found to be effective inthe absence of an amine co-synergist.

A series of novel alkyl and phenylthio derivatives of benzophenone havebeen found to be highly effective photoinitiators through side chain scission togive alkyl and thio radicals21,22. Those with sulfoxide groups, however, werefound to be less effective. Dialkyldithiocarbamate derivatives have been foundto give rise to living free radical polymerisations23 using butyl acrylate as anexample while a series of thiobenzoate derivatives show high activity depen-dent upon the nature of the substitution24. A series of polymer boundhydroxamic dithiobenzoic anhydride compounds have been found to be veryeffective heterogeneous photoinitiators25. The photopolymerisation of vinylmonomers has been successfully carried out using a two-phase solvent systemwith tetrabuylammonium chloride-KSCN system in carbon tetrachloride26. Inthe solid phase on the other hand vinyl monomers can be photopolymerised onphotocatalytic surfaces with CDS27. In the camphorquinone initiated polymer-isation of acrylates oxygen has been found to accelerate the rate possiblythrough some type of oxidation complex assisting the process28. Thioninerequires an amine for photoinducing polymerisations29 with a maximum rateat 0.3 M. Mixtures of benzophenone with hexachloro-p-xylene exhibitpowerful synergism for photopolymerising styrene30 while an a-hydroxyketonesystem has been described which is not only a powerful initiator but also giveslittle odour31. Phenothiazine initiators have been found to graft onto thepolymerising chains32,33 as did the use of TEMPO to provide stable polymericradicals34. The use of 4-[diphenyl(trimethylsilyl)methyl]benzophenone alsogives rise to grafted polymers with two types of silyl moieties35. At low initiatorconcentration a living polymer was obtained. Carbonate radicals generated bylight from sodium carbonate have been found to successfully polymerisepyrrole36 while in polar media the application of a magnetic ®eld has beenfound to in¯uence the molecular weight and yield of poly(methyl methacry-late)37. Phenylazotriphenylmethane gives trityl radicals on irradiation formedby electron transfer38 that are apparently capable of inducing the polymerisa-tion of cyclohexene oxide. Dye aggregation in¯uences the photoinitiationactivity of Rose Bengal39 while morpholine-sulfur dioxide40 and bromine41

complexes initiate the photopolymerisation of methyl methacrylate. Camphor-quinone is claimed to photoinduce the ring opening polymerisation of4-methylenedioxolanes42 while carbocyanine borate salts induce photo-polymerisation via an electron-transfer step43. Irradiation of polybutadienewith o-tolualdehyde has been shown to produce random copolymers44 whereas

Page 16: Vol 31 Photochemistry

xanthates induce the photopolymerisation of methyl methacrylate to givepolymers with a narrow polydispersity45. The polydispersity was found to beindependent of initiator concentration and the polymer chains were found tobe capped with reactive `macroiniferters'. Oligooxypropylene-p-(benzoyl)ben-zoyl chloride copolymers with benzophenone end groups have been synthe-sised46 as have photoredox systems based on N-(4-benzoylphenyl)itaconimideand N,N-dimethylaminoethyl methacrylate47. The latter is claimed to be apowerful photointiator system that also grafts into the polymer chains.Macroazo initiators have been found to induce short chain photopolymerisedfragments when compared to an equivalent thermally induced polymerisa-tion48 while correlations have been established between the photochemicalactivity and electronic structure of aromatic azides49. Polystyrenes with anarrow molecular weight distribution have been made using a surfactantphotointiator based on [4-(4'-tert-butyldioxycarbonylbenzoyl)benzyl]trimethylammonium chloride50. Here initiation occurs at the interface with the latex viathe perester radicals. Pyridinium chlorochromate forms a complex with vinylmonomers51 giving free radicals on irradiation which induces vinyl monomerpolymerisation with non-ideal kinetics. Titanocene is also an effective photo-intiator in visible light52 whereas ruthenium complexes give low yields ofpolymer at low pH53. Tetrahydrofurfuryl acrylate monomer has been photo-polymerised using butyltriphenylborates as initiators54. Aromatic carbonylinitiators were found to act as effective sensitisers via an electron-transferprocess with the borates. Iodonium butyltriphenylborate salts have been foundto be more effective visible photointiators than the corresponding tetraphenyl-borate salt55. Bis(cyclopentadienyl)titanium dichloride has been found to givepoly(methyl methacrylate) on irradiation with mixed solubility characteris-tics56 while organocobaloximes give rise to living polymers with different endfunctionalities57 having star or block architectures. Attempts have been madeto identify the nature of the active species formed in metathesis polymerisationusing tungsten hexacarbonyl58.

Some studies have appeared on photoiniferters. Tetraphenylbiphosphine hasbeen used as a photoiniferter with methyl methacrylate monomer59 wheretermination still occurred through the diphenylphosphine radicals. Benzylphenyl selenide induces the photopolymerisation of styrene giving a and ochain ends60 while with methyl methacrylate the use of a piperidino-dithiocar-bamate iniferter with a disul®de transfer agent increased the living character ofthe growing chains61. Block copolymers of epichlorohydrin with styrene andmethyl methacrylate have also been made using HBF4 as the initiator andN,N-di-ethyldithiocarbamate as the terminator62. A polymer with thiuramdisul®de end groups was obtained.

Some aspects of the photopolymerisation kinetics of different monomershave been investigated. The photopolymerisation rate of methyl methacrylateis accelerated in the presence of oxygen when triethylamine is present63,64. Thisenhanced rate is associated with the usual oxygen-amine complex which canform a variety of species such as oxygen radical anions or hydrogen peroxideto give reactive hydroxyl radicals. The rate of photopolymerisation of methyl

338 Photochemistry

Page 17: Vol 31 Photochemistry

III: Polymer Photochemistry 339

methacrylate has been controlled using N-cetylpyridinium thiocyanate to giveonly oligomers65 whereas with furfuryl methacrylate degradation chaintransfer has been observed via the furan ring66. Here activation energies werefound to be higher where allylic radicals were concerned. Free radical propaga-tion rate constants have been measured for different cycloalkyl methacrylatemonomers67. The lowest rate using a pulsed laser system was observed forisobornyl methacrylate. A suitable procedure has been developed that allowscalculation of the chain length distributions of polymers prepared by periodicmodulation of the initiation process taking into account concomitant contin-uous initiation68. During the laser pulse the contribution from thermallyinduced reactions was found to be minimal at peak chain length distributions.In related work pulsed lasers have been used to ascertain the chain lengthdependence of the termination rate during styrene polymerisation69. Micro-scopic ¯ows of liquid polymer during laser exposures have also been mea-sured70 as have the growth of spherical polymeric microparticles71.

Various new monomers include those for space applications72, photoniccrystals73, suspension grade C60

74, monlayers of azobenzene on 10,12-penta-cosadiyonic acid75 and multimonomers of poly(acryloyloxyethyl methacrylate)and poly(methacryloyloxyethyl methacrylate)76. Polymers of a-methoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-¯uorouracil have been found toexhibit anti-cancer activities77. Radicals produced in the solid state photo-polymerisation of octadecyl sorbate are long-lived due to the production ofallyl radicals78. In the solid state 5,4 structures only were obtained whereas inchloroform both 5,4 and 5,2 structures were produced. Fumarate esters withabstractable hydrogen atoms have been found to copolymerise on irradiationin presence of electron donor monomers79. Mixtures with N-vinyl formamidehad higher exotherms than those with N-vinylpyrrolideone and vinyl ethers. Inthe photocopolymerisation of maleimides with vinyl ethers electron transferoccurs to give both cis and trans conformers80. Triplet states have beenidenti®ed via laser ¯ash photolysis for N-maleimides81,82. The same workershave also shown that planar N-arylmaleimides are ineffective initiators com-pared to ortho substituted twisted structures83. N-Substituted maleimides havealso been found to form highly effective complexes with thioxanthone andbenzophenone initiators84.

The properties of a number of novel polymers have been described includingbiodegradable polyanhydrides85, hyperbranched polyesters86, dimethacrylate-silicate composities for yarns87, thermally stable polydihydrofuranyl com-pounds88, light stabilised systems89, gold-polydiacetylene nanocomposities90,evolutive dissipative structures in polyacrylate ®lms91, and photopolymerisedmicrospheres92. The cycloaddition of 2,3-dimethyl-1,3-butadiene (DMB) toacrylonitrile was found to be independent of an initiator93. A 1:1 adduct wasobtained consisting mainly of cyclobutane moieties. The triplet state of theDMB is supposedly involved. Copolymers of furfuryl methacrylate and N,N-dimethylacrylamide have been made94 as have copolymers of methyl acrylatewith vinyl acetate using an aniline-benzophenone initiator mixture95. Theacetate groups were then subsequently hydrolysed to give a PMMA-vinyl

Page 18: Vol 31 Photochemistry

alcohol copolymer. The template polymerisation of methacrylic acid in thepresence of poly(vinyl pyrrolidone) has been studied96 and bulk copolymers ofacrylamide with maleic anhydride have been made using benzoyl peroxide asthe initiator97. The copolymerisation rate in the latter case was found toincrease with increasing acrylamide and benzoyl peroxide concentration.

Cationic photoinduced polymerisation continues to attract some interest.The oxidative quenching of a pyrrole-substituted ruthenium complex by adiazonium salt results in the formation of a metallopolymer98. Electrontransfer within the complex oxidises the pyrrole moieties. Two novel a-terpi-neols have been photopolymerised via diaryliodonium salts99 as has 2,7-dioxabicyclo[3.2.1]octane via N-ethoxy-2-picolinium hexa¯uorophosphate100.The radical reaction of trimethylphosphite with 4,4'-di-tert-butyldiphenyl-iodonium hexa¯uorophosphate gives trimethoxyphosphonium cations thatcan bring about the polymerisation of vinyl ethers101. Phenothiazine withantimony hexa¯uoride anions is highly effective for the polymerisation ofcyclohexene oxide101. The photobleaching of the salt was a good indicator ofthe polymerisation rate. The in¯uence of the counterion type has beenexamined on the initiation activity of diphenylamine diazonium salts102,103 andpolyacrylamide has been prepared via a methylene blue/sodium toluenesulfonate/diphenyl-iodonium chloride complex104. An electron-transfer reac-tion between an excited ¯uorane leuco dye and a diaryliodonium salt resultedin the formation of a ring-opening colourant to give active radicals capable ofinducing the polymerisation of epoxy acrylate monomers105. Colour formationwas a good measure of the conversion rate. A linear relationship was foundbetween the conversion rate and Mn for the cationic induced polymerisationof THF by iodonium salts106. This reaction produced a living polymer thatcould add further monomer units such as N-2-(hydroxyethyl)ethylenmeimine.In the presence of 1,2-ethandiol the cationic polymerisation of 1,2-epoxy-6-(9-carbazolyl)-4-oxahexane proceeds via the activated monomer mechanism107.Acylferrocene derivatives induce the photopolymerisation of ethyl-2-cyanoa-crylate108,109, butyl glycidyl ether110 and cyclohexene oxide111. The latterworkers have also found that the reaction promotes the activity of organicperoxides112. Styryl dyes with dimethylphenylacylsulfonium butyltriphenylborate form donor-acceptor complexes that induce the visible laser photo-polymerisation of acrylate monomers113. Crystal violet lactone undergoes aring opening reaction to form the coloured cation in the presence of aphenyliodonium salt114. The reaction is induced by the acid release mechanismwhich breaks the lactone ring. Butenyl and pentenyl ethers have also beencationically photopolymerised115 while the anionic polymerisation of butylacrylate has been undertaken with phosphazine base116.

2.2 Photocrosslinking ± A number of novel initiator systems/packages havebeen developed for photocuring. The vapour deposition of p-benzoquinoneonto o-acryloylacetophenone oxime-styrene copolymers induced cross-linking117 while a covalent type microgel has been formed by treating adivinylbenzene-dimethylaminomethylstyrene-styrene copolymer with 3-chloro-

340 Photochemistry

Page 19: Vol 31 Photochemistry

III: Polymer Photochemistry 341

2-hydroxypropyl methacrylate and methacryloxyethyl sulfonate118. Microgelshaving a high number of cation groups on the particle surface showed highsensitivity due to the formation of exciplexes with the amino groups. Covalenttype microgels were also found to be more reactive than ionic types. Photo-initiators have also been successfully grafted onto resin structures in order tominimise volatility and migration119 while the photolysis of acyloxyiminogroups pendant in a styrene copolymer gives rise to amino capped chains120.An a-hydroxyketone photointiator, Esacure KIP 150, has been found to giveno volatile aldehyde photoproducts after curing121. Monoacylphosphine oxideinitiators have been found highly effective for initiating the photocuring ofpigmented coatings122,123. A range of novel amine co-synergists have beenmade with poly(ethyleneoxy) groups124 with high reactivity and low extractabi-lity. Amine complexes with p-nitroaniline125 and ruthenium bipyridyl com-plexes126 have also been reported. In the latter case the rate ofphotopolymerisation is independent of initiator concentration and only parti-cipates in the actual initiation step. a-Alkylaminoacetophenone initiators havebeen found to be highly effective for photocuring pigmented inks when usedwith a longer wavelength absorbing initiator of the same structure127. Appar-ently, the hydrogen atom abstracting photoinitiators were not complementary.Copolymers with epoxy and oxime urethane groups have been synthesised128

that can cure through the evolution of photogenerated amines. This hasinteresting possibilities but may not be acceptable from a commercial point-of-view in terms of toxicity. Polymers bearing imino sulfonate groups generateacid upon irradiation that causes crosslinking129 and again, in a similar way,some borate esters have been made that release amine on irradiation130.Poly(3- and 4-vinylphenyl selenocyanates) have been synthesised and found toundergo crosslinking upon 254 nm irradiation131. Diphenyldiselenide was themain photoproduct along with phenylseleno and cyano radicals formed fromthe SeCN groups. Fullerene C60 has been used to polycondense furan132 ringsthat are attached to a methacrylate backbone. The light absorbing character-istics of tetraphenylborates have been enhanced through the substitution ofchromophoric groups133.

Cationic photocuring has also attracted interest. For cyclic enol etherssubstitution of an a-methyl moiety enhances reactivity while methyl groups inb positions decreases it134. The addition of triethylene glycol divinyl ether hasbeen found to enhance the reactivity of epoxy resin curing with an iron-arenecomplex135 while the crosslinking of disiloxanes via iodonium salts is depen-dent upon the media and sensitiser structure136. Crotyl glycidyl ether under-goes a regioselective cationic ring opening polymerisation to give apolyether137 and epoxidised castor oils have been found by the same group toform excellent low cost resins for cationic photocuring138,139. Epoxy functiona-lised polyisoprene has been crosslinked via cationic intiation140. Vinyl etherswere found to accelerate the process with inter and intramolecular interactionstaking place. Polyepoxyacrylates have also been prepared via cationic photo-curing with triphenylsulfonium141 and iodonium142 salts. Dihydrofuran andpyrans have also been photocured using iodonium salts143. Low conversions

Page 20: Vol 31 Photochemistry

were observed at ®rst that slowly increased in the dark due to the presence ofliving polymer. New cationic initiators for silicone release coatings have beenprepared by reacting diaryliodonium salts with lithium tetrakis(penta¯uoro-phenyl)borate144. They induce fast cure for paper coating productions. Diazo-nium resins form complexes with sodium dodecyl sulfate and retain their highphotointiation activity for coatings145. Diphenylamine aryl cations have beenfound to be the dominant intiation species in the photocuring of a condensateformed from a diphenylamine-4-diazonium salt and paraformaldehyde146.3-Methoxydiphenylamine-4-diazonium salts have also been prepared and theiractivity examined in diazo resins147.

Solid state photocuring and (2+2) cycloaddition processes have importantapplications in resist technologies. Hydropolysilanes have been made wherethe aryl derivatives undergo slower photobleaching than the correspondingalkyl derivatives148. For different functionalities photobleaching rates werefound to be in the order p-cyanophenol > p-chlorocinnamic acid > p-nitrophenol. Muconic acid derivatives on irradiation in the solid state gaveessentially the (E,E)-isomers or tritactic polymers while ammonium derivativeswere found to have very high photoreactivity149. Phthalimido chalconesundergo a (2+2) cycloaddition150 while in mixtures of poly(vinyl cinnamate)with poly(vinyl phenol) it has been possible to measure the separate types ofnon-bonded and hydrogen bonded double bonds151. Crosslink distribution inpoly(vinyl cinnamate) has been examined152 while functionalised vinyl cinna-mate monomers have been prepared with hydroxyethyl acrylate groups153. Theanisotropic photo-orientation behaviour of poly(vinyl cinnamate) derivativesare in¯uenced by the chemical nature of substitutents at the ends of the sidechains154. On the other hand the face to face stacking interactions betweenphenyl and per¯uorophenyl groups in (2+2) cycloaddition reactions is emer-ging as a common noncovalent interaction155. Changes in surface morphologyhave been determined in the (2+2) cycloaddition of poly(vinyl-4-methoxycinnamate)156. The method of preparation controls the size of di-Et-(Z,Z)mu-conate crystals157 while crystal-crystal interactions have been observed in thepolymerisation of bis(benzylammonium muconate)158. The solid state poly-merisation of the dimethyl ester of p-phenylenediacrylic acid is heterogeneousand does not form a solid solution159 and various (2+2) cycloadditionreactions have been discussed160.

Photocrosslinking of solid thermoplastics is also a subject of someinterest. Blends of poly(2-chlorostyrene) and poly(vinyl methyl ether) havebeen successfully crosslinked through the photodimerisation of anthracenemoieties labelled on the polymer chains161. It was found that the reactionkinetics approximate to the mean ®eld kinetics inside the spinoidal region,resembling the behaviour of the crosslink-reaction performed in the miscibleregion at relatively low crosslink densities. EPDM has been photo-crosslinked using buckminsterfullerenes162 as has PVC using a triacrylateresin and diphenylketone photoinitiator163. Remaining with PVC, thechlorine atoms have been partially replaced with dithiocarbamate groupsthat undergo photocrosslinking in order to reduce the migration effect of

342 Photochemistry

Page 21: Vol 31 Photochemistry

III: Polymer Photochemistry 343

the plasticisers164. Poly(ethylene oxide)has been photocrosslinked using atetraalkylammonium salt165 and a triacrylate/benzophenone mixture166. Poly-styrene with pendant benzoyl groups undergoes photocrosslinking to giveresins with variable porosities dependent upon their concentration167. Photo-crosslinked polyethylene becomes severely oxidised on the near surfacelayers168.

Photocuring to produce enhanced property requirements for polymers andcoatings is a wide topic of interest. These include ®bre-reinforced compositiesand laminates169±171, photomoulding of polyesters172, abrasion resistantpolyester acrylates173, enhanced poly(vinyl alcohol) resists174, degradable net-works175, production of nanoparts176, composite membranes177±179, micro-particle encapsulation180, polyelectrolytes181, hot melts182 and optical®lters183. Several studies have appeared dealing with polyimide systems.These include ¯uorine containing derivatives184±186, polysiloxane deriva-tives187, chalcone derivatives188 and resist sensitivity189±191. Electro-opticaldevices have been made through doping of coatings192 as have self-assembleddiazo resins193. A novel thermal curing reaction has been found for use inphotogeneration of free amines, thiols and imidazoles194 as have novelisomerisable 4-vinylphenyl cyanates195. A number of studies have dealt withthe properties of resins during and after photocuring for multifunctionalmethacrylates196±199, epoxy resins200, polyfunctional urethanes201,202, crownethers203, styrene-maleic anhydride204 and polyesters205. Conductive studieshave been undertaken on poly(vinyl ketones)206 and curing studies under-taken on pigmented systems207 and water based coatings208. Amphiphilicdiblock copolymers of poly(vinyl alcohol) have been made209 as have cyclisedisoprene rubbers with acid labelled tert-butyl carbonate groups210 for negativeresists. Silicone polymers have also been made with vinyl211 and carbinol212

terminal groups and phenyldiacrylate derivatives213. The latter exhibit micro-phase separation of the siloxane and organic phases. Other studies includediacetyleneic-thiol monolayers214, tri-n-butylstannyl methacrylate-allyl chloro-acetate copolymers215 and acylphosphine oxides for inorganic pigmentedcoatings216.

Monitoring cure kinetics continues to attract much interest. Fluorescenceranks high on the list for monitoring the cure rates and appears to be growingin interest. Such studies include stilbene, oxazolyl and biphenyl molecules inmethyl methacrylate217, pyrenetetrasulfonic acid for microemulsion poly-merised polyacrlaonitrile218, pyrene for cyclohexylmethacrylate219, phenylglyoxylate for diacrylate monomers220,221, phenanthroline organometallic com-plexes in epoxy acrylates222, phenoxazone in vinyl esters223, Schiff bases inepoxy resins224 and organometallic complexes in aromatic cyanate esters225,226.Other related methods include charge-recombination luminescence227, pig-mented inks228, ®bre optic methods229,230 and general curing apsects231,232. Thekinetics of di- and tetra-functional monomers have been studied and post-polymerisation radicals monitored via ESR233±235. The functionality of theresin had a major controlling in¯uence in the nature of the terminationreactions. Dielectric loss has also been found to be a useful measure of cure

Page 22: Vol 31 Photochemistry

kinetics236 indicating that the morphology of the resin is a function of lightintensity. The kinetics of the 3-dimensional photopolymerisation of dimetha-crylate monomers is described237 and different monofunctional monomers giverise to different kinetic responses238. No double gel effects have been observedin the copolymerisation of acrylate and dimethacrylate monomers239 whilemonomers with several double bonds give heterogeneous networks240. Kineticcure models have also been developed for dimethacrylate monomers in dentalcuring241 and stereolithography242.

Methods of photocuring are variable. The photocuring of acrylates hasbeen monitored by photoDSC in the presence of alumina suspensions243.Apparently, the ®ller has no effect on the rate. Of particular interest is theattempt to photopolymerise 4-vinylbenzoate and p-phenylenediacrylates inhydrotalcite interlayers244. Whilst the 4-vinylbenzoate photodimerised to givethe polymer the 4-phenylenediacrylates gave only oligomers. The state ofaggregation of the monomers in the pores was dependent upon the anioncharge in the clay. Monolayers of octadecyl acrylate give stereoregularmaterial on irradiation245 and UV curable composities have been found to beas tough as equivalent thermally cured systems246. The photomoulding ofresins is not without problems in terms of release247 as are hot meltadhesives248. Conductivity methods have been found useful for measuring thephotocuring of resins249 while ion mobility spectrometry has been founduseful for measuring extractable components in UV cured coatings250. Deepphotocuring in ®lled composities has been overcome251 as have temperaturevariations during cure252. Carboxylate counterion interactions have beenmonitored in diacetylene carboxylate monolayers via re¯ective infraredspectroscopy253. In the presence of certain divalent ions the coordinationmode changes from a bridging state to a bidentate state. Standards in rates ofUV polymerisations have been assessed by using visible laser systems withlittle success254. Hydrogen sesquioxane has been rendered photopatternableby spinning onto glass surfaces255 and ring opening mechanisms for epoxy-polyamides have been examined by FT NMR256. Ink curing processes havealso been monitored257.

The photopolymerisation of liquid crystals is attracting signi®cant interest.The liquid crystal phase and the temperature have been found to markedlyin¯uence the photopolymerisation kinetics if acrylate monomers258. Forferroelectric liquid crystal possessing a chiral moiety polymerisation has beenfound to be highest in the smectic phase in the absence of an applied externalelectric ®eld259. Thus, in the initial polymerisation stages molecular alignmentwas more important whereas during the later stages diffusion rates domi-nated. The application of an electric ®eld immobilised the smectic phase.Similar studies have been undertaken on reverse mode polymer stabilisedcholesteric textures260. The photopolymerisation of triphenylene acrylates inthe mesophase has been found to be in¯uenced by small amounts of residualinitiator261. Defect sites are created reducing the carrier mobility by one orderof magnitude. Divinyl ether networks have also been prepared by cationicpolymerisation262 while the retention of molecular orientation during curing

344 Photochemistry

Page 23: Vol 31 Photochemistry

III: Polymer Photochemistry 345

of liquid crystalline systems is crucial for the optimisation of anisotropicmechanical and physical properties263. The solid state polymerisation of di-ethyl cis,cis-muconate gave crystals, the size of which depended upon themolecular weight of the polymer264. A model has been developed to de®negrowing spherulites during the irradiation of polymer dispersed liquid crys-tals265. Under intense UV liquid crystal droplets are formed while under lowintensity irradiation the growth of spherulites occurs in a circular shape togive 3D plates. A nematic liquid crystal has been made with a highbirefringence from mercapto and ole®nic compounds266, while large amountsof a liquid crystalline polymer have been found to reduce the photo-polymerisation rate of a mixture of a divinyl ether and a bismaleimide267.Benzanthrone derivatives have been utilised as luminophores for liquidcrystals268 whereas the pretilt angle of photoreactive polymers is in¯uencedby exposure to polarised light269. Second order non-linear optical activity hasbeen observed in photocrosslinked polymers of glycidyl methacrylate with4-nitro-4'-hydroxy stilbene270. The anisotropic properties of discotic liquidcrystals are stabilised by in-situ photopolymerisation271. However, usingX-ray diffraction studies diacrylate systems showed a decrease in order withincreasing polymerisation temperature. Similar studies have been undertakenon difunctional reactive Schiff bases whereas Cu(II) ions inhibited theirpolymerisation272,273. Photocrosslinkable polymers have been developedbased on cinnamoylethoxybiphenyl where anisotropy increases with in-creasing irradiation temperature274±276. Intramolecular photoreactions domi-nated at the smectic temperature. Other work on biphenyl containingpolymers has developed phase diagrams for the various transitions277 whereascholesteric polyesters based on cinnamic acid undergo (2+2) cycloadditioncausing stabilisation of Grandjean textures278.

2.3 Photografting ± The photografting of monomers onto polymer sub-strates continues to attract interest for property modi®cations. A review usingCe(IV) ions has appeared279 while the hydrophilicity of polysulfone mem-branes has been enhanced through photografting of poly(ethylene glycol)with 4-azidobenzoyl-methoxy groups280. Polyacrylonitrile has also been suc-cessfully photografted onto poly(sulfopropyl acrylate)281. Reactive maleicanhydride sites have been photografted onto both polypropylene powder282

and polystyrene surfaces283. For polyole®ns successful photografting has beenperformed with methyl methacrylate vapour284, hydroxypropyl acrylate285

and acrylamide286. Poly(N-isopropylacrylamide) has been photografted ontopoly(vinyl alcohol)287 while acrylonitrile has been photografted ontostarch288. A new process of photografting has been developed throughdentritic polyesters289 while cellulosics have been photografted with N-iso-propylacrylamide290 and 4-vinylpyridine and iso-butyl methacrylate291. Polye-ster ®bres have been photografted with acrylic acid292 whereas Fe-Si bondshave been grafted onto oligoorganosiloxanes293. N-Isopropylacrylamide hasbeen photografted onto glass294 and acrylic acid onto PTFE to improveadhesion295,296.

Page 24: Vol 31 Photochemistry

3 Luminescence and Optical Properties

The ®eld of polymer luminescence and general optical properties continues togrow at an alarming rate. Signi®cant interest centres on polymers for LEDapplications and photochromic materials. This last year has seen an exponen-tial growth in papers in both areas with much emphasis on the poly(phenylenevinylenes) for LEDs. A number of speci®c and general reviews of interest haveappeared. Topics of interest include conjugated polynitriles297, polymerblends298, interfacial membranes299, memory effects in polymers300, dentri-mers301, chemical sensors302, femtosecond studies303, rare earth polymers304,chemiluminescence of elastomers305, `glo polymers'306, photoprobes for micro-structural analysis307, polymer degradation308,309 and chemiluminescence formonitoring degradation310,311. A general review312 has appeared while anotherauthor questions whether or nor `polarons' exist313. Three reviews haveappeared on isomerism with azo polymers314±316 while others show thatluminescence is a valuable tool for monitoring the molecular behaviour ofpolymers317,318. Several reviews have appeared on LED conjugated poly-mers319±324.

Chemiluminescence analysis continues to attract much interest in the ®eldespecially with regard to polymer oxidation processes. Studies on polyamideshave shown that the chemiluminescence source is primarly associated withcyclic hydrogen bonded lactam hydroperoxide with the o-aldehyde of theamide325 while thermoluminescence has associated the emission with electrondetrapping and recombination processes326. Imaging chemiluminescence con-tinues to be reported as a valuable method for examining the hetergeneousoxidation of polymers such as rubbers327. Other workers have clearly shownthe usefulness of the methods for monitoring the performance of stabilisedpolymers328. Here it has been found that the migration of the stabilisersin¯uences the chemiluminescence intensity. For ®lled rubber a direct correla-tion has been found between DSC analysis and chemiluminescence329. Thechemiluminescence of different polyole®ns has been related to the methylgroup content330. One can assume that this relates to the ability of reactivehydroxyl radicals to abstract labile tertiary hydrogen atoms generating morehydroperoxides in the polymers. In g-irradiated polymer the chemilumines-cence is associated with free hydroperoxides331 while in another study variousadditives were found to prevent the g dose effects332. Other studies onpolyole®ns include kinetic irregularities333 and combined stress334. The use ofchemiluminescence for monitoring the stability of coatings is not yet viablealthough can be used to screen clear coats335. In polysilanes the electrolumines-cence is associated with energy transfer and carrier generation processes336,337

while other studies has dealt with the chemiluminescence of wood338, poly-meric ¯uorophores339 and free radical measurements340.

In terms of general polymer luminescence there have been a number of novelreports. Colour contaminants have been identi®ed in the manufacture ofterephthalic acid as a precursor to polyester341. Using ¯uorescence analysis theprimary contaminant formed by oxidation was 4-carboxybenzaldehyde. This

346 Photochemistry

Page 25: Vol 31 Photochemistry

III: Polymer Photochemistry 347

product gives rise to biphenyl, ¯uorenone and anthraquinone products onfurther degradation. The luminescence from chitosan is associated with anintramolecular hydrogen bond342 while photostimulated emission frompoly(methyl methacrylate) is dependent upon chain mobility343. Mirrorimaged ¯uorescence is associated with the rod like structure of polysiloxanes344

while a tetraphenylsilane polymer is signi®cantly more ¯uorescent than ahexaphenyl structure345. Fluorescent plasma polymers have been made fromaromatic hydrocarbons346 as have ¯uorescent poly(aryl ether ketones)347,aromatic polyamides348, oligomeric esters of 3-thienylglutaric acid349 andpolysulfones350. The ¯uorescence from wood and paper pulps is complex.Thus, whilst the emission from solid wood is independent of excitationwavelength, extracts show a dependence indicating the presence of many,possibly hidden components351. Fluorescence is also claimed to be useful inidentifying the pulp source352±354 while ¯uorescence from biphenyl compo-nents has been found to be highly dependent upon the torsional angle of themolecules in the pulp355. Polysiloxane ®lms give yellow luminescence, theintensity of which is dependent upon the energy ¯uences of He, C or Auions356. For a series of diethynyl-2,2'-bipyridineRe(CO)3CI polymers the¯uorescence has been found to decrease with increasing Re content along thechain357. It is possible that the Re atoms are acting as exciton traps. A novelelectron transporting polymer has been synthesised from mesitylene boraneand 1,9-dicyanoanthracene358. The polycyclodiborazane emits strongly at 494nm and is highly thermally stable. The plasma induced luminescence frompolypropylene is found to be dependent upon its crystallinity359 while theelectroluminescence for crosslinked polyethylene is dependent upon its state ofdegradation360.

Photochromic polymers have seen a major growth especially those based onazobenzene and spyropyran chromophores. New photochromic polymers havebeen developed based on the spyropyran unit with polymerisable groups361.The groups were found to be sensitive to the heterogeneity of the polymer andhad potential for the development of optical storage information media. Metalions bound to photochromic naphthoxazines gave highly ¯uorescent species362

while the presence of zinc 1-hydroxy-2-naphthoate has been found to markedlyimprove the lightfastness of spyropyrans363. Azobenzene bound to poly(methylmethacrylate) (PMMA) exhibited gas permeation changes when light switchedfrom the trans to the cis form364 while solvent dilation changes have beensimilarly observed in azo tagged poly(vinyl alcohol)365. Polyacetylene deriva-tives with phenylazo groups exhibit smectic liquid crystalline properties366

while photoinduced alignment in azobenzene-methacrylate copolymers de-creased with increasing367 strength of donor-acceptor groups attached to the4,4' positions of the azo chromophore. This was associated with the higherenthalpic stability of the mesophase and the decreased concentration of cis-azogroups. The ferroelectricity of surface stabilised aligned ®lms of photochromicazo-benzene polysiloxanes is reversible on UV/visible light irradiation368.Polarised absorption spectroscopy indicates that this light switching controlsthe degree of order, orientation and EZ photoisomerism of the chains. Chiral

Page 26: Vol 31 Photochemistry

inductions have been reversed in isocyanate-azo polymers369,370 and opticalswitching in vinyl copolymers with crowned azobenzene groups has beenfound to induce changes in ionic conductivity371. Ionene polysoaps bearingazobenzene groups can be optically switched to adsorb polyelectrolytes atdifferent layers372 while cationic stilbene amphiphiles can be optically switchedto control microviscosity effects373. Copolymers with polar ester and azoben-zene groups can be switched to control birefringence374,375 while orientationeffects in Langmiur-Blodgett ®lms of azobenzene tagged polyamic acids havebeen studied via second harmonic generation376. The time dependence ofphotoinduced isomerism in azobenzene doped PMMA has been monitored viareal time infrared377 whereas a novel palladium catalysed homocouplingprocess has been developed for preparing azocoulped polymer materials378.Strongly visible absorbing naphthopyrans have been developed379 along withcopolymers with diphenylthiocarbazonylmercury groups380, bis-spiropyransvia ultrasound381, poly(2-methyl-oxazoline)382, polymers of azobenzene andcholesterol383,384, photochromic ®bres385, crown ether styryl dyes386, amphi-philic phenylazonaphthalenes387, azobenzene PMMA systems388, bis-spiro-naphthoxazines389, dithienylethene pendant polyacrylics390, polypropyl-viologens391, acridine spyropyrans392, poly(S)-4-(2-methacryloyloxy-propanoyloxy)azobenzene393 and spyran doped PMMA394. A general overviewon many types of structures has also been presented395. Cis-trans isomerism inpolyamides provides information on molecular constraints396,397 while photo-mechanical motions have been measured in azo doped poly(vinyl alcohol)®lms at air-water interfaces398. A mean ®eld model of photoinduced surfacereliefs in dye substituted polymers has been developed399 as has the dynamicproperties in azo doped acrylics for optical storage data400. Urethane substi-tuted diacetylene ®lms have been grown onto Ag ®lms and found to exhibit adielectric constant comparable to those of orientated ®lms401. Polyesters withnorbonadiene units have been made and found to undergo highly ef®centphotosensitised transformations yielding large amounts of thermal energy402.Azobenzene-succinimide polymers on the other hand gave rise to opticalbirefringence403 whereas photochromic hybrid organic-inorganic materialshave been developed that undergo marked changes in refractive index404.Poly(aryl ether ketones) have been made with azobenzene groups and the cis-trans isomerism dependence on molecular weight measured405. Spyropyranshave been grafted onto PMMA and found to exhibit useful solvent permeationeffects on isomerism406. Polymers with benzylidenephthalimidine side chainsundergo (2+2) cycloaddition407 while the cis-trans isomerism of Disperse Red 1dye doped in PMMA can be ®tted to the time dependence of the macroscopicchain dynamics408. A stochastic model has been developed for azo side chainpolymers409 and random association processes have been measured in poly-mers with spirobenzopyran molecules410. Here an increase in solvent quality orscreening by co-ions suppresses photoassociation. A common feature in thisprocess was the formation of large clusters with short irradiation timesfollowed by a plateau when the photostationary state is achieved. The kineticsof cluster dissolution were, in fact, found to be twice as slow as the relaxation

348 Photochemistry

Page 27: Vol 31 Photochemistry

III: Polymer Photochemistry 349

time of the spontaneous photochromic conversion of the spyropyran moieties.Spiroindolinonaphthaloxazine groups have been incorporated into ormocergroups via the sol-gel route and found to be relatively thermally stable411 while2-phenylphenanthroimidazole dimers exhibit piezochromic behaviour412.

Following on from this there are numerous related articles on liquid crystal-line materials with a major review on optical storage media413. Poly(N-vinylcarbazole) doped with amino-dicyanostyrene is a high performancephotorefractive polymer414 as are functionalised acrylate composities with1,4,:5,8-naphthalenediimide groups415. Photopolymerisation of this mediumcreates an anisotropic gel like material in which the liquid crystal is free toreorientate in the presence of a space-charge ®eld. Transient periodic stripedomains have been observed in copolymer vesicles416 and the effect of variousdyes examined on the properties of liquid crystalline materials for colourationpurposes417. The ¯uorescence dynamics of cyanobiphenyl in a liquid crystallinecomposite has been examined418. Here surface excitation was undertaken at266 nm while bulk excitation was performed at 320 nm. In the former caseshort-lived excimers were formed while in the bulk long-lived excimersdominated the decay pro®le due to nematic molecular associations. Fluores-cence shifts have also been monitored from polyesters containing 4,4'-biphe-nyldicarboxylate moieties419. Various ¯uorescence patterns are observedduring the heating cycles. Fluorescence analysis has also been used to examinethe aggregates in rod-like polyesters420 formed from pyromellitic anhydrideand 4,4'-biphenyl units. Ground-state charge-transfer complexes are formedbetween both moieties having an alternating lateral alignment inside a layer.Two layered crystals are seen with different lateral packing distances which areshown to match exactly the electron-donating and electron-accepting units inthe adjacent chains. It is suggested that these types of charge-transfer interac-tions contribute to the organisation of the spatial arrangements of the differentphase structures. Metal(II) p-styryl octadecanoates have been found to forman inverted hexagonal lyotropic phase at ambient temperature with theexception of Cu(II) ions421. Photochemical crosslinking of these monomersgives rise to polymer networks with phase retention. Photoinduced `command'effects have been designed as a new method for the development of planar orhomeotropic alignment of photochromic polymers422 and three types of¯uorescence emission have been observed from substituted benzanilides in thecrystalline state associated with different states423. The level of photoinducedLC alignment in polymethacrylates with benzylidenephthalimidine side chainshas been found to be enhanced by p-methoxy substitution at the benzylideneresidue424. With these polymers photodimerisation under controlled polarisedlight irradiation markedly enhanced the thermal stability of the LC alignmentdue to the formation of the crosslinks. Diethyl (Z,Z)-2,4-hexadienedioateundergoes polymerisation to give a high molecular weight, highly stereoregularpolymer425 while poly(vinyl¯uorocinnamate) undergoes liquid crystal align-ment perpendicular to the direction of polarisation426. Several cholestericpolysiloxanes have been synthesised that can be racemised427,428 as havesmectic diacrylates429, thiophenes430 and poly(2,5-didecyloxy-1,4-phenylenebu-

Page 28: Vol 31 Photochemistry

tadiynylene)431. Several azo polymers have also been made with liquid crystal-line textures. These include polymethacrylates with p-nitroazobenzenegroups432±435 as well as azobenzene groups436±441 and 1,4-butanediol dia-crylate-4-(2-acryloyloxyethoxy)azobenzene copolymers442.

The technique of time resolved photomodulation has been used to examinethe excitation dynamics in luminescent Si-bridged polythiophene443 as has theluminescence in cyclosiloxanes444. Electropolymerised indole monomers givesa cyclic trimer polymer445 with long wavelength shifted ¯uorescence whilepolyimides give excimer ¯uorescence due to head-to-tail intermolecularoverlap446,447. Ground state complexes were also observed due to variouspacking conformations. The application of an electric ®eld has been found todecrease the luminescence from polymer blends448. This is due to intra- andintermolecular dissociation processes. Quantum mechanical calculations havebeen used to investigate the in¯uence of interchain interactions on theabsorption and emission spectra of p-conjugated systems449. These data haveenabled guidelines to be established in terms of maximising the parametersthat control the luminescence intensity from solid ®lms. Electronic relaxationprocesses in polydiacetylenes have been found to be sensitive to changes inchain conformation450 whereas 3D photoplasticity studies have been under-taken on polycarbonate451. Lasing action in conducting polymers has beenexamined452 while UV induced changes have been examined in poly(pyridi-nium salts)453.

Articles dealing with LED polymers based on poly(p-phenylene vinylene)(PPV) have grown exponentially in the last year. Polymer modi®cation hasbeen undertaken through various routes in order to enhance the LED proper-ties in relation to the emission quantum ef®ciencies, electrical conductivity andphotoconductivity. PPV with per¯uoro groups exhibit maximum emission inthe blue region454 while ¯uorinated oligomers of PPV exhibit a reducedemission ef®ciency with increasing solvent polarity455. PPV with aromaticamine groups exhibit red-orange ¯uorescence456 while material with sul®nyloxidation centres have restricted conjugation but increased emission inten-sity457. Alternating poly[(p-phenyleneethynylene)-alt-(2,5-thienyleneethyny-lene)] has been made and found to exhibit ¯uorescence quantum yields ofbetween 0.4±0.5 with relatively good solvent solubility458 as have polymerswith 2,6-pyridylene groups459 for green and blue emission. Cyano substitutedPPVs gave emissions that are dependent upon the excitation wavelength460

whereas polymers of 2,2'-bipyridine and phenyldiacetylene have an emissionquantum yield of close to unity461. PPV with in-chain and pendant 9,10-diphenylanthracene groups have been synthesised and found to exhibit combi-nations of spectra in electro and photoluminescence that are dependent uponthe nature of the chromophore462. For example, PPV with in-chain andpendant chromophores exhibited electroluminescence only from the in-chainchromophores whereas the ¯uorescence originated from the pendant groups.Blue emission has been observed from silicon containing PPVs463 while PPVswith diphenyl substitution are more stable since these groups act as conjuga-tion breaks464. Dioctyloxy and didodecyl-PPVs exhibit aggregates and reduced

350 Photochemistry

Page 29: Vol 31 Photochemistry

III: Polymer Photochemistry 351

emission intensities465,466 while a number of soluble phenylate PPV's have beenmade that emit strong green emission467. Polymers with 2,5-dialkoxy groupshave also been made and exhibit strong emissions468,469 while alkylatedproducts are reported to give an emission intensity of 65%470. The alkyl chainlength has an important bearing here471 with non-aromatic substitutionsgiving polymers with blue shifted emission spectra472. PPV has been preparedby CVD473 and has also been examined by ultrafast spectroscopic techni-ques474±478 including time-of-¯ight474 for carrier mobility, picosecond laser¯ash photolysis475 to determine the excitation intensity dependence of theemission, femtosecond spectroscopy to measure excited state dynamics476,477

and the use of PPV's themselves as polymer laser diodes478,479. The prospectsfor producing electric pumped solid-state polymer diode lasers using PPVs isdiscussed in the context of low-threshold gain narrowing in sub-micron thick®lms.

Structural effects on luminescence ef®ciency are important. Apparently, anincrease in the ¯exible components in the PPV chain enhances the ¯uorescenceef®ciency480 while two annihilation processes have been identi®ed that hamperthe emission481. Electron withdrawing substitutents apparently reduce the¯uorescence482 of PPV's whereas fast ¯uorescence decays are observed at highexcitation densities which apparently disappear at low ¯uences483. Here dipole-dipole interactions between spatially extended photoexcitations is suggested asa mechanism for the observed bimolecular decay. Liquid crystalline PPV'sexhibit ¯uorescence with a dependency on chain length484 as do phenylenepolymers under pressure485. Vinylene bonds also in¯uence the oscillatorstrengths in PPV's486 while blends of PPV with a red emitter poly(perylene-co-diethynylbenzene) undergo effective energy transfer processes487. Triplet stateef®ciency can be examined by time-resolved thermal lensing488 while a generalstrategy has been developed for the construction of ordered nanaocompositieswith hexagonal symmetry using polymerisable lyotropic liquid crystals489.Using ion-exchange procedures amphiphilic polymers are obtained withsigni®cantly different emissions from that of bulk PPV. Poly(1-phenyl-1-butene) has been found to be more emissive than poly(phenylacetylene)490

whereas the emission from PPV is signi®cantly reduced on photo-degradation491.

Dopants also in¯uence the emission processes from PPVs. Improved reddopants have been based on pyran dyes492 while C60 doping appears to bevariable493±496. Doping with electron transport materials such as oxadiazolesgive polymers with balanced properties for hole transport497. The avoidance oflow molecular weight material in the synthesis of cyano based PPVs isimportant498 as are head to head and tail to tail chain sequences in thiophenebased polymers499. Head to tail tetramer sequences were the most ¯uorescent.Metal ion doped PPV's are claimed to be good chemosensors500 and broademission is observed from titania doped PPV501. Electron rich dopantsenhance the emission in the red region502 while electro and photoinducedinfrared bands from PPV are similar503.

Electric ®eld induced ¯uorescence quenching on a series of poly(p-terpheny-

Page 30: Vol 31 Photochemistry

lene vinylenes) follows a strictly quadratic dependence on the applied ®eldamplitude504. Here quenching occurs predominantly at higher emission ener-gies, causing a distinct blue shift between the electro modulated and photo-induced spectra. In a pair of coupled donor-acceptor conjugated polymerchains it is possible for an exciton which is photoexcited on either polymer todecay into a hole in the donor polymer's valence band and an electron in theconduction band of the acceptor polymer505. A processable PPV has beendeveloped via m-phenylene units506. Here the chains are able to adopt a coillike conformation. Unfortunately, a second emissive band is observed in thered region. Photochemically converted PPV has been characterised507 whilethose with biphenyl units are stacked and exhibit LC properties508. Head-to-tail sequences in poly[(p-phenylene ethynylene)-alt-(2,5-thienylene ethynylene)give rise to enhanced ¯uorescence509 as do alkoxysulfonated PPVs which canbe self-assembled into LED's510.

A number of other LED polymers have been made such as poly(1,4-naphthalene vinylenes)511, polymers with 2-benzylidene-4,5-dicyano-1,3-dithiole512, coordinate silicon units513, poly(alkylphenylacetylene)514 all exhi-biting strong green emission. Poly(benzimidazole-4,7-diyl)s are highly electro-luminescent but also exhibit electrochromism515. Fluorene is a strong excimerquencher516 in LEDs while poly(p-pyridine)517, poly(4,4'-biphenylene pyro-mellitimide)518, arylethylene disylylene polymers519, polymers of distyryl-benzene520, polyamides from tetra(4-biphenylyl)-4,4''''-diamino-p-quinquephenyl521 and poly(cyanoterephthalylidene)522 exhibit strong blueemissions. Polymers with boron atoms are highly rigid structures with anintense blue emission523 as are those based on poly(amic acids)524.

There has also been a surge of interest in thiophene polymers. Dualluminescence from polythiophene ®lms has been assigned to exciton trappingat different local environments525 while binaphthyl526 and oxadiazol527,528

thiophenes exhibit a variety of coloured emissions. Poly(alkyl esters) exhibitorange emission529 while tetra and sexithiophenes exhibit blue emission530. Thekinetics of luminescence decay in hexamethylsexithiophenes are controlled byexcess energy redistributions via vibrational and torsional coupling531,532.Polythiophenes with aniline units exhibit high electrical conductivity533 whilequinquethiophenes exhibit long-lived emissions due to aggregates and physicaldefects534. In poor solvents the emission characteristics of poly(3-hexyl-thiophene) are similar to those of the solid ®lm535. Silylene polymers alsoexhibit dual emissions536 whereas poly(dialkylthiophenes) with 4,4'-dicarbox-ylate groups exhibit chain twisting with an orange ¯uorescence emission andred electroluminescence537. Relaxation processes have been examined in trans-polyacetylene538±540 showing that relaxation processes are twice as fast ascharge-transfer. High excitation energies also gave rise to the formation ofneutral long-lived states absorption edge excitation leading to a higherprobability of chain relaxation into a deformationally neutral state with a longlifetime.

Polymer blend studies have attracted much less interest. Strong excimerformation in blends of polystyrene with 1,4-bis(4-a-cyano-styryl)-2,5-dio-

352 Photochemistry

Page 31: Vol 31 Photochemistry

III: Polymer Photochemistry 353

ctyloxybenzene correlates with enhanced photoconductivity541 whereas mor-phological changes during the phase separation of polyamide/polysulfoneblends are effectively measured via a ¯uorene probe542. Excimer ¯uorescencecan also be used to measure miscibility in polyole®n/polymethacrylic acidblends543. Shear force microscopy can also measure topographical differencesbetween blends of conjugated polymers544 while photoisomerism has beenused via trans-stilbene moieties for blends of polystyrene-vinyl methyl ether545.In the latter case variations in reaction and annealing rates results in elasticstress caused by reaction inhomogeneities which play a role in the formation oflamellar like morphology. Polystyrene size is measured in blends of polystyreneand poly(vinyl methyl ether) using co-2-vinylnaphthalene probes546 while forblends of poly(vinyl alcohol) with poly(vinyl acetate) phase separation via¯uorescence microscopy was evident by the use of anthracene and ¯uores-cein547. Here the rich poly(vinyl alcohol) phase was evident through green¯uorescein emission while for the poly(vinyl acetate) the blue anthraceneemission dominated. Polyamic acid and polyimide mixtures are monitored viaperylenetetracarboxydiimide ¯uorescence548. The aromatic amide groups inthe polyamic acid were found to function as quenchers.

A few articles have appeared dealing with dendrimers. A four generationdendrimer has been made with a rubicene moiety549 that contains two emittingconformations. Here dentrons close to the core exhibit a different decayprocess to that on the outer sphere. Dendrimers with a crown ether receptormoiety and a hydrophobic dentritic sector can be optically switched via aphotoresponsive azobenzene group550. Electron-transfer quenching in den-dritic macromolecules has been found to exhibit an unusually large quenchingconstant with DABCO551. Here ground-state charge-transfer complexes andexciplexes were formed with the higher generation dendrimers. Dendrimerswith a calix[4]arene core and azobenzene skeletons has been synthesised552 ashave dendrimers with central azobenzene linkers553,554. Metallic based dendri-mers have also been synthesised as multielectronic catalysts555.

Energy transfer and excimer formation continue to attract widespreadinterest in terms of molecular dynamics. The mobility in polystyrene-poly(ethylene glycol) microbeads has been ascertained through a pyrenebutyricacid probe556. Excimer to monomer intensity ratios were found to be inaccordance with the solvation capacity of a liquid phase. Only in the solid drybeads is aggregated excimer emission observed. The addition of anionicsurfactants has been found to control the interpolymer aggregation innaphthalene labelled styrene/N,N-dimethyl maleimido propylammoniumsulfate copolymer557. The pH induced expansion of polyacrylic acid labelledwith pyrene and naphthalene has been followed by a reduction in excimerformation558. The energy transfer distance between the chromophores alsoincreases. Poly(n-vinylcarbazole) and its copolymers exhibit two types oftraps559. The ®rst is associated with a conventional sandwich structure ofoverlapping aromatic rings while the second type is due to species involvingtwo partially overlapped carbazole substituents. In the copolymer intermole-cular interactions are high even when the carbazole content is low. At low

Page 32: Vol 31 Photochemistry

temperatures the contribution from the second type of trap increases. Implicitin this work is the ®nding that the high concentration of excimer forming trapsmitigates against signi®cant energy migration between the carbazole groupswhich might otherwise populate the excimer traps.

In free radical polymerisation the rate of photoelectron transfer has beenfound to be much lower than the rate of diffusion controlled processes560.Thus, for processes controlled by diffusion, the reactivity of free radicalsformed as a result of electron transfer limits the rate of initiation. For a seriesof vinyloxy polymers and copolymers with benzonitrile groups substitutionwith electron rich groups caused signi®cant quenching561±563. Spectral broad-ening was also caused by interaction chromophores whereas isolation on thechain resulted in spectral narrowing. Mixed systems of polyhexyl and diphe-nylsilanes exhibit intermolecular energy transfer the ef®ciency of which isdependent upon the mixing ratio564,565. Complex triplet energy migration hasbeen observed in methacrylate copolymers with 9-phenanthryl groups566 ashave relaxation processes in benzophenone doped polystyrene567. No evidencefor excimer formation has been found in carbazole containing oligomericethers568. Intramolecular energy migration was shown to occur in thesesystems but trapping was inef®cient. Interfacial interactions at blends oflatexes have been monitored through the use of donor-acceptor chromo-phores569. Here interfacial contact and surface area controlled the ef®ciency ofthe energy transfer process. The presence of a surfactant reduced the energytransfer by increasing the interfacial barrier. The presence of pendant benzo-phenone groups enhances the isomerism of norbornadiene groups tagged toepoxy resins570 while hole recombination at dimeric sites gives delayedexterplex emission in perylene doped polystyrene571.

Polyelectrolyte chemistry and micellar interactions continue to attract wide-spread interest. The dynamic anisotropy of Sulforhodamine 101 at a water/phthalate ester interface has been found to be restricted to the X-Y plane572.This was explained in terms of different adsorption modes of the dye on theinterface and the chemical structure of the ester. In ethylene-methacrylic acidionomers using pyrene as a hydrophobic probe the critical micelle concentra-tion (CMC) was determined to be 0.02% w/w573. Below the CMC unimericmicelles were identi®ed that are in equilibrium with the larger aggregates. Fora naphthalene tagged copolymer of poly(dimethyl sulfate acrylamide/N,N-dimethylaminopropylmaleimide) the hydrodynamic diameters were found todecrease with increasing salt concentration due to chain coiling574. Enhancedcompartmentalisation of the naphthalene labels were observed at high saltconcentrations. Fluorescence decay pro®les have been generated by theMonte-Carlo technique during the interdiffusion of donor-acceptor spheres formimicking latex ®lm formation575. Microdomains in amphiphilic monomers ofN,N-diallyl-N,N-dialkylammonium chloride have been found to be ordered576

while non-radiative energy transfer from naphthalene to pyrene groups hasbeen found useful for detecting hydrophobic associations in copolymers ofsodium 2-(acrylamido)-2-methylpropanesulfonate and N-dodecylmethacryl-amide577. Discrepancies between different techniques for measuring CMCs

354 Photochemistry

Page 33: Vol 31 Photochemistry

III: Polymer Photochemistry 355

have been ascertained578 while in methyl methacrylate-methacrylic acid frac-tions with vinylanthracene groups Ca(II) and Tb(III) ions have been found tobind strongly and enhance the ¯uorescence of the chromophore579. Anethylene oxide-propylene oxide-ethylene oxide triblock copolymer does notmicellize at concentrations below 5% w/w580 whereas amphiphilic cationicporphyrins are stabilised by polyallylamine at pH values close to the pKa ofthe amine581. Dansyl labelled polyanions exhibited a high response to alkalimetal cations582 while photoassisted poling and depoling has been measured inbiaryl tagged zwitterion polymers583. The viscoelasticity of micellar cetyltri-methylammonium bromide is reduced by the addition of ionene polyelectro-lytes due to the shortening of the worm like micelles584. Excitation energymigration in micellar pores has been modelled585 and amphiphilic ruthe-nium(II) polypyridine complexes have been investigated on interfacial sur-faces586. Microviscosity effects in Na®on-Na+ membranes have been measuredthrough pyrene probes587 indicating that the probes themselves are located atthe ¯uorocarbon/water interface. Hydrophobic microdomains have been mea-sured in modi®ed polyelectrolytes588±592, vinyl polymer latexes593, cetyl pyridi-nium chloride with metal complexes of 8-hydroxyquinoline-5-sulfonic acid594

poly(dimethylamino)alkyl methacrylate-block-sodium methacrylate595, poly(-benzyl glutamate)/poly(ethylene oxide) copolymers596, azo initiated poly(-methyl methacrylate)597, dodecyltrimethylammonium bromide598,poly(ethylene-co-methacrylate)599 and non-ionic cellulose derivatives600. In thelatter case, using pyrene and perylene probes, microviscosity effects weredependent upon the CMC with increasing polymer hydrophobicity giving riseto an increase in the rigidity of the polymer-surfactant aggregates. Thenanosecond dynamics of molecular complexes have been discussed in depth601

while J-aggregates in dyes have been examined by pressure dependent absorp-tion and ¯uorescence measurements602.

Other studies on polymer labelling include the use of pyrene labelling formethyl methacrylate latexes where the excimer emission is related to annealingeffects603. The polymerisation rate of hydroxyethyl methacrylate has beenmeasured in the presence of triethylamine and excited pyrenebutyltrimethy-lammonium ions604. Electron transfer was found to be highly dependent uponthe nature of solvent used in the polymerisation process. In the case of pyrenelabelled poly(ethylenimine) excimer emission increases with decreasing pH dueto chain coiling605. The absorption and ¯uorescence characteristics of perylenetagged poly(ethylene oxide) have been found to be independent of the polymerchain length in dilute solution606 whereas the ¯uorescence of a new Schiff baseof o-phenylenediimidocellulose is highly dependent upon pH607,608. Fluores-cent probes have been found useful for the determination of the functionalisa-tion of atactic polypropylene609 while C60 has been covalently linked toalkylsulfonate groups610. The relaxation time of anthryl groups on apoly(ethylene oxide) (PEO) chain increases with increasing chain length611 upto a maximum of 4000. The PEO chain has a much higher local mobility thanvinyl polymers such as styrene. The ¯uorescence properties of dialkylaminomodi®ed polysiloxanes depended upon the crosslink density612 whereas the

Page 34: Vol 31 Photochemistry

¯uorescence of poly(N-isopropylacrylamide) shows that the polymer under-goes a conformational transition from a ¯exible coil to a globular structure,followed by collapse to give aggregates613. The ¯uorescence from porphyrintagged methacrylate copolymers decreases with increasing porphyrin groups614

while the same chromophore exhibits marked changes in absorption whenpolymerised into poly(N-isopropylacrylamide)615.

Polymer doping experiments continue for various applications with emphasison dye chromophores. Tetraphenylporphene has been used as a dissolvedoxygen sensor in plastic ®bres616 while the ¯uorescence quenching of 1,2-benzanthracene in poly(vinylbutyral) has been described by a fractal clustermodel617. Coumarin 6 has been observed to form aggregates and is also highlysensitive to the pH of the environment618. This molecule was able to detectLewis acidity in certain types of zeolite that were otherwise thought to be non-acidic. The kappa number in single wood ®bres has been measured usingAcridine Orange as a molecular probe619 while acridine has been found to be auseful molecular probe in polyamines620. Using 9,10-diphenylanthracene as amolecular probe in PMMA the effective thickness of a degradation front isgreater and radical propagation rate slower in glassy polymers621. Benzonitrilederivatives have been used as molecular weight detectors622, static quenchingobserved in polysilanes623, molecular alignments determined in PMMA624±626,colourants determined in Japanese woodblock prints627 and the association of¯uorocarbons measured in poly(N-isopropylacrylamide)628. Dimethylketenehas been identi®ed as the photoluminescence precursor in plasma polymerised®lms of methyl methacrylate with tetramethyl-1,3-cyclobutanedione629. Rhoda-mine 6G in PMMA changes from isolated dye molecules to nanocrystallites athigh concentrations on plasma irradiation630. Rhodamine B in poly(acrylicacid)631 and benzylidenemalonitriles in PMMA632 exhibit pressure sensitive¯uorescence while Rhodamine 6G has been found useful for measuringspherical polymer particles633. Temperature pro®les are claimed to be measuredduring processing634 as are melting and crystallisation processes in pyrenedoped polyethylene635. Dyes which have geometrical asymmetry in theirmolecular structure are useful for anisotropy measurements636.

A novel route has been developed to tunable emission in smart gels637 whilechitosan self-association has been monitored through a ¯avone molecularprobe638. Rhodamine B has different conformers when grafted to cellulose639

while 9-methylanthracene is an effective dye for monitoring internal stresses incoatings640. The reaction kinetics of 9-hydroxymethyl-10-[9-(naphthyl methox-y)methyl]anthracene re¯ects the rearrangements of local free volume inPMMA641 whereas surface concentrations of rhodamine 6G have been mea-sured on derivatised silica642. Fluorescence studies show that divinylbenzene-styrene gels continue to grow after gellation643 while the presence of metal ionsinterfere with the measurement of dyes on ®bres644. Dyes based on pyrene andperylene has measured temperature pro®ling in the curing of resins645 as havescalar behaviour in bulk ¯uids646. The compound 1,1-dicyano-4-(4'-dimethyl-aminophenyl)-1,3-butadiene is a valuable rotor for polymers647. Gellationeffects in PMMA were easily monitored. The botanical source of amylose can

356 Photochemistry

Page 35: Vol 31 Photochemistry

III: Polymer Photochemistry 357

be measured by tagging the sugar with 2-aminopyridine648 and N-phenyl-N-naphthylamines can measure probe depths in poly(N-isopropylacrylamide)649.The local dynamics in heterogeneous polymerisations have been measuredusing pyrene probes where termination was noted by an enhanced excimeremission650. Perester initiators, however, were powerful quenchers. Pyrene hasalso been used to measure gellations in methcarylate polymers651,652, choles-terol-methacrylates653, and polybutadienes654. Micrometric measurementshave been undertaken on labelled polysiloxanes cast onto steel surfaces655,charge-transfer processes in amino-substituted boron dipyrromethane dyes656,dimethylaminophenylphenanthrene probes in thermosensitive N-isopropyla-crylamide657 and polyelectrolyte behaviour using fullerene probes658.

Rare earth complexes have been investigated in some depth. The electro-chemical redox processes for europium complexes can be switched in PEOgiving rise to different types of ¯uorescence659. Europium complexes withpolyacrylic acid are different when compared to those in copolymers660,661 andcellulose662 where the ¯uorescence is higher. Europium(III) ions form com-plexes with CMCs, the ¯uorescence intensity of which is higher in the solidstate than in solution663. Europium naphthoate complexes give intense redemission in polystyrene664 and highly conductive ¯uorescent metal-porphyr-azines have been made665. Strong ¯uorescence has been observed from Tb(III)complexes in poly(N-oxides)666 as do samarium complexes in PMMA667.Europium ternary complexes have also been made with triphenylarsine andtriphenylstilbene668 and photochemically induced charge separation has beenelectrostatically constructed in organic-inorganic multilayer composities669.Silver ion complexes have been observed in ethanol following g-irradiation670

while alkyl substituted porphyrin polymers are useful optical sensors671. Tbsalicylate complexes exhibit strong ¯uorescence in PMMA672 while the timeresolved emission from polypyridylruthenium derivatised polystyrene is depen-dent upon the Ru(II) content673.

4 Photodegradation and Photooxidation Processes in Polymers

The photooxidation and photodegradation of polymers continues to attractsome interest but is not as widespread as in previous years. Review articleshave appeared dealing with poly(2,6-dimethyl-1,4-phenylene oxides)674, photo-catalyst ®bres675, polymers with azo links676 and accelerated weatheringspeci®cations677. Other articles of interest include the design of an integratingsphere for repeatability in polymer ageing678 and the use of FTIR formonitoring the photostability of clearcoats679.

4.1 Polyole®ns ± An Arrhenius model has been developed for lifetimeprediction of the light stability of polypropylene680. Photooxidation processesin blends of polypropylene with poly(butylene terephthalate) (PBT) arecomplicated by the thermal sensitivity of the polypropylene and the screeningeffect of the terephthalate ester681. This effect is shown in Scheme 1.

Page 36: Vol 31 Photochemistry

Conjugated chromophores develop from the PBT and these will screen thephotoinduced decomposition of the hydroperoxides in PP. This effect resultsin an accumulation of hydroperoxides from the PP. Iron diethyldithio-carbamate has been shown to exhibit an initial stabilisation effect onpolyethylene followed by sensitisation682 as does anthraquinone683,684. Tracevolatiles have been measured during the photooxidation of polyethylenes685

while ferric stearate/cerium(III) mixtures686 and starch materials are gooddegradants687.

4.2 Poly(vinyl halides) ± Photodehydrochlorination occurs in PVC with afoam backing688 as determined by Raman spectroscopy. For PVC stabilisedwith Zn/Ca stearates phooxidation indicates that dehydrochlorination dom-inates over oxidation at the inner layers beyond 100 microns689±692. The effectof polyene formation also appears to be a function of light intensity as well asoxygen diffusion rate.

358 Photochemistry

CO

O

C O

O

(CH2)4

CO

O

C O

O

(CH2)4

*

OCφ

O

CH (CH2)3

OCφO

(CH2)4

CH2CCH2

H

Me

CH2CCH2

Me

CH2CCH2

OOH

Me

OCφ

O

CH (CH2)3

OCφ

O

CH (CH2)3

OOH

O•

PP/PBT

with =PBT

Coloured conjugatedstructures

IR absorbingend-groups

+

O2, PH

HO•

PH O2

Accumulation of hydroperoxides

inhibited

reaction

PP

hydrogenabstraction

Scheme 1 Photooxidation mechanism for PP/PBT polymers

Oxidation productsof PBT

Oxidation productsof PP

Page 37: Vol 31 Photochemistry

III: Polymer Photochemistry 359

4.3 Poly(acrylates) and (alkyl acrylates) ± Fluorinated acrylics are inher-ently photostable693 while the vacuum UV photolysis of PMMA results inde-esteri®cation and double bond formation694. The stereostructure ofPMMA also has an important in¯uence on the product distribution695.X-Ray and UV exposure of PMMA was ®ngerprinted via FT NMRanalysis696.

4.4 Polyamides and Polyimides ± The photodegradation of a polyamide-hydroxyurethane is dependent upon the light ¯ux697 and is sensitised bythe addition of Fe3+ ions698 and ribo¯avine699. The latter indicated thepossible role of singlet oxygen in the photooxidation although this wasnot substantiated. Carbonyl and hydroxyl products have been monitoredin the photooxidation of nylon 6,6700 and dye ®xation is reduced701.Fractal kinetics have also been applied to the photooxidation of poly-amides702,703 allowing an estimation of homogeneous and non-homoge-neous factors.

4.5 Poly(alkyl and aromatic ethers) ± Using laser ¯ash photolysis poly(2,6-dimethyl-1,4-phenylene oxide) undergoes scission at the phenolic link to givephenoxy radicals704. Poly(vinyl methyl ether) has been shown to undergo acomplex series of photoprocesses as shown in Scheme 2.705

H

C

OMe

CH2

OOH

C

OMe

CH2

OH

C

OMe

CH2

O•

C

OMe

CH2 CCH2

OMe

O

C

OMe

CH

OHCH2 OOHCH2

O

C CH2CH2

O

C OHMeOH

3290 cm–1

RH

–H2O

O2, RH

–R•+ RH

3440 cm–1 1737 cm–1

1650 cm–1 (trans)1670 cm–1 (cis)

1718 cm–1 3440 cm–1 3290 cm–1

1707 cm–1

1754 cm–1

R• CH2•

+•OH

+•OMe

hν, O2

Autoxidation

hν, ∆

RH++

+ R•CH2•hν

+O

•C CH2

•OH+

O•CH2

hν, ∆

+ R•

Scheme 2 Photooxidation mechanism of PVME

Page 38: Vol 31 Photochemistry

The major product is the ketodiester with methanol as a major volatile. Thephotoyellowing is associated with polyconjugation formed via the dehydrationof hemiacetals.

4.6 Silicone Polymers ± Laser ¯ash photolysis of poly(methylphenylsilylene)gives a transient absorption associated with exciton states706 while fullerenereduces bond scission in polysilanes707.

4.7 Polystyrenes and Copolymers ± Rates of singlet oxygen reactions inpolystyrene have been examined by time resolved spectroscopy708. Solutediffusion coef®cients were considered to have an important in¯uence on therate constants and these, in turn, varied with the type of reactant. Irradia-tion of styrene-butadiene-styrene block copolymer gave alcohols and epox-ides as products which were not observed to be formed in high impactpolystyrene709. The presence of sulfur dioxide and nitrogen dioxide signi®-cantly accelerate the photodegradation of polystyrene710 while ESR hasidenti®ed the formation of allyl and alkyl radicals711. The photodissociationof peroxide in polystyrene is primarily associated with the evolution ofwater and CO2

712.

4.8 Polyurethanes and Rubbers ± The photooxidation of polyether-polyur-ethanes exhibits sensitivity due to the ether segments713. Formates were theprimary products of photorearrangement. The addition of styrene-butadienecopolymers to polyole®ns signi®cantly enhances their susceptibility to photo-oxidation via the butadiene component714. Horizontal attenuated FTIR spec-troscopy has been found useful for detecting the products of photooxidation ofrubbers715.

4.9 Polyesters ± Aliphatic polyesters undergo rapid outdoor degradationand are claimed to be viable as environmentally friendly716. The photo-degradation of polyester coatings has been investigated in depth717 while forpoly(butylene succinate) depth pro®ling on photooxidation to 312 nm irradia-tion showed a gradual decrease in chromophore concentration whereas forpoly(ethylene terephthalate) chromophore development did not go beyond 10microns718.

4.10 Photoablation of Polymers ± Laser ablation remains a topical subject.Phenylhydrazine has been found useful in aiding the excimer ablation ofPTFE719 as are bithiophene compounds720. An anomalous increase in thespectral diffusion of hole burning in PMMA samples has been observedwhen doped with Zn tetrabenzoporphyrin721 while large and small changesin microenvironments have been noted when hole burning PMMA andpolyethylene722. Excimer laser ablation of polysilane ®lms has been success-fully carried out723 as has PTFE using amine based charge-transfer com-plexes724. The photochemical hole burning in poly(vinyl alcohol) gave morestable holes when doping with unimolecular micelles than with tetraphenyl-

360 Photochemistry

Page 39: Vol 31 Photochemistry

III: Polymer Photochemistry 361

porphyrine725 while polymers with photolabile azo links undergo microex-plosions on laser ablation726. Vacuum UV excimer laser ablation of a¯uorinated polymer ®lm gave good wettability727 whereas a polyurethane®lm has been ablated in the presence of a polysaccharide for hydrophilicpackaging applications728.

4.11 Natural Polymers ± Amino acids are shown to participate in the photo-induced oxidation of silk with protein yellowing being inhibited by thepresence of a UV absorber729,730. Monomeric o-quinones are considered to bethe major chromophores responsible for the photoyellowing of paper pulps731.In another study, the formation of p-stilbene-phenols are found to be themajor yellowing chromophores732. In sapwood various resinols have beenidenti®ed and formed via quinonemethide intermediates733. Transient radicalsproduced from a-guaiacoxy-b-propioveratrone are intermediates in ligninphotoyellowing734 and these have been monitored via ESR735. The colourchanges in softwoods have been monitored736 while the production of peroxy-formic processes in the production of pulps has been improved737 and theireffects examined on photoyellowing738,739. Phenoxy radicals have been mea-sured in situ on paper following laser ¯ash photolysis740 and biotreatment ofspent liquors examined for bleaching741. The photoinduced formation ofenzymic polymers produced from coniferyl alcohol form large assembliescalled `supermodules'742. Other studies include the photodegradation ofpopulus grandis743, thiol stabilisation of hardwood744 and photodegradationof milled wood lignin745. Using Raman spectroscopy the rate of S-S cysteinebond scissions can be monitored in wool ®bre746.

4.12 Miscellaneous Polymers ± The photooxidation of an epoxy cured resinincreases through the layer at a constant rate747 while photobiodegradablestarches have been synthesised by grafting vinyl ketone monomers748. Vinylketone copolymers give vinyl end groups and crosslinking on irradiation749. Anew method has been developed for monitoring the out-door ageing ofdispersed coatings750 and anhydride cured epoxy resins have been monitoredvia FTIR analysis751. Iron doped poly(ethylene-co-acrylic acid) acts as asensitiser752 while the decay of radicals has been measured in PMMAglasses753. Bivoltine silk ®bres undergo an initial process of chain scissionfollowed by extensive crosslinking on irradiation754. The photoyellowing ofcoatings has been measured755 as has the photodegradation of clear coats756

and polymer metal complexes757. The bio and photodegradation rates ofpoly(hydroxybutyrate-co-hydroxyvalerate) have been measured and con-trolled758 as have organotin macromolecules759. Poly(alkylaryldiazosul®des)undergo photorearrangement from the E to the Z form760 while thermalblankets have been made for spacecraft from a per¯uoropropylene-tetra¯uoro-ethylene copolymer761. Using laser desorption mass spectrometry triterpenesundergo polymerisation762. Polyperoxides degrade energetically763 while thephotodegradation of a 4'-nitrostilbene polymer is highly wavelength depen-dent764. New ®ndings into the yellowing of coatings have been made765 and the

Page 40: Vol 31 Photochemistry

water barrier of paints examined by FTIR766. Polydiacetylene undergoesrandom chain scission followed by depolymerisation on irradiation767 whereaspolyanhydrides undergo rapid crosslinking768. Polyphenylene ether only un-dergoes surface degradation protecting its bulk through self screening769 whilethe incorporation of side groups into PPV's enhances their photolytic stabi-lity770. Nitro groups have been found to be particularly effective in this regard.Chain scission reactions in different acrylic melamine clearcoats have beenexamined771 as have photoreactions in per¯uorinated polymers772 and nano-sized polyacrylates773.

5 Photostabilisation of Polymers

A number of reviews on polymer photostabilisation have appeared774±780 aswell as the stabilisation of ceramic paints781, clearcoats782, wood ®nishes783

and car body paints784±786. Hindered piperidine stabilisers (HALS) have alsobeen reviewed in depth787 and the surface stabilisation of polystyrenecovered788.

The dielectric strength of polyethylene has been measured as a function ofadditive concentration789 while in stabilised polymers the depth of degradationwas found to be uniform790. HALS have been found to be effective stabilisersfor UV cured coatings and do not in¯uence the cure rate791. Bleached woodpulps can be effectively stabilised by ascorbic acid792 and wool by hydroxy-benzotriazoles and HALS793. Hydroxybenzotriazole stabilisers also protectwood pulp794 and polyurethanes by co-reaction795. The spectroscopic proper-ties of monomeric and polymeric benzotriazoles have also been compared796.UV absorbers are effective in clear coats797 and when grafted to wood798.Dihydroxybenzophenone stabilisers inhibit the chain scission in the photo-degradation of poly(methoxyacrylophenone)799 while tin stabilisers have alsobeen found to photostabilise PVC800.

Several studies have dealt with HALS stabilisers. A number of novelnaphthyl and naphthoate-HALS derivatives have been synthesised andevaluated as thermal and light stabilisers in polyole®ns801. The naphthalenemoiety is found to induce good thermal and light stability with the tertiarystructures operating more effectively in the latter case. In another study itwas found that naphthalene adducts with HALS are less effective asstabilisers802. Polymer bound HALS have been found to be more effectivethan either the monomeric or polymeric types in stabilisation803. The g-raygrafting of HALS to polyole®ns gives rise to improved performance804 as didpartially grafted HALS to polyurethanes805. Polymeric HALS are alsoeffective when grafted into PMMA806 and other polymers807,808 as well aswhen doped into polysiloxanes809. The time evolution of nitroxyl radicalsproduced in the photo-oxidation of polypropylene has been monitored viaESR810. The migration of HALS during irradiation has been shown to beeffective only when oxidation products in the polymer build-up to an effectiveconcentration811.

362 Photochemistry

Page 41: Vol 31 Photochemistry

III: Polymer Photochemistry 363

6 Photochemistry of Dyed and Pigmented Polymers

A review has appeared on the photodegradation of dyes812 and another articleon carbon black technology813. Of particular interest is the observation thatzinc 1-hydroxy-2-naphthoate photoprotects photochromic dyes814 as does aUV absorber for azo dyed silk815.

Benzanthrone dyes enhance the photostability of PMMA816 and testingmethods for colour fastness have been assessed for some reactive dyes817.Enzymatic processes for the degradation of dyes have been examined818 whilediffuse re¯ectance spectroscopy is useful for examining the triplet states ofdyes in situ on polymer fabrics819. Singlet oxygen has been found to bedynamically quenched on cotton ®bres. The photofading of reactive azo dyesin various bound and unbound forms has been assessed. Dyes with the reactivesubstituent were more photostable while a methoxy substituent reducedstability820. Covalently ®xed dyes were also more photostable to perspirationeffects821,822. The addition of ¯uorescent brightening agents alters the hue ofdyes after washing823 whereas the presence of ferric citrate reduces dyelightfastness824. Photobleaching processes for ¯uorescent rhodamine dyes havebeen examined under conditions where a two step photolysis is involved825

while methylene blue undergoes photochemical reduction with an amine826.The light stability of triarytlmethane dyes is reduced when bound to bovinealbumin and this correlates with an enhanced ¯uorescence quantum yield827.Using ESR dichloro¯uorescein is shown to undergo a one electron transferprocess to give a semiquinone radical that is immediately oxidised on admittingoxygen828. A rhodacyanine dye photofades via a self-sensitised reaction withsinglet oxygen829 and photobleaching reactions have been examined for a¯uorescein dye in cotton830.

Much of the work on pigments centres on titanium dioxide pigments.Calcium carbonate has been shown to behave as a stabiliser in polyethylene831.Titanium dioxide ®ller particles become agglomerated after photooxidation inPVC-rubber mixtures832 whereas in PVC itself titanium dioxide pigmentinduces subterranean polyene formation833. Stabiliser interactions have beenstudied with uncoated rutile and anatase pigments in the photooxidation ofpolypropylene834. Rutile is found to be synergistic with phenolic antioxidantsand HALS but antagonistic with hydroxyaromatic absorbers. In the presenceof anatase pigment strong antagonism is observed especially in the presence ofmixtures of stabilisers. Polymeric HALS are found to perform well against thephotocatalytic effect of the anatase pigment. Microwave dielectric spectro-scopy has been developed to describe the charge-carrier dynamics in titaniumdioxide pigments835. Shifts in the resonant frequency and microwave powerare related to the population of free carriers and photocatalytic activity of thepigment. Photoinduced electron transfer from bound anthracene carboxylicacid dye to titanium dioxide (titania) nano-particles depends upon the syn-thetic method for the particles836. Facile electron transfer was observed for theanatase modi®cation. Apparently, silica alone on the surface of titania particlesgives poor coatability whereas mixtures with alumina are superior837. The

Page 42: Vol 31 Photochemistry

surface activity of nanoparticulate anatase was blocked to reduce its activityfor acrylic paints838. Degradation processes in PTFE depend on the nucleatingef®ciency of the titania particles839. Wood pulps are effectively bleached usingtitania pigments840 while carboxylic acid formation has been found to be highin titania ®lled rubber and atactic polypropylene841. Titania ®lms have beensputtered onto the surface of polyester ®lms842 and found to photocatalyse thedecomposition of azo dyes843±845 in solution and cotton846. Encapsulatingtitania particles in crosslinked polymers reduces their photoactivity847.

7 References

1. J. P. Fouassier, Rapra Rev., Rep., 1997, 9, 1.

2. A. Furuhama, Toso Kogaku, 1997, 32, 439.

3. M. Irie and T. Ike, Funct. Monomers and Polym. (2nd Ed.), 1997, 65.

4. K. Takeuchi and K. Okita, Toso Kogaku, 1997, 32, 490.

5. J. E. Gibson and C. N. Bowman, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 649.

6. A. Kaeyama, Kino Zairyo., 1998, 18, 50.

7. H. Meng, J. Yin and X. Hong, Gongneng Cailiao, 1997, 28, 247.

8. S. M. Aliwi, Handb. Eng. Polym. Mater., (Ed. N. P. Cheremisinoff), 1997, 243.

9. X. Feng, K. Y. Qiu and W. X. Cao, Handb. Eng. Polym. Mater., (Ed. N. P.

Cheremisinoff), 1997, 227.

10. A. Hafner, P. A. van der Schaaf, A. Muhlebach, P. Bernard, U. Schaedeli,

K. Ulrich and A. Ludi, Prog. Org. Coat., 1997, 32, 89.

11. M. Szwarc, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998, 36, 5.

12. M. Visconti, M. Cattaneo and G. Li Bassi, Pitture Vernici Eur., 1997, 73, 38.

13. L. Ding and X. Ma, Reguxing Shuzhi., 1997, 12, 47.

14. I. Reetz, Y. Yagci and K. Munmaya, Plast. Eng., 1998, 48, 149.

15. A. Lebel, J. Couve and M. J. M. Abadie, Acad. Sci., Sers Iic: Chim., 1998, 1,

201.

16. Y. Cui, C. Liu and Q. Gao, Huaxue Yanjiu, 1998, 9, 11.

17. F. Catalina, C. Peinado, M. Blanco, N. S. Allen, T. Corrales and I. Lukac,

Polymer, 1998, 39, 4399.

18. N. S. Allen, N. G. K. Salleh, M. Edge, T. Corrales, M. Shah, F. Catalina and

A. Green, Eur. Polym. J., 1997, 33, 1639.

19. C. Zhao, Y. Lin, J. Wang and G. Qi, Fushe Yanjiu Yu Fusche Gongyi Xuebao,

1998, 16, 185.

20. J, Yang, Z. Zeng and Y. Chen, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998,

66, 2563.

21. N. S. Allen, T. Corrales, M. Edge, F. Catalina, C. Peinado, M. Blanco-Pinar and

A. Green, Eur. Polym. J., 1998, 34, 303.

22. N. S. Allen, T. Corrales, M. Edge, F. Catalina, C. Peinado, M. Blanco-Pinar and

A. Green, Polymer, 1998, 39, 903.

23. D. J. Manga, A. Polton, M. Tardi and P. Sigwalt, Polym. Int., 1998, 45, 14.

24. X. D. Jiang, G. Q. Yang, S. K. Shi, F. Morlet-Savarey and J. P. Fouassier,

Huaxue Xuebao, 1998, 56, 979.

25. P. N. Sophiamma and K. Sreekumar, Polym. Int., 1998, 45, 157.

26. S. Shimada, K. Tabuchi and M. Tsnooka, Polym. J. (Tokyo), 1998, 30, 152.

364 Photochemistry

Page 43: Vol 31 Photochemistry

III: Polymer Photochemistry 365

27. T. Hayashi, H. Mizuma, H. Yao and S. Takahara, Jpn. J. Appl. Phys., Part I,

1998, 37, 2660.

28. E. Andrzejewska, L. Linden and J. F. Rabek, Macromol. Chem. Phys., 1998, 199,

441.

29. M.G. Neumann and M. R. Rodrigues, Polymer, 1998, 39, 1657.

30. V. B. Ivanov and E. Yu. Khavina, Plast. Massey, 1998, I, 35.

31. M. Koehler, Eur. Coat. J., 1997, 12, 1118.

32. X. Q. Liu, F. S. Du, Z. C. Li, F. M. Li, Q. Yu. Gao, G. X. Yang and J. X.

Zhang, J. Appl. Polym. Sci., 1998, 70, 1191.

33. G. Yang, Q. Gao, Y. Cui, J. Zhang, X. Liu and F. Li, Gaofenzi Xuebao, 1998, 5,

624.

34. A. B. Duz, A. Onen and Y. Yagci, Angew. Makromol. Chem., 1998, 258, 1.

35. D. A. Tasis, M. G. Siskos and A. K. Zakadis, Macromol. Chem. Phys., 1998, 9,

1981.

36. A. Bhattacharya, A. De and P. C. Mandal, J. Radioanal. Nucl. Chem., 1998, 230,

91.

37. D. S. Bag and S. Maiti, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998, 36,

1509.

38. M. H. Acar, Y. Yagci and W. Schanbel, Polym. Int., 1998, 46, 331.

39. Y. Chen, T. Urano, T. Karatsu, S. Taka, T. Yamaoka and K. Tokumaru,

J. Chem. Soc., Perkin Trans., 1998, 2233.

40. P. Ghosh and G. Pal, J. Polym. Sci., Polym. Chem. Ed., 1998, 36, 1973.

41. P. Gosh and G. Pal, Eur. Polym. J., 1998, 34, 677.

42. K. D. Bel®eld and S. Pichandi, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 373.

43. J. Kabatc, M. Pietrzak and J. Paczkowski, Macromolecules, 1998, 31, 4651.

44. G. K. Jordan and M. F. Farona, Polym. Bull. (Berlin), 1998, 40, 9.

45. A. Ajayaghosh and R. Francis, Macromolecules, 1998, 31, 1436.

46. A. F. Maslyuk, V. V. Ageeva, G. K. Bereznitskii, V. A. Khranovskii and I. M.

Sopina, Ukr. Khim. Zh., 1997, 63, 65.

47. Q. Gao, G. yang, Y. Cui, F. Zhang, J. Zhang and F. Li,. Gaofenzi Xuebao, 1997,

6, 749.

48. S. Nagai and D. Fukuda, Kogaku to Kogyo (Osaka), 1998, 72, 403.

49. M. F. Budyka, T. S. Zyubina and M. M. Kantor, Internet. J. Chem., 1998,

Article 2.

50. L. Wang, X. Liu and Y. Li, Macromolecules, 1998, 31, 3446.

51. P. Ghosh and G. Pal, Eur. Polym. J., 1997, 33, 1695.

52. F. Gao, J. Q. Xu, Y. Y. Yang, L. D. Li and S. J. Feng, J. Photopolym. Sci. and

Technol., 1998, 11, 101.

53. K. Teshima, S. Uemura, N. Kobayashi and R. Hirohashi, Macromolecules,

1998.

54. Y. Toba, Y. Usui, M. M. Alam and O. Ito, Macromolecules, 1998.

55. K. Feng, H. Zang, D. Martin, H. L. Marino and D. C. Neckers, J. Polym. Sci.,

Part A: Polym. Chem. Ed., 1998, 36, 1667.

56. T. Sato, T. Umenoki and M. Seno, J. Appl. Polym. Sci., 1998, 69, 525.

57. L. D. Arvanitopoulos, M. P. Greuel, B. M. King, A. K. Shim and H. J.

Harwood, ACS Symp. Ser., 1998, 685, 316.

58. G. Sundararajan, B. Gita and R. Manivannan, Macromol. New Front. Proc.

IUPAC Int. Symp. Adv. Polym. Sci. Technol., 1998, 1, 37.

59. I. Poljansek and A. Sebenik, Zb. Ref. Posvetovanja Slov. Kem. Dnevi., 1997, 609.

Page 44: Vol 31 Photochemistry

60. T. S. Kwon, S. Kondo, H. Kunisada and Y. Yuki, Polym. J. (Tokyo), 1998, 300,

559.

61. D. Burtin, B. Boutevin, P. Gramain, J. M. Fabre and C. Montginoul, Eur.

Polym. J., 1998, 34, 85.

62. I. Cakmak, New Polym. Mater., 1998, 5, 159.

63. R. Sato, T. Kurihara and M. Takeishi, Polym. J. (Tokyo), 1998, 30, 158.

64. R. Sato, T. Kurihara and M. Takeishi, Polym. Int., 1998, 47, 159.

65. K. Tabuchi, M. Oishi, C. Tsutsumi and K. Nakagawa, Niihama Kogyo Koto

Senmon Gakko Kiyo, 1998, 34, 81.

66. J. Lange, J. Rieumont, N. Davidenko and R. Sastre, Polymer, 1998, 39, 2537.

67. R. A. Hutchinson, S. Beuermann, D. A. Paquet, J. H. McMinn and C. Jackson,

Macromolecules, 1998, 31, 1542.

68. G. Zifferer and O. F. Olaj, Macromol. Theory Simul., 1998, 7, 157.

69. D. A. Shipp, T. A. Smith, D. H. Solomon and G. Moad, Polym. Prepr. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 506.

70. Y. Xu, M. Imamura and T. Nakagawa, Solid Freeform Fabr. Symp. Proc., 1997,

177.

71. C. Esen and G. Schweiger, Chem. Eng. Technol., 1998, 21, 36.

72. J. R. Crivello, Int. SAMPE Symp. Exhib., 1998, 43, 1190.

73. R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A.

Magnitskii, D. V. Malakov, A. V. Tarasishin and A. M. Zheltikov, Laser Phys.,

1998, 8, 1105.

74. V. V. Lavrov, E. V. Skokan, I. V. Arkhangelskii, O. M. Vovk and L. N. Sidorov,

Proc.-Electrochem. Soc., 1998, 98, 743.

75. T. Seki, K. Tanaka and K. Ichimura, Polym. J. (Tokyo), 1998, 30, 646.

76. A. Blasinska, Polimery (Warsaw), 1998, 43, 422.

77. J. G. Park, W. M. Choi, N. J. Lee, C. S. Ha and W. J. Cho, J. Polym. Sci., Part

A: Polym. Chem. Ed., 1998, 36, 1625.

78. A. Matsumoto, Y. Ishizu and K. Yokoi, Macromol. Chem. Phys., 1998, 199,

2511.

79. S. Katogi, C. W. Miller, C. E. Hoyle and S. Jonsson, Polymer, 1998, 39, 2709.

80. P. Kholi, A. B. Scranton and G. J. Blanchard, Macromolecules, 1998, 31, 5681.

81. S. C. Clark, C. E. Hoyle, S. Jonsson, F. Morel and C. Deker, Radtech'98 North

Am. UV/EB Conf. Proc., 1998, 177.

82. K. Viswanathan, S. Clark, C. Miller, C. E. Hoyle, S. Jonsson and L. Shao,

Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 644.

83. C. W. Miller, S. Jonsson, C. E. Hoyle, C. Hasselgren, T. Haraldsson and

L. Shao, RadTech'98 North Am. UV/EB Conf. Proc., 1998, 182.

84. J. S. Bowers, R. Nagaranjan, H. Cui, C. Miller, L. Shao, C. E. Hoyle and

S. Jonsson, RadTech'98 North Am. UV/EB Conf. Proc., 1998, 14.

85. D. S. Muggli, J. S. Young and K. S. Anseth, Wiley Polym. Networks Group Rev.

Ser., 1998, 1, 161.

86. W. Shi, Gaofenzi Xuebao, 1997, 5, 549.

87. K. C. Kennedy, T. Chen and R. P. Kusy, J. Mater. Sci., Mater. Med., 1998, 9, 243.

88. O. Nuyken, C. E. Spindler and R. B. Raether, J. Macromol. Sci., Pure and Appl.

Chem., 1997, A34, 2389.

89. G. Haacke, E. Longordo, F. F. Andrawes and B. H. Campbell, Proc.-Int. Conf.

Org. Coat.: Waterborne, High Solids Powders Coat., 23rd., 1997, 171.

90. T. Noh, T. Wada and H. Sasabe, RIKEN Rev., 1998, 17, 47.

91. L. Lavielle, C. Turck and D. J. Lougnot, J. Phys. Chem., 1998, 102.

366 Photochemistry

Page 45: Vol 31 Photochemistry

III: Polymer Photochemistry 367

92. C. Esen, Fortschr. Ber. VDI, Reihe 3, 1997, 516, 1.

93. H. Wang, B. A. Padias and H. K. Hall, Macromolecules, 1998, 31, 3247.

94. N. Davidenko, C. Peniche, R. Sastre and J. S. Roman, Polymer, 1998, 39, 917.

95. X. Huang, Z. Lu and J. Huang, Polymer, 1998, 39, 1369.

96. J. Matuszewska and S. Polowinski, Eur. Polym. J., 1998, 34, 557.

97. A. R. Khan and Z. H. Farooqui, Pak. J. Sci. Ind. Res, 1995, 38, 388.

98. A. Deronzier, P. Jardon, A. Marte, J. C. Moutet, S. Clara, V. Balzani, A. Credi,

F. Paolucci and S. Rof®a, New J. Chem., 1998, 22, 33.

99. J. V. Crivello and S. Liu, Chem Mater., 1998.

100. O. Nuyken, R. B. Raether and C. E. Spindler, Des. Monomers Polym., 1998, 1,

97.

101. R. Muneer and T. W. Nalli, Macromolecules, 1998, 31, 7976.

102. I. I. Abu-Abdoun and A. Ledwith, Eur. Polym. J., 1997, 33, 1671.

103. C. Zhao, J. Y. Chen and W. X. Cao, Angew. Makromol. Chem., 1998, 259, 77.

104. J. Zhou and J. Zhou, Shenhwu Huaxue Yu Shengwu Wuli Jinzhan, 1998, 25,

167.

105. W. Zhou, Y. He, Z. Wu and E. Wang, Yingyong Huaxue, 1998, 15, 6.

106. S. Mah, D. You, H. Cho, S. Cho and J. H. Shin, J. Appl. Polym. Sci., 1998, 69,

611.

107. R. Lazauskaite, G. Buika, J. V. Grazulevicius and R. Kavaliunas, Eur. Polym. J.,

1998, 34, 1171.

108. Y. Yamaguchi, B. J. Palmer, T. Wakamatsu, D. B. Yang and C. Kutal, Polym.

Mat. Sci. Eng., 1998, 79, 1.

109. Y. Yamaguchi, B. J. Palmer, C. Kutal, T. Wakamatsu and D. B. Yang,

Macromolecules, 1998, 31, 5155.

110. L. R. Guseva, V. V. Ivanov, K. G. Kostarev and T. M. Yudina, Russ. Polym.

News, 1998, 3, 25.

111. X. Chen and Y. Chen, J. Appl. Polym. Sci., 1997, 66, 2551.

112. X. Zhuang, H. Shi, C. Zeng and Y. Chen, Ganguang Kexue Yu Guang Huaxue,

1998, 16, 8.

113. Y. Toba, M. Yasuike and Y. Usui, J. Photosci., 1998, 5, 63.

114. Y. Kaneko and D. C. Neckers, J. Phys. Chem. A, 1998, 102, 5356.

115. S. Kaur, J. V. Crivello and N. Pascuzzi, Polym. Prepr. (Am. Chem. Soc., Div.

Polym. Chem.), 1998, 39, 441.

116. H. G. Boerner and W. Heitz, Macromol. Chem. Phys., 1998, 199, 1815.

117. H. Tachi, P. Jun and M. Tsnooka, J. Photopolym. Sci. Technol., 1998, 11, 121.

118. T. Takahashi, K. Ikegaya, H. Watanabe, N. Miyagawa, S. Takahara and

T. Yamaoka, J. Photopolym. Sci. Technol., 1998, 11, 77.

119. W. D. Davies, I. Hutchinson and G. Walton, RadTech'98 North Am. UV/EB

Conf. Proc., 1998, 20.

120. M. Tsnooka, T. Matsuoka, Y. Miyamoto and K. Suyama, J. Photopolym. Sci.

Technol., 1998, 11, 123.

121. M. Visconti, M. Cattaneo and B. G. Li, RadTech'98 North Am. UV/EB Conf.

Proc., 1998, 28.

122. M. Cattaneo and M. Visconti, RadTech'98 North Am. UV/EB Conf. Proc., 1998,

731.

123. A. Valet, T. Jung, M. Kohler and C. H. Chang, RadTech'98 North Am. UV/EB

Conf. Proc., 1998, 444.

124. D. G. Anderson, N. R. Cullum and R. S. Davidson, RadTech'98 North Am. UV/

EB Conf. Proc., 1998, 457.

Page 46: Vol 31 Photochemistry

125. A. Costela, I. Garcia-Moreno, J. Dabrio and R. Sastre, Macromol. Chem. Phys.,

1997, 198, 3787.

126. J. Alvarez, E. A. Lissi and M. V. Encinas, J. Polym. Sci. Part A: Polym. Chem.

Ed., 1998, 36, 207.

127. J. Li, M. Li, J. Tang, Y. He and E. Wang, Fushe Yanjiu Yu Fushe Gongyi Xuebao,

1997, 15, 246.

128. K. H. Chae and H. B. Song, Polym. Bull. (Berlin), 1998, 40, 667.

129. M. Shirai, N. Nogi and M. Tsnooka, Mert and D. C. Neckers, Polym. Prepr.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 726.

130. B. Strehmel, A. M. Sarker, J. H. Mert and D. C. Neckers, Polym. Prepr. (Am.

chem. Soc., Div. Polym. chem.), 1998, 39, 726.

131. W. Kern, J. Hobisch and K. Hummel, Macromol. Chem. Phys., 1998, 199, 1413.

132. Y. Tajima and K. Taleuchi, J. Photopolym. Sci. Technol., 1998, 11, 37.

133. S. Hu, A. M. Sarker, Y. Kaneko and D. C. Neckers, Macromolecules, 1998, 31,

6476.

134. O. Nuyken, R. B. Raether and C. E. Spindler, Macromol. Chem. Phys., 1998,

199, 191.

135. X. Zhuang, B. Li and Y. Chen, Zhongshan Daxue Xuebao, Ziran Kexueban, 1996,

35, 24.

136. U. Muller, A. Kunze, Ch. Herzig and J. Weis, Organosilicon Chem. III, 3rd

(1996), 1998, 594.

137. J. V. Crivello and S. S. Liu, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998, 36, 1179.

138. S. Chakrapani and J. V. Crivello, J. Macromol. Sci., Pure Appl. Chem., 1998,

A35, 1.

139. S. Chakrapani and J. V. Crivello, J. Macromol. Sci., Pure Appl. Chem., 1998,

A35, 691.

140. C. Decker and T. H. Ngoc, ACS Symp. Ser., 1998, 704, 286.

141. V. M. Vatulev, O. P. Batog, V. V. Magdinets and V. Yu. Pashinnik, Theor. Exp.

Chem., 1998, 33, 219.

142. W. Wang and W. She, Gongneng Gaofenzi Xuebao, 1997, 10, 503.

143. Q. Q. Zhu and W. Schnabel, Polymer, 1998, 39, 897.

144. C. Priou, Organosilicon Chem. III, 3rd (1996), 1998, 605.

145. H. Luo, B. X. Yang, L. Yang and W. X. Cao, Macromol. Rap. Commun., 1998,

19, 291.

146. S. Cao, C. Zhao and W. Weixiao, Polym. Int., 1998, 45, 142.

147. W. Cao, C. Zhao and J. Cao, J. Appl. Polym. Sci., 1998, 69, 1975.

148. S. A. Ekhorutomwen and S. P. Sawan, Proc. SPIE-Int. Soc. Opt. Eng., 1998,

3282, 59.

149. A. Matsumoto, T. Odani and K. Yokoi, Proc. Jpn. Acad. Ser. B, 1998, 74, 110.

150. G. I. Nosova, N. I. Rtishchev, A. N. Solovskaya, A. V. Dobrodumov, V. A.

Luk'yashina and V. V. Kudryavtsev, Rus. J. Gen. Chem., 1997, 67, 618.

151. M. M. Coleman, Y. Hu, M. Sobkowiak and P. C. Painter, J. Polym. Sci., Part B:

Polym. Phys. Ed., 1998, 36, 1579.

152. A. Th. Ionescu, R. Barberi, M. Giocondo, M. Iovane and A. L. Alexe-Ionescu,

Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, 58, 1967.

153. A. A. Hyder and K. S. V. Srinivasan, J. Appl. Polym. Sci., 1998, 67, 441.

154. H. Hwang, B. Lim, H. Chang, D. Kim, T. Kim and Y. Kim, Mol. Cryst. Liq.

Cryst. Sci. Technol., Sect. A, 1997, 295, 387.

155. G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky and

R. H. Grubbs, J. Am. Chem. Soc., 1998, 120, 3641.

368 Photochemistry

Page 47: Vol 31 Photochemistry

III: Polymer Photochemistry 369

156. K. Rajesh, M. K. Ram, S. C. Jain, S. B. Samanta and A. V. Narliker, Thin Solid

Films, 1998, 325, 251.

157. A. Matsumoto, K. Yokoi and S. Aoki, Polym. J. (Tokyo), 1998, 30, 361.

158. A. Matsumoto, T. Odani and S. Aoki, Polym. J. (Tokyo), 1998, 30, 358.

159. M. Ghosh, T. K. Mandal, S. Chakrabarti and T. N. Misra, J. Raman Spectro-

scopy, 1998, 29, 807.

160. M. Hasegawa, C. H. Chung and K. Kinbara, J. Photosci., 1997, 4, 147.

161. N. Kawazoe, A. Imagawa, T. Tamai and Q. Tran-Cong, J. Appl. Polym. Sci.,

1998, 67, 885; K. Katsunari, T. Tamai and Q. Tran-Cong, J. Polym. Sci., Part B:

Polym. Phys. Ed., 1998, 36, 455.

162. A. Jianji and G. R. Hamed, Polym. Bull. (Berlin), 1998, 40, 499.

163. X. Zhang, Hecheng Xiangjiao Gong, 1998, 21, 31.

164. S. Lakshmi and A. Jayakrishnan, Polymer, 1997, 39, 151.

165. M. Doytcheva, R. Stamenova, V. Zvetkov and Ch. B. Tsvetanov, Polymer, 1998,

39, 6715.

166. C. B. Tsvetanov, R. Stamenova, D. Dotcheva, M. Dotcheva, N. Belcheva and

J. Smid, Macromol. Symp., 1998, 128, 1113.

167. B. George, J. M. Nasrullah and R. Dhamodharan, Macromolecules-New Fron-

tiers., Proc. IUPAC Int. Symp. Adv. Polym. Sci. & Technol., 1998, 1, 89.

168. Y. Xu, W. Shi, W. Li, S. Sun and B. Qu, Huaxu Wuli Xuebao., 1998, 11, 161.

169. T. Jung and M. Koehler, JOT, J. Ober¯aechentech, 1998, 38, 26.

170. L. R. Guseva and V. P. Begisheva, Plast. Massey, 1995, 6, 18.

171. A. Lungu, A. Mejiritski, Polymer, 1998, 39, 4757.

172. L. S. Coons, B. Rangarajan, D. Godshall and A. B. Scranton, AMD, 1995, 211,

227.

173. T. Hanemann, R. Ruprecht and J. H. Hausselt, Polym. Prep. (Am. Chem. Soc.,

Div. Polym. Chem.), 1998, 39, 657.

174. T. Jung, M. Koehler and D. Wostratzky, SAMPE J., 1998, 34, 30.

175. H. H. Bankowsky, P. Enenkel, E. Beck, E. Keil and M. Lokai, Polym. Prep.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 251.

176. C. Ecoffet, A. Espanet and D. J. Lougnot, Adv. Mater. (Weinheim), 1998, 10,

411.

177. S. Matsui, H. Sato and T. Nakagawa, J. Membr. Sci., 1998, 141, 31.

178. M. O. Yeom, H. S. Kim, S. S. Sang and J. J. Kim, Polymer (Korea), 1998, 22,

140.

179. G. M. Cruise, D. S. Sharp and J. A. Hubbell, Biomaterials, 1998, 19, 1287.

180. J. F. Widman, C. L. Aardahl, T. J. Johnson and E. J. Davis, J. Colloid Interface

Sci., 1998, 199, 197.

181. L. Albertin, P. Stagnaro, C. Coutterez, J. F. LeNest and A. Gandini, Polymer,

1998, 39, 6187.

182. J. Barwich, U. Dusterwald, B. Meyer-Roscher and R. Wusterfeld, Adhes. Age,

1997, 40, 22.

183. H. B. Sunkara, B. G. Penn, D. O. Frazier and N. Ramachandran, J. Mater. Sci.,

1998, 33, 887.

184. A. Yu. Vainer, I. E. Dosovitskaya, K. M. Dyumaev, A. M. Kovalenko and S. K.

Lodygin, Dokl. Akad. Nauk, 1998, 360, 769.

185. H. Seino, A. Mochizuki, O. Haba and M. Ueda, Polym. Prep. (Am. Chem. Soc.,

Div. Polym. Chem.), 1998, 39, 857.

186. K. H. Chae, J. S. Park, C. H. Cho and J. Y. Chang, Korean Polym J., 1998, 6,

174.

Page 48: Vol 31 Photochemistry

187. P. Zhu, Z. Li, J. Li, W. Feng and Q. Wang, Gongneng Gaofenzi Xuebao, 1998, 11,

9.

188. K. Feng, M. Tsushima, T. Matsumoto and T. Kurosaki, J. Polym. Sci., Part A:

Polym. Chem., 1998, 36, 685.

189. Y. L. Zou, T. L. Alford and J. W. Mayer, Mater. Res. Soc. Symp. Proc., 1997,

476, 255.

190. W. S. Li, Z. X. Shen, J. Z. Xheng and S. H. Tang, Appl. Spectrosc., 1998, 52,

985.

191. Q. Lu, L. Sun, Z. Wang and Z. Zhu, Gaofenzi Cailiao Kexue Yu Gongcheng,

1998, 14, 96.

192. S. E. Cantor, Circuit World, 1997, 24, 30.

193. J. Sun, T. Wu, Y. Sun, Z. Wang, J. S. Zhanga, J. Sun and W. Cao, Chem.

Commun. (Cambridge), 1998, 17, 1853.

194. T. Nishikuo, Kawamura Rikagaku Kenkyusho Hokoku, 1997, 1±5.

195. W. Kern, M. Cifrain, R. Schroeder, K. Hummel, C. Mayer and M. Hofstotter,

Eur. Polym. J., 1998, 34, 987.

196. J. S. Young, A. R. Kannurpatti and C. N. Bowman, Trends Polym. Sci., 1998,

199, 1043.

197. L. G. Lovell, A. R. Kannurpatti and C. N. Bowman, Polym. Prep. (Am. Chem.

Soc., Div. Polym. Chem.), 1998, 39, 657.

198. V. N. Nikolaev and L. V. Mikhailova, Plast. Massey, 1997, 1, 3.

199. A. R. Kannurpatti, J. W. Anseth and C. N. Bowman, Polymer, 1998, 39, 2507.

200. H. Pan, Z. Suen, S. Yao, J. Huang, S. Huang and R. Li, Zhongguo Jiaonianji,

1997, 6, 5.

201. K. Wakasa, R. Priyawan, N. A. Niaz, Y. Yoshida, N. Natsir, M. J. Chowdhury,

Y. Yamasaki, A. Ikeda, K. Shirai, M. Yoshioka and H. Shintani, Hiroshima

Daigaku Shigaku Zasshi, 1998, 30, 1.

202. S. H. El-Hamouly, A. Z. El-Fayoumy, E. H. El-Shamy and N. A. Abd-El-Malak,

Mater. Chem. Phys., 1998, 55, 122.

203. Y, Hirota, F. Nakanishi, T. Kinoshita, Y. Tsujita and H. Yoshimizu, Kobunshi

Ronbunshu, 1997, 54, 966.

204. Y. Zhang, Y. Yousheng and F. Lu, Xi'an Jiaotong Daxue Xuebao, 1998, 32, 65.

205. E. Szymanska, Z. K. Brzozowski and E. Tatara, Polym. Plast. Technol. Eng.,

1998, 37, 309.

206. J. Ma, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 671.

207. A. Valet, T. Jung and M. Koehler, Farbe Lacke, 1998, 104, 42.

208. R. Schwalm, L. Haussling, W. Reich, E. Beck, P. Enenkel and K. Menzel, Prog.

Org. Coatings, 1997, 32, 191.

209. Z. Lu, X. Huang and J. Huang, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998,

36, 109.

210. A. Ya. Vainer, N. S. Glybina, I. E. Dosovitskaya, K. M. Dymaev, S. A. Mareeva

and P. Z. Epshein, Dokl. Akad Nauk, 1997, 357, 199.

211. M. J. M. Abadie, M. Ropot, C. Cotzur, V. Harabagiu and B. C. Simionescu,

Rev. Roum. Chim., 1997, 42, 923.

212. R. P. Eckberg and M. Krenceski, RadTech'98 North Am. UV/EB Conf. Proc.,

1998, 530.

213. H. A. M. Van Aert, R. P. Sijbesma, H. Fischer, B. F. M. De Waal, J. Gilberts,

H. J. Maas, D. Broer and E. W. Meijer, Acta Polym., 1998, 49, 18.

214. A. J. Ricco, A. W. Staton, R. M. Crooks and T. Kim, Faraday Discussions, 1997,

107, 247.

370 Photochemistry

Page 49: Vol 31 Photochemistry

III: Polymer Photochemistry 371

215. Z. M. O. Rzaev, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998, 36, 2339.

216. E. Beck, E. Keil, M. Lokai, J. Shroeder and K. Sass, Mod. Paint Coat., 1998, 88,

36.

217. V. N. Salimgareeva, N. S. Sannikova and G. V. Leplyanin, Bashk. Khim. Zh.,

1997, 4, 32.

218. A. M. Chung, J. Adams and J. Fuhrman, Polym. Bull. (Berlin), 1998, 40, 195.

219. B. Serrano, J. C. Cabanelas, J. Gonzalez-Benito, J. Baselga and J. Bravo,

J. Fluorescence, 1997, 7, 341.

220. S. Hu, R. Popielarz and D. C. Neckers, Macromolecules, 1998, 31, 4107.

221. S. Hu, D. C. Neckers, R. Popielarz and K. G. Specht, Rad. Tech. Rep., 1998, 12

(3), 27.

222. A. J. Lees, Polym. Polym. Comp., 1998, 6, 121.

223. J. L. P. Jessop, G. J. Blanchard and B. Scranton, React. Functional Polym., 1998,

12(4), 27.

224. R. E. Johnson, K. S. Rajan and V. S. Agarwala, Microstruct. Sci., 1998, 25, 65.

225. J. T. Grant, N. Dunwoody, V. Jakubek and A. Lees, Polym. Polym. Compos.,

1998, 6, 47.

226. J. T. Jewel, N. Dunwoody, V. Jakubek and A. J. Lees, Polym. Prepr. (Am. Chem.

Soc., Div. Polym. Chem.), 1998, 39, 687.

227. J. Lange, R. Ekelof and G. A. George, Polymer, 1998, 40, 149.

228. K. G. Specht, R. Popielarz, S. Hu and D. C. Neckers, RadTech'98North Am. UV/

EB Conf Proc., 1998, 348.

229. R. Mathur, S. G. Advanti, R. S. Parnas and B. K. Fink, Int. SAMPE Tech.

Conf., 1997, 29, 42 .

230. S. E. Cantor, RadTech'98 North Am. Conf. Proc., 1998, 83.

231. R. W. Buehner, RadTech'98 North Am. Conf. Proc., 1998, 337.

232. E. Andrzejewska and M. Andzejewska, J. Polym. Sci., Part A: Polym. Chem. Ed.,

1998, 36, 665.

233. P. Bosch, J. Serrano, J. L. Mateo, P. Calle and C. Sieiro, J., Polym. Sci. Part A:

Polym. Chem. Ed., 1998, 36, 2775.

234. P. Bosch, J. Serrano, J. L. Mateo, J. Guzman, P. Calle and C. Sieiro, J., Polym.

Sci. Part A: Polym. Chem. Ed., 1998, 36, 2785.

235. L. Lapcik, J. Jancar, A. Stasko and P. Saha, J. Mater. Sci.: Mater. Med., 1998, 9,

257.

236. D. Shuele, R. Renner and D. Coleman, Mol. Cryst. Liq. Cryst. Sci. Technol.,

Sect. A, 1997, 299, 343.

237. E. Zagladko, Yu. Medvesevskikh, A. Turovski and G. Zaikov, Int. J. Polym.

Mater., 1998, 39, 227.

238. T. Haraldsson, S. Jonsson, L. Carlsson, C. Hasselgren and C. Wilberg,

RadTech'98 North Am. Conf. Proc., 1998, 577.

239. M. Wen, M. Chow, L. E. Scriven and A. V. McCormick, RadTech'98 North Am.

Conf. Proc., 1998, 561.

240. E. Andrzejew, M. Andaejewski, L. Linden and J. F. Rabek, Polimery (Warsaw),

1998, 43, 27.

241. N. Gunduz, A. R. Schultz, H. K. Shobha, M. Sankarapandian and J. E.

McGrath Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 647.

242. A. Maffezzoli and R. Terzi, Thermochim. Acta, 1998, 321, 111.

243. G. A. Brady and J. W. Halloran, J. Mater. Sci., 1998, 33, 4551.

244. T. Shichi, S. Yamashita and K. Tagaki, Supramol. Sci., 1998, 5, 303.

245. S. A. Letts and T. Fort, J. Colloid Inter. Sci., 1998, 202, 341.

Page 50: Vol 31 Photochemistry

246. V. Narayanan and A. B. Scranton, RadTech. Rep., 1997, 11, 25.

247. T. Hanemann, G. Reimann, R. Ruprecht and J. Hausselt, Neue Werkstoffkon-

zepte, Symp. 9, Wersstoffwoche'96., 1997, 209.

248. P. L. Geiss, W. Brockmann and B. Meyer-Roscher, Hot Melt. Symp., 1998, 43.

249. Y. Takahashi, S. Tada and S. Yamada, IS&T's Annu. Conf., 1997, 50th, 559.

250. H. P. Seng, Eur. Coat. J., 1998, 11, 838.

251. V. Narayanan, K. K. Baikerikar and A. B. Scranton, RadTech'98 North Am.

Conf. Proc., 1998, 31.

252. L. Lecamp, P. Lebaudy, B. Youssef and C. Bunel, J. Thermal Anal. Calorim.,

1998, 51, 889 .

253. C. Ohe, H. Ando, N. Sato, Y. Yrai, M. Yamamoto and K. Itoh, J. Phys. Chem.,

1999, 103.

254. M. T. L. Rees, G. T. Russell, M. D. Zammit and T. P. Davis, Macromolecules,

1998, 31, 1763.

255. B. R. Harkness, K. Takeuchi and M. Tachikawa, Macromolecules, 1998, 31,

4798.

256. E. R. Nagarajan, N. Rajeswari and S. Viswanathan, Macromol,-New Front.,

Proc. IUPAC Int. Symp. Adv. Polym. Sci. Technol., 1998, 1, 81.

257. S. Yamada, Y. Takahashi, S. Nishibu and N. Adachi, J. PhotoPolym. Sci.

Technol., 1998, 11, 149.

258. A. C. Guymon and C. N. Bowman, RadTech'98 North Am. Conf. Proc., 1998,

597.

259. S. Ogiri, A. Kanazawa, T. Shiono, T. Ikeda, I. Nishiyama and J. W. Goodby,

Macromolecules, 1998, 31, 1728.

260. I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, Liq. Cryst., 1998, 24,

397.

261. I. Bleyl, C. Erdelen, K. H. Etzbach, W. Paulus, H. W. Schmidt, K. Siemensmeyer

and D. Haarer, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 1997, 299, 149.

262. J. Lub, A. Omenat, A. M. Ruiz and M. C. Artal, Mol. Cryst. Liq. Cryst. Sci.

Technol. Sect. A, 1997, 307, 111

263. J. W. Schultz, R. P. Chartoff and J. S. Ullett, J. Polym. Sci., Part A: Polym.

Chem. Ed., 1998, 36, 1081.

264. A. Matsumoto and K. Yokoi, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998,

36, 3147.

265. T. Karasawa and Y. Takeshi, Jpn. J. Appl. Phys., 1998, 37, 4448.

266. J. Lub, D. J. Broer, M. E. Antonio and G. N. Mol, Liq. Crst., 1998, 24, 375.

267. W. Kuang, D. Yang, J. B. Whitehead, C. E. Houle and S. Jonsson, Polym. Prep.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 596.

268. I. Grabchev and I. Moneva, Dyes Pigments, 1998, 37, 155.

269. H. G. Galabova, D. W. Allender and J. Chen, Phys. Rev. E: Stat. Phys. Plasmas,

Fl. Relation. Interdiscip. Top., 1998, 58, 3295.

270. L. Zhang, Z. Chang, Z. Cai and Q. Yu, Polym. Prep. (Am. Chem. Soc., Div.

Polym. Chem.), 1998, 39, 1034.

271. C. D. Favre-Nicolin, J. Lu and P. Van Der Sluis, Mol. Cryst. Liq. Cryst., Sci.

Technol., Sect. A., 1997, 229, 157.

272. J. C. Galan, L. Oriol, M. Pinol and J. L. Serrano, Wiley Polym. Networks Group

Rev. Ser., 1998, 1, 421.

273. M. Cano, L. Oriol, M. Pinol and J. L. Serrano, Chem. Mater., 1998.

274. N. Kawatsuki, H. Takatsuka, T. Yamamoto and O. Sangen, J. Polym. Sci., Part

A: Polym. Chem. Ed., 1998, 36, 1521.

372 Photochemistry

Page 51: Vol 31 Photochemistry

III: Polymer Photochemistry 373

275. K. Takatani, N. Kawatsuki and T. Yamamoto, Macromol. Chem. Phys., 1998,

199, 1759.

276. N. Kawatsuki, C. Suehiro and T. Yamamoto, Macromolecules, 1998, 31, 5984.

277. D. Mwabuma, K. J. Kim, Y. Lin and L. C. Chen, Macromolecules, 1998, 31.

278. B. Sapich, J. Stumpe, T. Krawinkel and H. R. Kricheldorf, Macromolecules,

1998, 31, 1016.

279. K. Yu. Qiu and X. E. Feng, Handbook of Eng. Polym. Mater., 1997, 541.

280. V. Thom, K. Jankova, M. Ulbricht, J. Kops and G. Jonsson, Macromol. Chem.

Phys., 1998, 199, 2735.

281. M. Ulbricht, K. Richau and H. Kamusewitz, Colloids Surf., 1997, 138, 353.

282. H. Gu, Z. Zhang and Z. Wei, Gaofenzi Xuebao, 1998, 5, 603.

283. W. Wang, Y. Zhang, M. Zhang, X. Zeng and C. Shang, Jingxi Huagong., 1998,

15, 25.

284. T. Amornsakchai and H. Kubota, J. Appl. Polym. Sci., 1998, 70, 465.

285. C. Decker and K. Zahouily, Macromol. Symp., 1998, 129, 99.

286. H. Gui, Z. Zhang and Y. Wei, Gaojishu Tongxun, 1997, 7, 11.

287. S. Kurihara, Y. Ueno and T. Nonaka, J. Appl. Polym. Sci., 1998, 67, 1931.

288. F. Yu, S. Huang, Y. Liu and S. Yao, Cailiao Kexue Gongcheng, 1998, 14, 31.

289. B. Ranby, Polym. Eng. Sci., 1998, 38, 1229.

290. H. Kubota and N. Shiobara, React. Funct. Polym., 1998, 37, 219.

291. E. A. Abdel-Razik, M. M. Ali, A. A. Saran, N. M. Abdel-Salam, M. Ahmed and

E. M. Abdel-Bary, Mansoura Sci. Bull., A: Chem., 1997, 24, 155.

292. C. Wu, Z. Jiongxin, Z. Bin and Y. Maoquan, J. China Text. Univ. (Engl.), 1998,

15, 38.

293. L. G. Klapshina, V. V. Semenov, A. N. Kornev, V. S. Rusakov, O. I.

Shshegolinkhina, A. A. Zhdanov and G. A. Domrachev, Russ. Chem. Bull., 1998,

47, 478.

294. L. Liang, X. Feng, J. Liu, P. C. Rieke and G. E. Fryxell, Macromolecules, 1998.

295. K. Yamada, J. Kimura and M. Hirata, J. Photopolym. Sci. Technol., 1998, 11,

263.

296. K. Yamada, J. Isoda, T. Ebihara and M. Hirata, Interfacial Aspects Multi-

compon. Polym. Mater., Symp., 1997, 173.

297. X. Zhao, Q. Zhou, Yu He and H. Chen, Huaxue Tongbao, 1998, 10, 6.

298. Q. Tran-Cong, Plast. Eng., 1998, 467, 155.

299. H. Nakahara, Kagaku to Kogyo (Tokyo), 1998, 51, 1048.

300. M. Irie, Shape Mem. Mater., 1998, 203.

301. D. Takasu and T. Aida, Reza Kenkyu, 1997, 25, 770.

302. N. Yu. Abramova, A. V. Bratov, Yu. G. Vlasov, D. Bartroli and S. Alegret,

J. Anal. Chem., 1998, 53, 756.

303. T. Kobayashi, Prim. Photoexcit. Conj. Polym., 1997, 430.

304. Q. Ling and W. Zhang, Gaofenzi Tongbao, 1998, 1, 48.

305. T. Tanaka, Nippon Gomu Kyokaishi, 1998, 7, 109.

306. M. Martindill, Polym. Paint Col. J., 1997, 187, 14.

307. K. Yoshi and K. Horie, Nettowaku Porima, 1997, 18, 133.

308. G. Hancock, Plasma Polym., 1997, 2, 71.

309. T. Tanaka, Shikizai Kyokaishi, 1997, 70, 784.

310. P. Hrdlovic, Polym. News, 1998, 23, 233.

311. F. Ohishi, Materiaru Raifu, 1998, 10, 3.

312. M. Irie, Polym. Yearbook, 1996, 13, 275.

313. Y. Furukawa, Primary Photoexcitations in Conjugated Polymers, 1997, 496.

Page 52: Vol 31 Photochemistry

314. K. Ichimura, Kobunshi, 1998, 47, 130.

315. P. Hrdlovic, Polym. News, 1998, 23, 94.

316. P. Hrdlovic, Polym. News, 1998, 23, 306.

317. H. W. Huang and K. Horie, Trends Polym. Sci., 1997, 5, 407.

318. I. I. Kalechits and N. E. Kuz'menko, Vestn. Mosk. Univ., Ser. 2: Khim., 1997, 38,

283.

319. I. D. W. Samuel, G. Rumbles and R. H. Friend, Primary Photoexcitations in

Conjugated Polymers, 1997, 140.

320. G. Chadziioannos and I. Kallitsis, Chem. Chron., Genike Ekdose, 1998, 60,

136.

321. E. Conwell, Primary Photoexcitations in Conjugated Polymers, 1997, 99.

322. A. J. Heeger, Primary Photoexcitations in Conjugated Polymers, 1997, 20.

323. D. Moses, Primary Photoexcitations in Conjugated Polymers, 1997, 174.

324. P. A. Lane, X. Wei and Z. V. Vardeny, Primary Photoexcitations in Conjugated

Polymers, 1997, 292.

325. B. Lanska, L. Matisova-Rychla and J. Rychly, Polym. Deg. & Stabil., 1998, 61,

119.

326. W. Xuan, F. Yong, Y. Xiong, Y. He and Q. Lei, Proc. Int. Conf. Prop. Appl. D.

Electronic Mater., 5th, 1997, 2, 1159.

327. G. Ahlblad, T. Reitberger, B. Terselius and B. Ranby Angew. Makromol. Chem.,

1998, 261, 1.

328. D. R. Kholer and C. Krohnke, Polym. Deg. & Stabil., 1998, 62, 385.

329. D. J. Burlett and L. Zlatkevich, Proc. Conf. North Am. Therm. Anal. Soc., 26th,

1998, 463.

330. R. Setnescu, S. Jipa and Z.Osawa, Polym. Deg. & Stabil., 1998, 60, 377.

331. R. Setnescu, S. Jipa, T. Setnescu, C. Podina and Z. Osawa, Polym. Deg. & Stabil.,

1998, 61, 109.

332. S. Jipa, R. Setnescu, M. Tanta, M. Dimitru, I. Mihalcea, C. Podina and

Z. Osawa, J. Macromol. Sci, Pure Appl. Chem., 1998, A35, 1103.

333. L. M. Postnikov and A. V. Vinogradov, Russ. Polym. News, 1998, 3, 12.

334. S. V. Jipa, Z. Osawa and T. Setnescu, Mater. Plast. (Bucharest), 1997, 34, 198.

335. V. Dudler, Th. Bolle and G. Rytz, Polym. Deg. & Stab., 1998, 60, 351.

336. N. Kam, S. Aihara, W. Ishizaka, M. Umeda, D. Terunuma, K. Yamaoka and

S. Furukawa, J. Non-Cryst. Solids., 1998, 227, 538.

337. A. Kadashchuk, N. Ostapenko, V. Zaika and S. Nespurek, Chem. Phys., 1998,

234, 285.

338. H. Saijo, Materiaru Raifu, 1998, 10, 30.

339. J. H. Cho, C. W. Lee and M. S. Gong, Polymer (Korea), 1998, 22, 714.

340. M. L. Niku-Paavola, Int. Symp. Wood Pulping Chem. 8th., 1995, 3, 127.

341. N. S. Allen, M. Edge, J. Daniels and D. Royall, Polym. Deg. & Stabil., 1998, 62,

373.

342. M. Ding, L. Huangpu, J. Shi and J. Gao, Zhongguo Kexue Jishu Daxue Xuebao,

1998, 28, 248.

343. I. V. Krylova and S. A. Smolyanskii, Vestn. Mosk. Univ. Ser. 2., 1997, 38, 168.

344. M. Fujiki, S. Toyoda, H. Chien and H. Takigawa, Chirality, 1998, 10, 667.

345. T. Sanji, T. Sakai, C. Kabuto and H. Sakurai, J. Am. Chem. Soc., 1998, 120,

4552.

346. M. Kaiser, M. Walker and K. M. Baumgartner, Surf. Coat. Technol., 1998, 105,

165.

347. C. H. Chen, C. Wang, H. W. Zhou, R. X. Yuan, J. Z. Wang, N. Lu, Z. Wu and

374 Photochemistry

Page 53: Vol 31 Photochemistry

III: Polymer Photochemistry 375

W. J. Zhang, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39,

731.

348. S. Belyavskiy and N. Barashkov, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 769.

349. S. G. Cik, D. Vegh, P. Zalupsky, J. Cirak and P. Tomcik, Synth. Met., 1998, 96,

71.

350. S. Wysocki, H. M. Banford and R. A. Fouracre, IEEE Int. Conf. Conduct.

Breakdown Solid Dielectrics 6th, 1998, 565.

351. K. K. Pandey, N. K. Upreti and V. V. Srinivasan, Wood Sci, Technol., 1998, 32,

309.

352. E. Billa, E. Koutsoula and E. G. Koukos, Bioresourc. Technol., 1998, 67, 25.

353. E. Billa, E. Koutsoula and E. Koukios, Adv. Lignocellulose Chem. Ecol. Friendly

Pulp. Bleach. Technol., Eur. Workshop Lignocellul. Pulp, 5th, 1998, 475.

354. E. Billa, D. S. Argyropoulos and E. G. Koukos, Lignocellulose Chem. Ecol.

Friendly Pulp. Bleach. Technol., Eur. Workshop Lignocellul. Pulp, 5th, 1998, 183.

355. A. Castellan, S. Grelier, A. Nourmamode and M. Cotrait, Lignocellulose Chem.

Ecol. Friendly Pulp. Bleach. Technol., Eur. Workshop Lignocellul. Pulp, 5th, 1998,

221.

356. J. C. Pivin and M. Sendova-Vassileva, Solid State Commun., 1998, 106, 133.

357. K. D., Ley and K. S. Schamze, Coord. Chem. Rev., 1998, 171, 287.

358. N. Matsumi, K. Naka and Y. Chujo, Macromolecules, 1998, 31, 8047.

359. P. Tiemblo, J. M. Gomez-Elvira, G. Teyssedre, F. Massines and C. Laurent,

Polym. Int., 1998, 46, 33.

360. S. S. Bamji and A. T. Bulinski, Proc. Int. Conf. Prop. Appl. Dielectric Mat., 5th,

1997, 1, 11.

361. A. V. Lyubimov, N. L. Zaichenko and V. S. Marevtsev, J. Photochem. &

Photobiol: Part A: Chem. Ed., 1998, 120, 55.

362. H. Oda, Dyes Pigments, 1998, 38, 243.

363. St. Minkovska, A. K. Kolev, B. Jeliazkova and T. Deligeorgiev, Dyes Pigments,

1998, 39, 25.

364. K. Weh, M. Noack, R. Ruhmann, K. Hoffmann, P. Toussaint and J. Caro,

Chem. Eng. Technol., 1998, 21, 408.

365. G. Abraham and E. Purushothaman, Ind. J. Chem. Technol., 1998, 5, 213.

366. S. Y. Oh, M. Seung and S. Oh, Pollimo, 1997, 21, 937.

367. Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono and T. Ikeda,

Macromolecules, 1998, 31, 4457.

368. J. G. Meier, J. Stumpe, B. Fischer, C. Thieme, T. M. Fischer, F. Kremer, T. Oge

and R. Zentel, Polym. Adv. Technol., 1998, 9, 665.

369. S. Meyer and R. Zentel, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.),

1998, 39, 285.

370. S. Meyer and R. Zentel, Macromol. Chem. Phys., 1998, 199, 1675.

371. H. Tokuhisa, M. Yokoyama and K. Kimura, J. Mater. Chem., 1998, 8, 889.

372. A. Toutianoush and B. Tieke, Macromol. Rapid Commun., 1998, 19, 591.

373. T. Kozlecki, K. A. Wilk and L. Syper, Prog. Colloid Polym. Sci., 1998, 110, 193.

374. Z. Xie, H. Huang, X. Huang, Y. Chen, J. Wen, Y. Zou, W. Lin, L. Zhang and

X. Liang, Guangzi Xuebao, 1998, 27, 699.

375. A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant and

M. Pezolet, Macromolecules, 1998, 31, 1155.

376. B. Park, H. S. Kim, J. Y. Bae, J. G. Lee, H. S. Woo, S. H. Han, J. W. Wu,

M. Kakimoto and H. Takezoe, Appl. Phys. B: Lasers Opt., 1998, 66, 445.

Page 54: Vol 31 Photochemistry

377. T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, Macromolecules,

1998, 31, 7312.

378. M. E. Wright and M. J. Porsch, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 278.

379. S. Anguille, P. Brun and R. Guglielmetti, Heterocycl. Commun., 1998, 4, 63.

380. Z. Yuan and L. Lin, Hebei Gongye Daxue Xuebao, 1997, 26, 105.

381. L. S. De Gonzalez, A. Eduardo, G. Lozano and J. Ma, Synth. Commun., 1998,

28, 4035.

382. Y. Imai, K. Naka and Y. Chujo, Macromolecules, 1998, 31, 532.

383. X. Chen, Q. B. Xue, K. Z. Yang, Y. Wang, J. Zhang and Q. Z. Zhang, Supramol.

Sci., 1998, 5, 591.

384. X. Chen, Q. B. Xue, K. Z. Yang, Y. Wang, J. Zhang and Q. Z. Zhang, Mol.

Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1997, 295, 391.

385. S. Feng and L. Gu, Hecheng Xianwei Gongye, 1997, 20, 36.

386. M. V. Al®mov, A. I. Vedernikov, S. P. Gromov, Yu. V. Fedorov and O. A.

Fedorova, Russ. Chem. Bull., 1997, 46, 2099.

387. A. Zhang and J. Qin, Supramol. Sci., 1998, 5, 573.

388. R. Ruhmann, Werkst. Informationstech., Symp. 1, Werkstoffwoche, 1997, 47.

389. D. Zhang, J. Shu, H. Tian and K. Chen, Huadong Ligong Daxue Xuebao, 1998,

24, 329.

390. H. Nakashima and M. Irie, Polym. J. (Tokyo), 1998, 30, 985.

391. F. Liu, W. Li, L. Liang, S. Dong, Z. Zhang and B. He, Lizi Jiaohuan Yu Xifu,

1997, 13, 543.

392. E. R. Zakhs, N. G. Leshenyuk, V. P. Martynova and A. I. Ponyaev, Russ. J. Gen.

Chem., 1998, 68, 285.

393. L. Angiolini, D. Caretti, L. Giorgini, E. Salatelli, A. Altomare, C. Carlini and

R. Solaro, Polymer, 1998, 39, 6621.

394. A. El Osman and M. Dumont, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 1036.

395. Y. Li and M. Xie, Gongneng Cailiao, 1998, 29, 113.

396. K. S. Alva, T. S. Lee, J. Kumar and S. K. Tripathy, Chem. Mater., 1998, 10,

1270.

397. F. Kondo, S. Kakimi, H. Kimura and M. Taeishi, Polym. Int., 1998, 46, 339.

398. T. Seki, H. Sekizawa, S. Morino and K. Ichimura, J. Phys. Chem. B, 1998, 102,

5313.

399. T. G. Pederson, P. M. Johnasen, N. C. R. Holme, P. S. Ramanujam and

S. Hvilsted, Phys. Rev. Lett., 1998, 80, 89.

400. A. Fritz, A. Schonhols, B. Sapich, M. Rutloh and J. Stumpe, Polym. Prep. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 328.

401. M. Haraguchi, T. Okamoto, H. Hayashi, T. Hasegawa, T. Akamatsu, M. Fukui,

T. Koda and K. Takeda, Thin Solid Films, 1998, 331, 39.

402. A. Sampei, A. Kameyama and T. Nishikubo, Kobunshi Ronbunshu, 1998, 55, 407.

403. J. M. Kim, S. Y. Lee, C. M. Chung, K. D. Ahn, J. S. Han and D. J. Choo, Korea

Polym., 1998, 6, 193.

404. J. Biteau, F. Chaput, K. Lahlil, J. P. Boilot, G. Tsivgoulis, J. M. Lehn,

B. Darracq, C. Marois and Y. Levy, Chem. Mater., 1998, 10, 1945.

405. M. S. Beattie, C. Jackson and G. D. Jaycox, Polymer, 1998, 39, 2597.

406. Y. S. Park, Y. Ito and Y. Imanishi, Macromolecules, 1998, 31, 2606.

407. D. H. Suh, Y. Hayashi and K. Ichimura, Macromol. Chem. Phys., 1998, 199,

363.

376 Photochemistry

Page 55: Vol 31 Photochemistry

III: Polymer Photochemistry 377

408. F. L. Labarthet, T. Buffeteau, M. Pizolet and C. Sourisseau, Polym. Prep. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 350.

409. T. Fuhrmann, M. Kunze and J. H. Wendorff, Macromol. Theory Simulation,

1998, 7, 421.

410. C. Konak, R. C. Rathi, P. Kopeckova and J. Kopecek, Polym. Adv. Technol.,

1998, 9, 641.

411. L. Hou, B. Hoffmann, M. Mennig and H. Schmidt, Key Eng. Mater., 1998, 150,

41.

412. Y. Zhou, W. E. Baker, P. M. Kazmaier and E. Buncel, Can. J. Chem., 1998, 76,

884.

413. H. Zhang, W. Huang and B. He, Gaofenzi Tongbao, 1998, 2, 63.

414. W. E. Moerner, M. A. Diaz-Garcia, D. Wright, B. R. Smith, J. Casperson,

S. Bratcher, M. S. DeClue, S. J. Siegela and R. J. Twieg, Polym. Prep. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 980.

415. G. P. Wiederrecht and M. R. Wasielewski, J. Am. Chem. Soc., 1998, 120, 3231.

416. M. Walther and H. Finkelmann, Macromol. Rapid Commun., 1998, 19, 145.

417. E. Mykowska, K. Jazwinski, W. Grupa and D. Bauman, Proc. SPIE-Int. Soc.

Opt. Eng., 1998, 3318, 378.

418. S. Kato, F. Q. Chen and C. Pac, Kawamura Rikagaku Kenkyusho Hokoku, 1997,

95.

419. H. W. Huang, K. Horie, M. Tokita and J. Watanabe, Macromol. Chem. Phys.,

1998, 199, 1851.

420. M. Sone, T. Wada, B. R. Harkness, J. Watanabe, H. Takahashi, H. W. Huang,

T. Yamashita and K. Horie, Macromolecules, 1998.

421. D. H. Gray and D. L. Gin, Chem. Mater., 1998, 10, 1827.

422. J. Stumpe, Th. Fischer, M. Roloh and G. Meier, Polym. Prep. (Am. Chem. Soc.,

Div. Polym. Chem.), 1998, 39, 308.

423. S. Lucht, J. Stumpe and M. Rutloh, J. Fluoresce., 1998, 8, 153.

424. D. H. Suh and K. Ichimura, Macromol. Chem. Phys., 1998, 199, 375.

425. A. Matsumoto, K. Yokoi, S. Aoki, K. Tashiro, T. Kamae and M. Kobayashi,

Macromolecules, 1998, 31, 2129.

426. B. H. Lee, S. K. Ham, J. C. Lim and K. Song, Pollimo, 1997, 21, 1059.

427. S. Campbell, Y. Lin, U. Mueller and L. C. Chien, Chem. Mater., 1998, 10, 1652.

428. S. Campbell, Y. Lin, U. Mueller and L. C. Chien, Polym. Prep. (Am. Chem. Soc.,

Div. Polym. Chem.), 1998, 39, 633.

429. B. C. Baxter and D. L. Gin, Macromolecules, 1998, 31, 4419.

430. J. C. Mastrangelo, B. M. Conger, S. H. Chen and A. S. Kende, Polym. Prep.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 1026.

431. M. Kijima, I. Kinoshita and H. Shirakawa, J. Mater. Sci., 1998, 8, 2165.

432. H. Zhang, C. Li, W. Huang, Z. Song, Q. Wu and B. He, Gaofenzi Xuebao, 1998,

2, 184.

433. H. Q. Zhang, W. Q. Huang, C. X. Li and B. L. He, Eur. Polym. J., 1998, 34,

1521.

434. T. Buruiana, A. Airinei, E. Buruiana and I. Bestiuc, Angew. Makroml. Chem,

1998, 258, 39.

435. B. Mouanda, P. Viel and C. Blanche, Thin Solid Films, 1998, 323, 42.

436. A. Altomare, L. Andruzzi, F. Ciardelli, N. Tirelli and R. Solaro, Polym. Prep.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 272.

437. A. Vix, B. Sapich, J. Stumpe, W. Stocker and J. P. Rabe, Polym. Prep. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 326.

Page 56: Vol 31 Photochemistry

438. A. Zeigler, Th. Fischer, H. Menzel and J. Stumpe, Polym. Prep. (Am. Chem.

Soc., Div. Polym. Chem.), 1998, 39, 322.

439. Y. Wu, K. Yasuyuki, A. Kanazawa, T. Shiono and T. Ikeda, Macromolecules,

1998, 31, 1104.

440. O. Tsutsumi, Y. Demachi, A. Kanazawa, T. Shiono, T. Ikeda and Yu. Nagase,

J. Phys. Chem. B, 1998, 102, 2869.

441. R. D. Miller, V. Y. Lee, W. Volksen, Z. Sekkat, A. Knoesen, P. Pretre, W. Knoll,

J. Wood and E. F. Aust, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.),

1998, 39, 312.

442. S. Morino, A. Kaiho and K. Ichimura, Polym. Prep. (Am. Chem. Soc., Div.

Polym. Chem.), 1998, 39, 320.

443. J. D. Huang, S. V. Frolov, Z. V. Vardeny, W. Chen, T. J. Barton,

R. Sugitomo, M. Ozaki and K. Yoshino, Proc. SPIE-Int. Soc. Opt. Eng., 1997,

3145, 495.

444. U. Pernisz, N. Auner and M. Backer, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 450.

445. P. Jennings, A. C. Jones and A. R. Mount, Macromolecules, 1998, 94, 3619.

446. Q. Li, K. Horie and R. Yokota, J. Photopolym. Sci., Technol., 1998, 11, 237.

447. Q. Li, K. Horie and R. Yokota, Polym. J. (Tokyo), 1998, 30, 805.

448. M. C. J. M. Vissenberg and M. J. M. De Jong, Phys. Status Solidi B, 1998, 205,

347.

449. J. Cornil, D. A. Dos Santos, X. Crispin, R. Silbey and J. L. Bredas, J. Am. Chem.

Soc., 1998, 120, 1289.

450. R. Lecuiller, J. Berrehar, C. Lapersonne-Meyer and M. Schott, Phys. Rev. Lett.,

1998, 80, 4068.

451. B. Song, Y. He and G. Bai, Met. Mater., 1998, 4, 261.

452. S. V. Frolov, M. Shkunov, Z. V. Vardeny, M. Ozaki and K. Yoshino, Proc.

SPIE-Int. Soc. Opt. Eng., 1997, 3145, 2.

453. F. Lin and F. W. Curtis, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.),

1998, 39, 433.

454. M. S. Jang, M. C. Suh, S. C. Schim and H. K. Shim, Macromol. Chem. Phys.,

1998, 199, 2107.

455. A. M. Sarker, J. H. Malpert, B. Strehmel and D. C. Neckers, Polym. Prep. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 515.

456. X. C. Li, A. K. Y. Jen, Y. Q. Liu, J. Bharathan, S. C. Chang and Y. Yang,

Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 1093.

457. M. M. De Kok, A. J. J. M. Van Breemen, P. J. Adriaensens, A. Van Dixhoorn,

J. M. Gelan and D. J. Vanderzande, Acta Polym., 1998, 49, 510.

458. Y. Pang, J. Li, T. J. Barton, J. Mater. Chem., 1998, 8, 1687.

459. N. N. Barashkov, H. J. Olivos and J. P. Ferraris, SPIE-Int. Soc. Opt. Eng., 1997,

3145, 260.

460. I. D. W. Samuels, G. Rumbles, C. J. Collinson, S. C. Moratti and A. B. Holmes,

Chem. Phys., 1998, 227, 75.

461. D. A. M. Egbe and E. Klemm, Macromol. Chem. Phys., 1998, 199, 2683.

462. J. Jin, S. J. Chung and H. Seong, Macromol. Symp., 1998, 128, 79.

463. H. Li and R. West, Macromolecules, 1998, 31, 2866.

464. A. T. Koch, D. Beljonne, N. T. Harrison, J. L. Bredas, N. Haylett, R. Daik,

W. J. Feast and R. H. Friend, Opt. Mater. (Amsterdam), 1998, 9, 145.

465. G. H. Gao, J. S. Guo and H. Q. Xie, Gaodeng Xuexiao Huaxue Xuebao, 1998, 19,

633.

378 Photochemistry

Page 57: Vol 31 Photochemistry

III: Polymer Photochemistry 379

466. J. H. Hsu, W. Fann, K. R. Chuang and S. A. Chen, Proc. SPIE-Int. Soc. Opt.

Eng., 1997, 3145, 436.

467. B. R. Hsieh, W. C. Wan, Y. Yu, Y. Gao, T. E. Goodwin, S. A. Gonzalez and

W. A. Feld, Macromolecules, 1998, 31, 631.

468. G. Gao, H. Xie, J. Lin and J. Guo, Gongneng Cailiao, 1998, 29, 100.

469. Y. Liu, P. M. Lahti and F. La, Polymer, 1998, 39, 5241.

470. B. R. Hsieh, Y. Yuan, E. W. Forsythe, G. M. Schaaf and W. A. Feld, J. Am.

Chem. Soc., 1998, 120, 231.

471. S. C. Ng, J. M. Xu and H. S. O. Chan, Synth. Met., 1998, 92, 33.

472. H. K. Kim, K. D. Kim and T. Zyung, Mol. Cryst. Liq. Cryst. Sci. & Technol.,

Sect. A, 1997, 295, 325.

473. K. M. Vaeth and K. F. Jensen, Macromolecules, 1998.

474. D. Hertel, U. Scherf and H. Baessler, Adv. Mater. (Weinheim), 1998, 10, 1122.

475. W. Holzer, A. Penzkofer, S. H. Gong, D. D. C. Bradley, X. Long, W. J. Blau and

A. P. Davey, Polymer, 1998, 39, 3651.

476. G. Cerullo, S. Stagira, M. Nisoli, S. De Silvestri, G. Lanzani, G. Kranzelbinder,

W. Graupner and G. Leising, Phys. Rev. B: Condens. Matter Mater. Phys., 1998,

57, 12806.

477. G. Kranzelbinder, W. Graupner, K. Mullen, U. Scherf and G. Leising, Proc.

SPIE-Int. Soc. Opt. Eng., 1997, 3145, 48.

478. F. Hide, B. J. Schwartz, M. A. Diaz-Garcia and A. J. Heeger, Proc. SPIE-Int.

Soc. Opt. Eng., 1997, 3145, 36.

479. C. S. Jeoung, Y. H. Kim, D. Kim, J. Y. Han, M. S. Jang, J. I. Lee, H. K. Shim,

C. M. Kim and C. S. Yoon, Appl. Phys. Lett., 1999, 74, 212.

480. Z. Hong, X. Zhao, D. Ma, D. Wang, X. Jing and F. Wang, Chin. Sci. Bull., 1998,

43, 1015.

481. P. H. Bolivar, G. Wegmann, G. Leising and H. Kurz, Phys. Status Solidi B, 1998,

205, 319.

482. D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch

and E. Steinhuber, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 3145, 242.

483. D. Vacar, A. Dogariu and A. J. Heeger, Adv. Mater. (Weinheim), 1998, 10,

669.

484. K. Akagi, J. Oguma and H. Shirakawa, J. Photopolym. Sci. & Technol., 1998, 11,

249.

485. W. Graupner, S. Guha, S. Yang, M. Chandrasekhar, H. R. Chandreskhar,

G. Leising, U. Scherf and K. Mullen, Mater. Res. Soc. Symp. Proc., 1998, 488,

873.

486. K. Harigaya, Synth. Met., 1997, 91, 367.

487. M. Wohlgenannt, W. Graupner, F. P. Wenzl, S. Tasch, E. J. W. List, G. Leising,

M. Graupner, A. Hermetter, U. Rohr, P. Schlichting, Y. Geerts, U. Scherf and

K. Mullen, Chem. Phys., 1998, 227, 99.

488. K. A. Walters, K. D. Ley and K. S. Schanze, Chem. Commun., 1998, 1115.

489. R. C. Smith, H. Deng, W. M. Fischer and D. L. Gin, J., 1998, 488, 419.

490. H. Wang and K. Wong, Appl. Phys. Lett., 1998, 73, 1637.

491. T. Zyung, S. D. Jung, M. S. Jang and H. K. Shim, Mol. Cryst. Liq. Cryst. Sci. &

Technol., Sect. A, 1997, 295, 321.

492. C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, Macromol. Symp., 1998, 125,

49.

493. M. Zheng, F. Bai, F. Li, Y. Li and D. Zhu, J. Appl. Polym. Sci., 1998, 70,

599.

Page 58: Vol 31 Photochemistry

494. C. J. Brabec, V. Dyakonov, N. S. Sariciftci, W. Graupner, G. Leising and J. C.

Hummelen, J. Chem. Phys., 1998, 109, 1185.

495. J. Qian, F. Shan, S. Qian, Z. Cai, Y. Yu, J. Cui and S. Li, Guangpuxue Yu

Guangpu Fenxi, 1998, 18, 385.

496. S. V. Frolov, P. A. Lane, M. Ozaki, K. Yoshino and Z. V. Vardeny, Chem. Phys.

Lett., 1998, 286, 21.

497. Z. Peng, Z. Bao and M. A. Galvin, Adv. Mater., 1998, 10, 680.

498. Z. Peng and M. A. Galvin, Chem. Mater., 1998, 107, 1785.

499. J. Li and Y. Pang, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39,

431.

500. M. Kimura, T. Horai, K. Hanabusa and H. Shirai, Adv. Mater., 1998, 10, 459.

501. M. I. Baraton, L. Merhari, J. Wang and K. E. Gonsalves, Mater. Res. Soc. Symp.

Proc., 1998, 501, 59.

502. P. M. Lahi, R. M. Gurge, A. M. Sraker, F. E. Karasz and B. Hu, Polym. Prep.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 1075.

503. H. Neugebauer, S. Srinivasan, S. Tasch. G. Leising and N. S. Sariciftci,

Proc.SPIE-Int. Soc. Opt. Eng., 1997, 3145, 507.

504. N. Pfeffer, N. Neher, M. Remmers, C. Poga, M. Hopmeier and R. Mahrt, Chem.

Phys., 1998, 227, 167.

505. M. W. Wu and E. M. Conwell, Chem. Phys., 1998, 227, 11.

506. Y. Pang, J. Li, B. Hu and F. E. Karasz, Macromolecules, 1998, 31, 6730.

507. J. Wery, B. Dulieu, J. Bullot, M. Baitoul, P. Deniard and J. P. Buisson, Polymer,

1998, 40, 519.

508. T. Yamamoto, Y. Xu and H. Koinuma, Chem. Lett., 1998, 7, 613.

509. J. Li and Y. Pang, Macromolecules, 1998.

510. S. Kim, J. Jackiw, E. Robinson, K. S. Schanze, J. R. Reynolds, J. Baur, M. F.

Rubner and D. Boils, Macromolecules, 1998, 31, 964.

511. D. L. Elder, M. W. Wagaman and R. H. Grubbs, Polym. Prep. (Am. Chem. Soc.,

Div. Polym. Chem.), 1998, 39, 733.

512. M. A. Rixman and D. J. Sandman, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 558.

513. W. E. Douglas, D. M. H. Guy, A. K. Kar and C. Wang, Chem. Commun., 1998,

19, 2125.

514. R. Hidayat, M. Hirohata, K. Tada, M. Teraguchi, T. Masuda and K. Yoshino,

Jpn. J. Appl. Phys., Part 2: 1998, 37, 180.

515. T. Yamamoto, K. Sugiyama, T. Kanbara, H. Hayashi and H. Etori, Macromol.

Chem. Phys., 1998, 199, 1807.

516. R. D. Miller, G. Klaerner, M. Kreyeneschmidt, J. Kwak, J. Ashenhurst,

T. Furher, W. D. Chen, S. Karg and J. C. Scott, Polym. Prep. (Am. Chem. Soc.,

Div. Polym. Chem.), 1998, 39, 1000.

517. A. P. Monkman, M. Halim, S. Dailey, I. D. W. Samuel, M. Sluch and L. E.

Horsburgh, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 3145, 208.

518. S. M. Pyo, S. I. Kim, T. J. Shin, M. Ree, K. H. Park and J. S. Kang, Polymer,

1999, 40, 125.

519. H. Li, D. R. Powell, T. K. West and R. West, Macromolecules, 1998, 31, 1093.

520. N. Benfaremo, D. J. Sandman, S. Tripathy, J. Kumar, K. Yang, M. F. Rubner

and C. Lyons, Macromolecules, 1998, 31, 3595.

521. I. K. Spiliopoulous and J. A. Mikroyannidis, Macromolecules, 1998, 31, 515.

522. K. D. Kim, J. S. Park, H. K. Kim, T. B. Lee and K. T. No, Macromolecules,

1998, 31, 7267 .

380 Photochemistry

Page 59: Vol 31 Photochemistry

III: Polymer Photochemistry 381

523. N. Matsumi, K. Naka and Y. Chujo, J. Am. Chem. Soc., 1998, 120, 5112.

524. S. M. Pyo, S. I. Kim, T. J. Shin, H. K. Park, M. Ree, K. H. Park and J. S. Kang,

Macromolecules, 1998, 31, 4777.

525. T. Sato, M. Fujitsuka, H. Segawa, T. Shimadzu and K. Tanaka, Synth. Met.,

1998, 95, 107.

526. K. Y. Musick, Q. S. Hu and L. Pu, Macromolecules, 1998, 31, 2933.

527. W. L. Yu, H. Meng, J. Pei, S. J. Chua, W. Huang and Y. H. Lai, Chem.

Commun., 1998, 18, 1957.

528. W. Huang, H. Meng, W. L. Yu, J. Gao and A. J. Heeger, Adv. Mater.

(Weinheim), 1998, 10, 593.

529. S. Lee, S. I. Hong, C. Lee, S. B. Rhee and T. J. Kang, Mol. Cryst. Liq. Cryst. Sci.

Technol., Sect. A, 1997, 295, 317.

530. N. DiCeasare, M. Belletete, A. Donat-Boullud, M. Leclerc and G. Durocher,

Macromolecules, 1998, 31, 6289.

531. K. S. Wong, H. Wang and G. Lanzani, Chem. Phys. Lett., 1998, 288, 59.

532. K. S. Wong, H. Wang and G. Lanzani, Proc. SPIE-Int. Soc. Opt. Eng., 1997,

3145, 81.

533. S. C. Ng, L. G. Xu and H. S. O. Chan, Synth. Met., 1998, 94, 185.

534. A. Yang, M. Kuroda, Y. Shiraishi and T. Kobayashi, J. Chem. Phys., 1998, 109,

8442.

535. I. D. W. Samuel, L. Magnani, G. Rumbles, K. Stone, M. Bradely, S. C. Moratti

and A. B. Holmes, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 3145, 163.

536. R. M. Chen, Z. B. Deng, G. Sun, S. T. Lee and T. Y. Luh, Polym. Prep. (Am.

Chem. Soc., Div. Polym. Chem.), 1998, 39, 89.

537. M. Pomerantz, Y. Cheng, R. K. Kasim and R. L. Elsenbaumer, Polym. Prep.

(Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 153.

538. A. Yamashiro and A. Takahashi, J. Phys. Soc. Jpn., 1998, 67, 2938.

539. X. Rao, R. Fu, X. Sun, R. Fu and H. Ye, Fudan Xuebao Ziran Kexueban, 1997,

36, 283.

540. R. I. Rokitskii, D. Yu. Parashschuk, T. A. Kulakov and V. M. Kobryanskii,

Pis'ma Zh. Eksp. Teor. Fiz., 1998, 67, 765.

541. D. Hertel, B. Schweitzer, H. Bassler, H. Tilman and H. H. Horhold, Chem.

Phys., 1998, 227, 179.

542. A. E. Ribbe, M. Hayashi, M. Weber and T. Hashimoto, Polymer, 1998, 39,

7149.

543. H. Zhao, Z. Lei and B. Huang, Polym. J. (Tokyo), 1998, 30, 149.

544. S. Webster, D. A. Smith, D. N. Batchelder, D. G. Lidzey and D. D. C. Bradley,

Ultramicroscopy, 1998, 71, 275.

545. T. Ohta, O. Urakawa and Q. Tran-Cong, Macromolecules, 1998, 31, 6845.

546. N. A. Diachun, D. M. Hussey and M. D. Fayer, J. Phys. Chem., 1998, 102,

7112.

547. D. Dibbern-Brunelli, T. D. Z. Atvars, I. Joekes and V. C. Barbosa, J. Appl.

Polym. Sci., 1998, 69, 645.

548. M. Hasegawa, J. I. Ishii and Y. Shindo, J. Polym. Sci., Part B: Polym. Phys. Ed.,

1998, 36, 827.

549. S. De Backer, Y. Prinzie, W. Verheijen, M. Smet, K. Desmedt, W. Dehaen and

F. C. DeSchryver, J. Phys. Chem., 1998, 102, 5451.

550. M. Hashemzadeh and D. V. McGrath, Polym. Prep. (Am. Chem. Soc., Div.

Polym. Chem.), 1998, 39, 338.

551. C. Devadoss, P. Bharathi and J. S. Moore, Macromolecules, 1998, 31, 8091.

Page 60: Vol 31 Photochemistry

552. T. Nagasaki, A. Noguchi, T. Matsumoto, S. Tamagaki and K. Ogino, An. Quim.

Int. Ed., 1997, 93, 341.

553. D. V. McGrath, D. M. Junge, J. R. McElhanon and M. Hashemzadeh, Polym.

Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 281.

554. D. M. Junge and D. M. McGrath, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 340.

555. M. Venturi, S. Serroni, A. Juris, S. Campagna and V. Balzani, Top. Curr. Chem.,

1998, 197, 193.

556. B. Lehr, H. J. Egelhaaf, W. Rapp, E. Bayer and D. Oelkrug, J. Fluorescence,

1998, 8, 171.

557. D. J. Liaw, C. C. Huang, H. C. Sang and E. T. Kang, Langmuir, 1998, 14,

3195.

558. D. F. Anghel, V. Alderson, F. M. Winnik, M. Mizusaki and Y. Morishimo,

Polymer, 1998, 39, 3035.

559. I. Soutar, L. Swanson, K. Davidson and J. Lin, High Perf. Polym., 1997, 9, 353.

560. J. Kabatc, Z. Kucybala, M. Pietrzak, F. Scigalski and J. Paczowski, Polymer,

1999, 40, 735.

561. F. S. Du, Z. C. Li and F. M. Li, J. Polym. Sci., Part A: Polym. Chem. Ed., 1999,

37, 179.

562. F. Du and F. Li, Gaofenzi Xuebao, 1998, 2, 232.

563. F. S. Fu, H. Cai, Z. C. Li and F. M. Li, J. Polym. Sci., Part A: Polym. Chem. Ed.,

1998, 36, 1111.

564. S. Aihara, N. Kamata, W. Ishizaka, M. Umeda, A. Nishibori, D. Terunuma and

K. Yamada, Jpn. J. Appl. Phys. Part 1, 1998, 37, 4412.

565. S. Nespurek, V. Herden, W. Schnabel and A. Eckhardt, Czech. J. Phys., 1998, 48,

477.

566. K. Hisada, S. Ito and M. Yamamoto, J. Phys. Chem., 1998, 102, 4075.

567. M. Talhavini and T. D. Z. Atvars, Quim. Nova, 1998, 31, 332.

568. J. V. Grazulevicius, I. Soutar and L. Swanson, Macromolecules, 1998, 31, 4820.

569. J. Feng, M. A. Winnik and A. Siemiarczuk, J. Polym. Sci., Part B: Polym. Phys.

Ed., 1998, 36, 1115.

570. I. Nishimura, A. Kameyama and T. Nishikubo, Macromolecules, 1998, 31,

2789.

571. G. Zhang and J. K. Thomas, J. Phys. Chem., 1998, 102, 5465.

572. S. Ishizaka, K. Nakatani, S. Habuchi and N. Kitamura, Anal. Chem., 1998.

573. E. Szajdzinska, M. Wolszczak, A. Plonka and S. Schlick, J. Am. Chem. Soc.,

1998, 120, 4215.

574. D. J. Liaw, C. C. Huang and E. T. Kang, J. Polym. Sci., Part B: Polym. Phys.,

1998, 36, 11.

575. K. S. Guznturk, A. T. Giz and O. Peckan, Eur. Polym. J., 1998, 34, 789.

576. M. F. Richardson and C. L. McCormick, Polym. Prep. (Am. Chem. Soc., Div.

Polym. Chem.), 1998, 39, 312.

577. H. Yamamoto, M. Mizusaki, K. Yoda and Y. Morishima, J. Fluorescence, 1998,

31, 3588.

578. M. F. De Costa, S. J. Froehner, A. A. Ruzza, S. F. Santos and D. Zantte, Quim.

Nova, 1998, 21, 272.

579. M. J. Tiera, V. A. De Oliveira, H. D. Burrows, M. M. Gracia and M. G.

Neumann, Colloid Polymer Sci., 1998, 276, 206.

580. K. Contractor and P. Bahadur, Eur. Polym. J., 1998, 34, 225.

382 Photochemistry

Page 61: Vol 31 Photochemistry

III: Polymer Photochemistry 383

581. U. Bindig, C. Endisch, J. H. Fuhrhop, T. Komatsu, E. Tsuchida and U. Siggel,

J. Colloid Interface Sci., 1998, 199, 123.

582. M. Shirai, Y. Matoba and M. Tsunooka, J. Fluorescence, 1997, 7, 245.

583. C. Combellas, G. Mathey, M. A. Petit and F. Kajzar, Photonic Sci. News, 1998,

3, 5.

584. J. Frommel and T. Wolff, J. Colloid Inter. Sci., 1998, 201, 86.

585. D. Viduna, Z. Limpouchova and K. Prochazka, J. Fluorescence, 1998, 8, 207.

586. S. Yamada, Y. K. Tanaka, M. Kawazu and T. Matsuo, Supramol. Sci., 1998, 5,

379.

587. J. Q. Guan and C. H. Chen, Chin. J. Chem., 1998, 16, 322.

588. S. Chen and Y. Yang, Wuli Huaxue Xuebao, 1998, 14, 380.

589. K. Krijtova, M. Stepanek, K. Prochazka and S. E. Webber, J. Fluorescence,

1998, 8, 21.

590. M. Mizusaki, Y. Morishima and P. L. Dubin J. Phys. Chem. B., 1998, 102, 1908.

591. Y. Morishima, M. Mizusaki, K. Yoshida and P. L. Dubin, Colloids Surf., A,

1999, 147, 149.

592. Y. Itoh, K. Ogura, A. Hachimori and K. Abe, Eur. Polym. J., 1998, 34, 625.

593. S. Zhu, X. Jin, L. Chen and Q. He, Sci. China, Ser. B: Chem., 1998, 41, 549.

594. S. N. Shtykov and G. M. Beloliptseva, J. Anal. Chem., 1998, 53, 264.

595. S. Creutz, J. van Stam, F. C. DeSchryver and R. Jerome, Macromolecules, 1998,

31, 681.

596. J. W. Nah, J. I. Jeong and C. S. Cho, J. Polym. Sci., Part B: Polym. Phys. Ed.,

1998, 36, 415.

597. M. V. Encinas, E. A. Lissi, A. M. Rufs and J. Alvarez, Langmuir, 1998, 14,

5691.

598. Y. Mylonas, K. Karayanni, G. Staikos, M. Koussathana and P. Lianos,

Langmuir, 1998, 14, 6320.

599. S. I. Yeo and K. W. Woo, Bull. Korean Chem. Soc., 1998, 19, 1054.

600. H. Evertsson and S. Nilsson, Carbohydr. Polym., 1998, 35, 135.

601. V. D. Pautov, E. V. Anufrieva and N. M. Krakovyak, Chin. J. Polym. Sci., 1998,

16, 268.

602. C. Spitz and S. Daehne, Ber. Bunsen-Ges., 1998, 102, 738.

603. O. Peckan, M. Canpolat and E. Arda, Polym. Int., 1998, 47, 451.

604. M. V. Encinas, E. A. Lissi, M. A. Rufs, M. Altamirano and J. J. Cosa,

Photochem. Photobiol., 1998, 68, 447.

605. M. A. Winnik, S. Bystryak, Z. Liu and J. Siddiqui, Macromolecules, 1998, 31,

6855.

606. M. E. Williams and R. W. Murray, Chem. Mater., 1998, 10, 3603.

607. J. Ye, J. Xiong and W. Liang, Gongneng Gaofenzi Xuebao, 1998, 11, 539.

608. J. Ye, J. Xiong, W. Liang and Z. Wu, Yingyong Huaxue, 1998, 15, 50.

609. J. M. Garcia-Martinez, O. Languna, S. Areso and E. P. Collar, J. Appl. Polym.

Sci., 1998, 70, 689.

610. S. Higashida, K. Nishiyama, S. I. Yusa, Y. Morishima, J. M. Janot, P. Seta, H.

Imahori, K. Hiroshi, T. Kaneda and Y. Sakata, Chem. Lett., 1998, 5, 381.

611. J. Horinaka, S. Amano, H. Funada, S. Ito and M. Yamamoto, Macromolecules,

1998, 31, 1197.

612. B. Strehmel, C. W. Framk, W. Abraham, M. Garrison, Organosilicon Chem. III,

[Muench. Silicontagel], 3rd., 1998, 587.

613. C. K. Chee, Mater. World, 1997, 5, 658.

Page 62: Vol 31 Photochemistry

614. V. F. Razumov, A. G. Ivanchenko, A. D. Pomogailo, I. S. Voloshanovskii and

A. I. Kuzaev, Vysokomol. Soedin., Ser. A, Ser. B, 1997, 39, 2046.

615. Yu. S. Avlasevich, O. G. Kulinkovich, V. N. Knyukshto, A. P. Losev and K. N.

Solov'ev, Vysokomol. Soedin., Ser. A, Sers. B., 1997, 39, 1740.

616. G. Vishnoi, M. Morisawa and S. Muto, Proc. SPIE-Int. Soc. Opt. Eng., 1998,

3417, 87.

617. N. kh. Ibraev and A. M. Zhunusbekov, Vestn. Minist. Nauki- ± Akad. Nauk

Resp. Kaz., 1997, 6, 29.

618. S. Corrent, P. Hahn, G. Pohlers, T. J. Connolly, J. C. Scaiano, V. Fornes and

H. Garcia, J. Phys. Chem. B, 1998, 102, 5852.

619. Y. Liu, R. Gustafson, W. McKean and J. Callis, TAPPI, 1998, 3, 1501.

620. T. Kanbara, T. Imayasu and K. Hasegawa, Chem. Lett., 1998, 8, 709.

621. V. B. Ivanov, V. M. Anisimov, B. L. Rytov and V. V. Ivanov, Khim. Fiz., 1998,

17, 49.

622. K. A. Al-Hassan, M. A. Meetani and Z. F. M. Said, J. Fluorescence, 1998, 8,

93.

623. H. Hu, K. Huang, C. Pan and D. Chen, J. Central South Univ. Technol., 1998, 5,

41.

624. I. Y. S. Lee, Y. Niidome, T. Matsuo and S. Yamada, Anal. Sci., 1997, 13, 343.

625. Q. Yu, Z. Cai, X. Huang and X. Yan, Zhongshan Daxue Xuebao, Ziran

Kexueban, 1998, 37, 55.

626. E. Maejima, Gosei Jushi, 1998, 44, 71.

627. S. Shimoyama, Y. Noda and S. Katsuhara, Bunseki Kagaku, 1998, 47, 93.

628. Y. Zhang, M. Li, Q. Fang, Y. X. Zhang, M. Jiang and C. Wu, Macromolecules,

1998, 31, 2527.

629. Y. V. Pan and D. D. Denton, Plasmas Polym., 1997, 2, 165.

630. F. Homilius, A. Heilmann, U. Rempel and C. von Borczyskowski, Vacuum, 1998,

49, 205.

631. Z. A. Dreger, G. Yang, J. O. White, Y. Li and G. H. Drickamer, J. Phys. Chem.

B, 1998, 102, 4380.

632. Z. A. Dreger, J. O. White and H. G. Drickamer, Chem. Phys. Lett., 1998, 290,

399.

633. C. Esen and G. Schweiger, Chem.-Ing.-Tech., 1998, 70, 112.

634. K. B. Migler and A. J. Bur, Polym. Eng. Sci., 1998, 38, 213.

635. M. R. Vigil, J. Bravo, T. D. Z. Atvars and J. Baselga, J. Non-Cryst. Solids, 1998,

235, 554.

636. A. J. Bur and S. C. Roth, Annual Tech. Conf.-Soc. Plast. Eng., 1998, 2, 2090.

637. E. Vaganova and S. Yitzchaik, Polym. Prep. (Am. Chem. Soc., Div. Polym.

Chem.), 1998, 39, 109.

638. X. Shi, C. Sun and S. Wu, Ganguang Kexue Yu Guang Huaxue, (1987), 16, 161.

639. L. F. V. Ferreira, P. V. Cabral, P. Almeida, A. S. Oliveira, M. J. Reis and A. M.

Botelho do Rego, Macromolecues, 1998, 31, 3936.

640. T. Shiga, T. Narita, T. Ikawa and A. Okada, Polym. Eng. Sci., 1998, 38, 693.

641. Y. Yamaguchi, T. Okamoto, O. Urakawa and Q. Tran-Cong, Polym. J., 1998,

30, 414.

642. R. L. Hansen and J. M. Harris, Anal. Chem., 1998, 70, 2565.

643. H. Li, G. Wang, H. Gao, H. Zhang and B. He, Int. Conf. Biorelated Polym.

Controlled Release Drugs React. Polym., 1997, 61.

644. S. Shimoyama and Y. Noda, Bunseki Kagaku, 1998, 47, 295.

384 Photochemistry

Page 63: Vol 31 Photochemistry

III: Polymer Photochemistry 385

645. A. J. Bur, K. Migler, M. G. Vangel and D. S. Johnsonbaugh, Am. Soc. Mechan.

Eng., 1997, 79, 199.

646. J. Coppeta and C. Rogers, Exp. Fluids, 1998, 25, 1.

647. M. C. Carre, C. Dorion, R. Rebizak, F. Pla, A. Brembilla and M. L. Viriot,

Macromol. Symp., 1998, 127.

648. I. Hanashiro and Y. Takada, Carbohydr. Res., 1998, 306, 421.

649. T. Saitoh, T. Sakurai, T. Kaise and C. Matsubara, Anal. Sci., 1997, 13, 181.

650. S. Rudschuck, J. Adams and J. Fuhrmann, Macromol. Chem. Phys., 1998, 199,

771.

651. Y. Yilmaz and O. Peckan, Polymer, 1998, 39, 5351.

652. Y. Yilmaz, A. Erzan and O. Peckan, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,

Relation. Interdisc. Top., 1998, 58, 7487.

653. S. I. Yusa, M. Kamachi and Y. Morishima, J. Polym. Sci., Part A: Polym. Chem.

Ed., 1998, 37, 47.

654. M. H. Klopffer, L. Bokabza and L. Monnerie, Macromolecules, 1998, 31, 8291.

655. F. Legrand, J. M. Piau and H. Hervet, J. Rheol., 1998, 42, 1389.

656. M. Kollmannsberger. K. Rurack, U. Reschgenger and J. Daub, J. Phys. Chem.,

1998, 102, 10211.

657. K. Iwai, N. Matsumoto, M. Niki and M. Yamamoto, Mol. Cryst. Liq. Cryst. Sci.

Technol. Sect. A, 1998, 315, 355.

658. P. L. Nayak, K. Yang, P. K. Dhal, S. Alva, J. Kumar and S. K. Tripathy, Chem.

Mater., 1998, 10, 2058.

659. H. Ohno and M. Mukaigawa, Kidorui, 1998, 32, 24.

660. A. G. Mirochnik, N. V. Petrochenkova and V. E. Karasev, Spectrosc. Lett., 1998,

31, 1167.

661. A. G. Mirochnik, N. V. Petrochenkova and V. E. Karasev, Russ. Chem. Bull.,

1997, 46, 2135.

662. J. He, J. Xiong and W. Liang, Int. Conf. Biorelated Polym. Controlled Release

Drugs React. Polym., 1997, 92.

663. J. He, J. Xiong and W. Liang, Gongneng Gaofenzi Xuebao, 1997, 10, 475.

664. C. Du, Y. Xu, L. Ma and W. Li, J. Alloys Compound., 1998, 265, 81.

665. Z. Peng, X. Chen, Z. Wang, Y. Wei and Z. Qin, Wuhan Univ. J. Nat. Sci., 1998,

3, 348.

666. Y. Okamoto, T. K. Kwei and D. Vyprachticky, Macromolecules, 1998.

667. Q. Ling and W. Zhang, Zhonnuo Xitu Xuebao, 1998, 16, 9.

668. H. Y. Feng, S. H. Juan, Y. P. Wang, Z. Q. Lei and R. M. Wang, J. Appl. Polym.

Sci., 1998, 68, 1605.

669. S. W. Keller, S. A. Johnson, E. H. Yonemoto, E. S. Brigham, G. B. Saupe and

T. E. Mallouk, Adv. Chem. Sers, 1998, 254, 359.

670. H. Hase, Y. Miyatake, K. Matsuura, S. Arai, M. Taguti and M. Hoshino, Kyoto

Daigaku Genshiro Jikkensho Gakujutsu Koenkai Hobunshu, 1998, 32, 291.

671. B. Jiang, S. W. Yang, D. C. Barbini and W. E. Jones, Chem. Commun., 1998, 213.

672. C. Du, L. Ma, Y. Xu, Y. Zhao and C. Jiang, Eur. Polym. J., 1998, 34, 23.

673. D. A. Freisen, T. Kajita, E. Danielson and T. J. Meyer, Inorg. Chem., 1998, 37,

2756.

674. M. Scoponi and C. Ghiglione, Angew. Makromol. Chem., 1997, 252, 237.

675. N. Yamashita, Kako Gijutsu, 1998, 33, 1.

676. P. Hrdlovic, Polym. News, 1998, 23, 377.

677. A. B. Wootton, PPCJ, Polym. Paint Colour J., 1998, 188, 26.

Page 64: Vol 31 Photochemistry

678. J. W. Martin, J. W. Chin, W. E. Byrd, E. Embree and K. M. Kraft, Polym. Deg.

& Stabil., 1999, 63, 297.

679. J. L. Gerlock, C. A. Smith, V. A. Cooper, T. G. Dusbiber and W. H. Weber,

Polym. Deg. & Stabil., 1998, 62, 225.

680. L. Audoiun, S. Girois, L. Achimsky and J. Verdu, Polym. Deg. & Stabil., 1998,

60, 137.

681. A. Rivaton, F. Serre and J. Luc-Gardette, Polym. Deg. & Stabil., 1998, 62, 127.

682. X. Li and Z. Xiuyu, Suliao Gongye, 1998, 26, 31.

683. A. A. Dalinkevich and A. V. Kalinin, Plast. Massey, 1997, 7, 26.

684. A. A. Dalinkevich and A. V. Kalinin, Russ. Polym. News, 1998, 3, 30.

685. B. L. Zimmering, A. Kumar, A. C. Boccara and G. C. Pandey, J. Appl. Polym.

Sci., 1998, 69, 1875.

686. W. Sui, X. Wang and Y. Wang, Zhongguo Fangzhi Daxue Xuebao, 1998, 2, 34.

687. S. Kiatkamjornwong, T. Pabunruang, N. Wongvisetsirikul and P. Prasassara-

kich, J. Sci. Soc. Thailand, 1997, 23, 135.

688. j. T. Remillard, J. R. Jones, B. D. Poindexter, J. H. Helms and W. H. Weber,

Appl. Spectrosc., 1998, 52, 1369.

689. L. Audouin, C. Anton-Prinet, J. Verdu, G. Mur and M. Gay, Angew. Makromol.

Chem., 1998, 261, 25.

690. C. Anton-Prinet, G. Mur, M. Gay, L. Audouin and J. Verdu, Polym. Deg. &

Stabil., 1998, 60, 265.

691. C. Anton-Prinet, J. Dubois, G. Mur, M. Gay, L. Audouin and J. Verdu, Polym.

Deg. & Stabil., 1998, 60, 275.

692. K. C. Anton-Prinet, G. Mur, M. Gay, L. Audouin and J. Verdu, Polym. Deg. &

Stabil., 1998, 60, 283.

693. K. V. Castelvetro, M. Aglietto, F. Ciardelli, O. Chiantore and S. Penna, Polym.

Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1998, 39, 964.

694. K. K. Okudaira, S. Hasegawa, P. T. Sprunger., E. Morikawa, V. Saile, K. Seki,

Y. Harada and N. Ueno, Polymer, 1998, 83, 4292.

695. J. A. Moore and Y. Shao, Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.),

1998, 39, 646.

696. E. E. Waali, J. D. Scott, O. Vladimirsky, Y. Vladimirsky, K. M. Hayataka and

J. M. Klop, Sproc. SPIE-Int. Soc. Opt. Eng., 1998, 333, 3331.

697. A. Onu, M. Palamaru, E. Tutovan and C. Ciobanu, Polym. Deg. & Stabil., 1998,

60, 465.

698. A. Onu, M. Palamaru, E. Tutovan and C. Ciobanu, Rev. Rouman. Chim., 1998,

43, 565.

699. A. Onu, M. Palamaru, E. Tutovan and C. Ciobanu, Int. J. Polym. Mater., 1998,

39, 33.

700. P. N. Thanki and R. P. Singh, Polymer, 1998, 39, 6363.

701. R. Cunko, E. Pezeli and M. Andrassay, Tekstil, 1997, 46, 677.

702. L. M. Postnikov and A. V. Vinogradov, Int. J. Polym. Mater., 1997, 38, 79.

703. L. M. Postnikov and A. V. Vinogradov, Oxidn. Commun., 1998, 21, 37.

704. S. Schneider, F. Richter and B. Brem, Polym. Deg. & Stabil., 1998, 61, 453.

705. B. Mailhot, S. Morel and J. Luc-Gardette, Polym. Deg. & Stabil., 1998, 62, 117.

706. Y. Matsui, S. Seki, T. Iwamoto and S. Tagawa, Chem. Letts., 1998, 861.

707. S. Ninomiya, Y. Ashihara, Y. Nakayama, K. Oka and R. West, J. Appl. Phys.,

1998, 83, 3652.

708. R. D. Scurlock, M. Kristiansen, P. R. Ogilby, V. L. Taylor and R. L. Clough,

Polym. Deg. & Stabil., 1998, 60, 145.

386 Photochemistry

Page 65: Vol 31 Photochemistry

III: Polymer Photochemistry 387

709. A. V. Prasad and R. P. Singh, J. Appl. Polym. Sci., 1998, 70, 637.

710. L. Dulog, Ochr. Koroz., 1998, 41, 66.

711. S. I. Kuzina and A. I. Mikhailov, Eur. Polym. J., 1998, 34, 291.

712. S. I. Kuzina and A. I. Mikhailov, Eur. Polym. J., 1998, 34, 1157.

713. C. Wihelm and J. Luc-Gardette, Polymer, 1998, 39, 5973.

714. L. M. Fraga, E. Fontan, E. P. Collar and F. Catalina, Int. Symp. Wood Pulping

Chem., 8th, 1998, 75, 57.

715. F. Delor, N. Barrois-Oudin, X. Duteurtre, C. Cardinet, J. Lemaire and

J. Lacoste, Polym. Deg. & Stabil., 1998, 62, 395.

716. E. Ikada, J. Photopolym. Sci. & Technol., 1998, 11, 23.

717. A. P. Mast and P. Gijsman, FATPEC Congr., 1998, 24th, B279.

718. E. Fujimoto, Kobunshi Ronbunshu, 1998, 55, 300.

719. H. Niino and A. Yabe, J. Photopolym. Sci. Technol., 1998, 11, 357.

720. S. Nishio, S. Okada, Y. Minamoto, M. Okamura, A. Matsuzaki and H. Sato,

Mol. Cryst. Liq. Cryst. Sci. & Technol., Sect. A, 1997, 294, 35.

721. J. Muller, D. Haarer, O. V. Khodykin and B. M. Kharlamov, Chem. Phys., 1998,

237, 483.

722. S. Machida, S. Tanaka, K. Horie and B. Li, ACS Symp. Ser., 1998, 710, 173.

723. H. Fe, G. Li, J. Tan, H. Ma, D. Chen and M. Xie, Sichuan Daxue Xuebao, Ziran

Kexueban, 1997, 34, 489.

724. J. Burdeniuc, M. Sanford and R. H. Crabtree, J. Fluorine Chem., 1998, 91, 49.

725. T. Kino, S. Machida, T. Yamashita, K. Horie, S. Yusa and Y. Morishima,

Macromol. Chem. Phys., 1998, 199, 1631.

726. T. Lippert, J. T. Dickinson, S. C. Langford, H. Furutani, H. Fukumura,

H. Masuhara, T. Kunz and A. Wokaun, Appl. Surf. Eng., 1998, 129, 117.

727. V. N. Vasilets, I. Hirata and Y. Ikada, J. Polym. Sci., A: Polym. Chem. Ed., 1998,

36, 2215.

728. H. Niino, J. Kruger and W. Kautek, Proc. SPIE-Int. Soc. Opt. Eng., 1998, 3274,

128.

729. S. Boltova, V. Vassileva and E. Valtcheva, Polym. Deg. & Stabil., 1998, 60, 53.

730. S. Boltova and V. Vassileva, Polym. Deg. & Stabil., 1998, 60, 615.

731. L. Zhang and G. Gellerstedt, Adv. Lignocellul. Chem. Ecol. Friendly Pulping

Bleaching Technol., Eur. Workshop Lignocellulose Pulp 5th, 1998, 285.

732. B. Ruf®n, A. Castellan, S. Grelier, A. Nourmamode, S. Riela and V. Trichet,

J. Appl. Polym. Sci., 1998, 69, 2517.

733. F. Kawamura, M. Miyachi, S. Kawai and H. Ohashi, J. Wood Sci., 1998, 44,

47.

734. J. K. S. Wan and M. C. Depew, Res. Chem. Intermed., 1998, 24, 831.

735. S. I. Kuzina, A. I. Mikhailov and I. A. Shilov, Adv. Lignocellul. Chem. Ecol.

Friendly Pulping Bleaching Technol., Eur. Workshop Lignocellulose Pulp 5th,

1998, 77.

736. E. Fabich, R. C. Rakosa, V. Varga and K. Nemeth, Adv. Lignocellul. Chem. Ecol.

Friendly Pulping Bleaching Technol., Eur. Workshop Lignocellulose Pulp 5th,

1998, 337.

737. A. Castellan, D. S. Perez, M. G. H. Perrones, S. Greier, A. Nourmamode,

R. Ruggiero and A. E. H. Machado, Adv. Lignocellul. Chem. Ecol. Friendly

Pulping Bleaching Technol., Eur. Workshop Lignocellulose Pulp 5th, 1998, 571.

738. R. Ruggiero, A. E. H. Machado, D. S. Perez, S. Grelier, A. Nourmamode and

A. Castellan, Holzforschung, 1998, 52, 325.

739. M. Paulson and A. J. Ragauskas, Nord. Pulp Pap. Res. J., 1998, 13, 132.

Page 66: Vol 31 Photochemistry

740. D. Shukla, N. P. Schepp, N. Mathivanan and L. J. Johnston, Can. J. Chem.,

1997, 75, 1820.

741. S. Wu, H. Hu, W. Liang and L. Sun, Cellul. Chem. Technol., 1997, 31, 335.

742. K. Radotic, J. Budinski-Simendic and M. Jeremic, Hem. Ind., 1998, 52, 347.

743. B. Kosikova and T. Tolvaj, Drev. Vysk., 1998, 43, 37.

744. A. J. Ragauskas, L. Alison, C. Cook and D. Barzyk, J. Wood Chem. Technol.,

1998, 18, 289.

745. J. Wang, C. Heitner and R. St. John Manley, J. Pulp Pap. Sci., 1998, 24, 337.

746. D. C. Jones, C. I. Carr, W. D. Cooke and D. M. Lewis, Text. Res. J., 1998, 68,

48.

747. L. Monney, N. Rouge, C. Dubois and A. Chambaudet, Polym. Deg. & Stabil.,

1998, 62, 367.

748. W. M. Choi, I. D. Jung, S. K. Kwon, C. S. Ha and W. J. Cho, Polym. Deg. &

Stabil., 1998, 61, 15.

749. S. G. Bond, J. R. Ebdon and H. M. Nor, Polymer, 1998, 39, 6875.

750. H. Kossmann and M. Schwartz, FATIPEC Congr., 1998, 24th, A223.

751. V. Ollier-Dureault and B. Gosse, J. Appl. Polym. Sci., 1998, 70, 1221.

752. J. Y. Lee and H. J. Yoo, Han'guk Somyu Konghakhu, 1998, 35, 632.

753. A. V. Kutsenova, L. P. P. Kutyrkin and V. B. Ivanov, Kinet., 1998, 39, 335.

754. G. Ramgopal, R. Ramani, P. Ramachandra and C. Ranganathaiah, Eur. Polym.

J., 1998, 34, 1423.

755. C. Chawla, T. Bishop, E. P. Zahora and P. Snowwhite, RadTech'98 N. Am. UV/

EB Conf. Proc., 1998, 247.

756. D. L. Wetzel and R. O. Carter, AIP Conf. Proc., 1998, 430, 567.

757. G. F. Nieckarz, J. L. Litty and D. R. Tyler, J. Organometallic Chem., 1998, 554,

19.

758. J. Park, W. M. Choi, C. S. Ha, W. H. Kim and W. J. Cho, Macromol. Symp.,

1998, 130, 53.

759. Z. M. O. Rzaev, Polymer, 1998, 39, 5215.

760. J. Kritzenberger, D. Franzke, T. Kunz, O. Nuyken and A. Wokaun, Angew.

Makromol. Chem., 1998, 254, 17.

761. F. A. Rasoul, D. J. T. Hill, G. A. George and J. H. O'Donnell, Polym. Adv.

Technol., 1998, 9, 24.

762. S. Zumbuehl, R. Knochenmuss, S. Wuelfert, F. Dubois, M. J. Dale and

R. Zenobi, Anal. Chem., 1998, 70, 707.

763. J. Jayaseharan and K. Kishore, Macromol. New Front., Proc. IUPAC Int. Symp.

Adv. Polym. Sci. Technol., 1998, 2, 974.

764. Q. Zhang, M. Canva and G. Stegeman, Appl. Phys. Letts., 1998, 73, 912.

765. K. Menzel, P. Enekel, M. Lokai, W. Reich and R. Schwalm, FATIPEC Congr.,

1998, 24th, A115.

766. E. De¯orian, L. Fedrizzi and P. L. Bonora, ACS Symp. Ser., 1998, 689, 92.

767. D. Bloor and M. R. Worboys, J. Mater. Sci., 1998, 8, 903.

768. D. S. Muggli, A. K. Burkoth, S. A. Keyser, H. R. Lee and K. S. Anseth,

Macromolecules, 1998, 31, 4120.

769. T. Nemoto, Y. Kajino and K. Takeda, Materiaru Raifu, 1997, 10, 149.

770. B. H. Cumpston and K. F. Jenson, J. Appl. Polym. Sci., 1998, 69, 2451.

771. M. E. Nichols and G. L. Gerlock, Polym. Mater. Sci., 1998, 79, 403.

772. D. Popovici, E. Sacher and M. Meunier, J. Appl. Polym. Sci., 1998, 70, 1201.

773. Z. Liu, M. A. Winnik, T. C. Jao and J. Roesch, J. Phys. Chem., 1997, 102, 5349.

774. J. Malik and G. Ligner, Adv. Plast. Technol. APT'97, Int. Conf., 1997, 11, 1.

388 Photochemistry

Page 67: Vol 31 Photochemistry

III: Polymer Photochemistry 389

775. T. Ishii, JETI., 1998, 46, 116.

776. A. G. Oertli, Chem. Fibres Int., 1998, 48, 122.

777. G. DeLapasse, Caoutch Plast., 1998, 75, 32.

778. J. S. Parmar and R. P. Singh, Handbk. Eng. Polym. Mater., 1997, 399.

779. F. Catalina, Rev. Plast. Modernas, 1998, 75, 391.

780. G. Ligner and J. Malik, Polyole®ns X, Int. Conf., 1997, 207.

781. H. Yamagata, Toso Gijutsu, 1998, 37, 72.

782. A. Valet and D. Wostratzky, RadTech'98 N. Am. UV/EB Conf., 1998, 396.

783. A. Merlin, R. Garcia and X. Deglise, Pitture Vernici Eur., 1998, 74, 22.

784. H. Nakanami, Kogyo Toso, 1998, 153, 41.

785. A. M. Belu and J. McGinness, Polym. Mater. Sci. & Eng., 1998, 78, 80.

786. P. Solera and G. Capocci, Plast. Eng., 1998, 54, 43.

787. R. E. Lee, B. M. Sanders and C. Neri, Annual Techn. Conf.-Soc. Plast. Eng.,

1998, 56th, 2880.

788. F. A. Bottino, G. Di Pasquale, A. Pollicino and A. Recca, J. Appl. Polym. Sci.,

1998, 69, 1251.

789. M. M. Ueki and M. Zanin, Polim. Cienc. Tecnol., 1997, 7, 42.

790. T. J. Turton and J. R. White, Annul Techn. Conf.-Soc. Plast. Eng., 1998, 56th,

2858.

791. C. Decker and K. Zahouily, J. Polym. Sci., Part A: Polym. Chem. Ed., 1998, 36,

2571.

792. Y. Ni, A. Ghosh, Z. Li, C. Heitner and P. McGarry, J. Pulp. Paper Sci., 1998, 24,

259.

793. R. Schadowski, K. Schaefer and H. Hoecker, DWI Rep., 1998, 121, 579.

794. M. Paulson and A. J. Ragauskas, Nord Pulp Pap. Res. J., 1998, 13, 124.

795. C. Bolcu, Ann. West Univ. Timisoara, Ser. Chem., 1998, 5, 11.

796. J. Keck, G. J. Stuber and H. E. A. Kramer, Angew. Makromol. Chem., 1997, 252,

119.

797. R. Iyengar and B. Schellenberg, Polym. Deg. & Stabil., 1998, 61, 151.

798. M. Kiguchi and P. D. Evans, Polym. Deg. & Stabil., 1998, 61, 33.

799. N. A. Weir, J. Arct and D. M. Leach, Polym. Deg. & Stabil., 1998, 62, 271.

800. M. Turoti, J. Y. Olayemi, J. B. Adeniyi and O. Peters, Polym. Deg. & Stabil.,

1998, 61, 297.

801. R. A. Ortiz, E. A. Romero Salas and N. S. Allen, Polym. Deg. & Stabil., 1998, 60,

195.

802. P. Hrdlovic and S. Chemela, Polym. Deg. & Stabil., 1998, 61, 177.

803. J. Malik, G. Ligner and L. Avar, Polym. Deg. & Stabil., 1998, 60, 205.

804. H. Wang and W. Chen, Fushe Yanjiu Fushe Gongyi Xuebao, 1997, 16, 5.

805. I. Lukac, S. Chmela, J. F. Pilichowski and J. Lacoste, J. Macromol. Sci., Pure

and Appl. Chem., 1998, A35, 1337.

806. H. Wang and W. Chen, J. Appl. Polym. Sci., 1998, 69, 2649.

807. L. Avar and K. Bechtold, FATIPEC Congr., 1998, 24th, D65.

808. J. Lacoste, J. Pellet and J. F. Pilichowski, Polym. Modif., [Pap. Symp.], 1997,

11.

809. R. L. Gray, R. E. Lee and C. Neri, Polyole®ns X, Int. Conf., 1997, 559.

810. S. Commereuc, S. Scheirs, V. Verney and J. Lacoste, J. Appl. Polym. Sci., 1998,

69, 1107.

811. R. A. Shanks, D. Mcfarlane, G. Geuskens and S. Bigger, Annu. Techn. Conf.-Soc.

Plast. Eng., 1998, 56#th, 2851.

812. I. Dumitrescu, Ind. Text., 1998, 49, 109.

Page 68: Vol 31 Photochemistry

813. A. Y. Chi, Plast. Packaging, 1998, 43, 57.

814. H. Oda, Dyes Pigments, 1998, 38, 243.

815. V. Vassileva, S. Baltova and S. Handjieva, Polym. Deg. & Stabil., 1998, 61, 367.

816. T. Konstantinova, A. Spirieva and H. Konstantinov, Polym. Deg. & Stabil.,

1998, 60, 511.

817. Y. Okada, A. Sugane, F. Fukuoka and Z. Morita, Dyes Pigments, 1998, 39, 1.

818. P. Peralta-Zamora, A. Kunz, S. G. de Moraes, R. Pelegrini, P. De Campos

Moleiro, J. Reyes and N. Duran, Chemosphere, 1998, 38, 835.

819. L. M. G. Jansen, I. P. Wilkes, D. C. Greenhill and F. Wilkinson, J. Soc. Dyers

and Col., 1998, 114, 327.

820. Z. Csespregi, P. Aranyosi, I. Rusznak, L. Toke, J. Frankl and A. Vig, Dyes

Pigments, 1998, 37, 1.

821. Z. Csespregi, P. Aranyosi, I. Rusznak, L. Toke, J. Frankl and A. Vig, Dyes

Pigments, 1998, 37, 15.

822. Z. Csespregi, P. Aranyosi, I. Rusznak, L. Toke, J. Frankl and A. Vig, Dyes

Pigments, 1998, 37, 33.

823. H. S. Yoon and H. W. Chung, Han'guk Somyu Konghakhoechi, 1998, 35, 427.

824. D. Nansheng, W. Feng, L. Fan and X. Mei, Chemosphere, 1998, 36, 3101.

825. C. Eggeling, J. Widengren, R. Rigler and C. A. M. Seide, Anal. Chem., 1998, 70,

2651.

826. F. Uddin, I. M. Adhami and M. A. Yousufzai, J. Saudi Chem. Soc., 1998, 2, 47.

827. M. S. Baptista and G. L. Indig, J. Phys. Chem., 1998, 102, 4678.

828. E. Marchesi, C. Rota, Y. C. Fann, C. F. Chignell and R. P. Mason, Free Radical

Biol. Med., 1998, 26, 148.

829. M. Kawakami, M. Suzuki, H. Kawai, K. Ogawa and T. Shishido, Tetrahedron

Letts., 1998, 39, 1763.

830. J. Winkler, E. R. Smith and R. G. Compton, J. Colloid Interface Sci., 1997, 195,

229.

831. A. Valdez-Gonzalez, J. M. Cervantes-Ue and L. Veleva, Polym. Deg. & Stabil.,

1999, 63, 253.

832. C. Vasile, A. Stoleriu, L. Odochian and M. Luchian, Bul. Inst. Politeh. Iasi, Sect.

2: Chim. Ing. Chim., 1995, 41, 95.

833. C. Anton-Prinet, G. Mur, M. Gay, L. Audouin and J. Verdu, Polym. Deg. &

Stabil., 1998, 61, 211.

834. N. S. Allen, M. Edge, T. Corrales and F. Catalina, Polym. Deg. & Stabil., 1998,

61, 139.

835. M. Edge, R. Janes, J. Robinson, N. S. Allen, F. Thompson and J. Warman,

J. Photochem. & Photobiol., Part A: Chem. Ed., 1998, 113, 171.

836. I. Martini, J. H. Hodak and G. V. Hartland, J. Phys. Chem. B, 1998, 102, 9508.

837. A. C. van Dyk and A. M. Heyns, J. Colloid Interface Sci., 1998, 206, 381.

838. B. Pacaud, J. N. Bousseau and J. Lemaire, Eur. Coatings J., 1998, 11, 842.

839. L. Ferry, G. Vigier, R. Alexander-Katz and C. Garapon, J. Polym. Sci., Part A:

Polym. Phys. Ed., 1998, 36, 2057. D. da Silva Perez, A. Castellan, S. Grelier,

M. G. H. Terrones, A. E. H. Machado and R. Ruggiero, Adv. Lignocellul. Chem.

Ecol. Friendly Pulping Bleaching Technol., Eur. Workshop Lignocellulose Pulp 5th,

1998, 225.

840. J. Lacoste, P. Ladsous, M. Dieppedale and R. Arnaud, J. Appl. Polym. Sci.,

1998, 69, 1681.

841. A. S. Ben, G. Baud, M. Jacquet and N. Pichon, Surf. Coat. Technol., 1998, 102,

63.

390 Photochemistry

Page 69: Vol 31 Photochemistry

III: Polymer Photochemistry 391

842. H. Zhan, K. Chen and H. Tian, Dyes Pigments, 1998, 37, 241.

843. H. Zhan and H. Tian, Dyes Pigments, 1998, 37, 249.

844. H. Zhan and H. Tian, Dyes Pigments, 1998, 37, 231.

845. B. K. Sharma, J. Vardia, P. Roa and S. C. Ameta, Hung. J. Ind. Chem., 1998, 26,

1.

846. B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palanichamy and V. Murugesan,

Stud. Surf. Sci. Catal., 1998, 113, 329.

847. S. Balakrishnan, Macromol-New Front., Proc. IUPAC Int. Symp. Adv. Polym.

Sci. Technol., 1998, 2, 1126.