ventilation 27-apr-17 ventilation

97
Aug 22, 2022 Ventilation 1 Ventilation

Upload: eleanore-oliver

Post on 18-Jan-2018

257 views

Category:

Documents


2 download

DESCRIPTION

Pulmonary Ventilation Tidal volume 500 ml Total ventilation 7500 ml/min Anatomical dead space 150 ml Frequency = 15 per min Alveolar gas 3000 ml Alveolar ventilation 5250 ml/min Pulmonary blood flow 5000 ml/min Pulmonary capillary blood 70 ml 27-Apr-17 Ventilation

TRANSCRIPT

Page 1: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 1

Ventilation

Page 2: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 2

Pulmonary Ventilation Tidal volume 500 ml

Anatomical dead space 150 ml

Alveolar gas 3000 ml

Pulmonary capillary blood 70 ml

Total ventilation 7500 ml/min

Frequency = 15 per min

Alveolar ventilation 5250 ml/min

Pulmonary blood flow 5000 ml/min

Page 3: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 3

Pulmonary Ventilation Minute ventilation (VE)

Volume of air inspired or expired per minute Depends on the frequency (f) Depth of breathing (tidal volume,

VT) VE = ( VT * f)

Page 4: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 4

Pulmonary Ventilation At rest

VT = 500 ml , f = 12 to 15 breath per minute VE = (500 * 12) = 6000 ml/min VE = (500 * 15) = 7500 ml/min

Page 5: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 5

Anatomical Dead Space The first 16

generation plus trachea and upper respiratory tract form Conducting zone

of the airways Transport gas

from & to exterior

17

1819

20

21

22

23

1

0

34

2

Bro

nchi

R

esp i

rato

ry

bron

chi o

leA

lve o

lar

duct

Conducting zone

Respiratory zone

Trachea

Page 6: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 6

Anatomical Dead Space Made up of

Upper respiratory tract

Trachea Bronchi,

bronchioles, terminal bronchioles

Constitute the anatomical dead space

17

1819

20

21

22

23

1

0

34

2

Bro

nchi

R

esp i

rato

ry

bron

chi o

leA

lve o

lar

duct

Conducting zone

Respiratory zone

Trachea

Page 7: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 7

Dead Space Ventilation (VD)

This is a portion of the minute ventilation That fails to

reach areas of lungs involved in gas exchange

Portion of tidal volume air that remain in dead space (150 ml)

Portion of tidal air that gets into alveoli (350 ml)

Tid

al v

ol =

50

0 m

l

Alveolar air

Page 8: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 8

Dead Space Ventilation (VD)

Anatomical dead space (VD) Volume of gas

occupying the conducting zone of airways

Is equal to 150 ml Dead space

ventilation Is equal to VD * f 150 * 15 = 2.25

l/min

Portion of tidal volume air that remain in dead space (150 ml)

Portion of tidal air that gets into alveoli (350 ml)

Tid

al v

ol =

50

0 m

l

Alveolar air

Page 9: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 9

Function of Anatomical Dead Space Conditioning of inspired air

Warming the air to body temp Adding moisture

Saturate with water vapour Addition of water vapour dilutes

oxygen and nitrogen concentration of inspired air

Page 10: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 10

Function of Anatomical Dead Space Removal of foreign material Foreign particles

Filtered by nose Impacted in lower airways Dissolved on moist surface of airways

Small particles (soot, pollen) Impact on the surface of the airways

Page 11: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 11

Function of Anatomical Dead Space Impaction

Stick to mucus lining Carried in the mucus towards the

mouth Expectorated Swallowed

Mucus is propelled upwards towards the mouth

Cilia of the respiratory epithelium

Page 12: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 12

Function of Anatomical Dead Space Foreign materials in inspired

gas (cigarette smoke, smog) Stimulate irritant receptors in

the airways Cause coughing Increase secretion of mucus Hypertrophy of mucus glands

Page 13: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 13

Function of Anatomical Dead Space Prolonged breathing air

containing foreign material Cause chronic bronchitis

Increase airway resistance, difficult in breathing

Page 14: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 14

Alveolar Dead Space In health individuals

Anatomical dead space represent the entire dead space volume

In people with lung diseases Some alveoli do not

get blood supply Such alveoli do not

participate in gas exchange

They constitute alveolar dead space

17

1819

20

21

22

23

1

0

34

2

Bro

nchi

R

esp i

rato

ry

bron

chi o

leA

lve o

lar

duct

Conducting zone

Respiratory zone

Trachea

Page 15: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 15

Total Dead Space Total

(physiologic) dead space include Anatomical dead

space Alveolar dead

space

17

1819

20

21

22

23

1

0

34

2

Bro

nchi

R

esp i

rato

ry

bron

chi o

leA

lve o

lar

duct

Conducting zone

Respiratory zone

Trachea

Page 16: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 16

Alveolar Ventilation Volume of fresh gas

that reaches the alveoli per minute

Participate in exchange of O2 & CO2

It is equal to Amount of new air

reaching the alveoli times the breathing frequency

Portion of tidal volume air that remain in dead space (150 ml)

Portion of tidal air that gets into alveoli (350 ml)

Tid

al v

ol =

50

0 m

l

Alveolar air

Page 17: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 17

Alveolar Ventilation Alveolar

ventilation (VA) VA = (VT – VD) *

f VA = (500 – 150) *

12 VA = 4200

ml/min

Portion of tidal volume air that remain in dead space (150 ml)

Portion of tidal air that gets into alveoli (350 ml)

Tid

al v

ol =

50

0 m

l

Alveolar air

Page 18: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 18

Alveolar Ventilation Alveolar ventilation

Major factor in determining the conc of O2 and CO2 in the alveoli

Alveolar CO2 tension (PACO2) Regulated at value

of 40 mm Hg Determined by the

Rate of production Alveolar

ventilation

Portion of tidal volume air that remain in dead space (150 ml)

Portion of tidal air that gets into alveoli (350 ml)

Tid

al v

ol =

50

0 m

l

Alveolar air

Page 19: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 19

Alveolar Ventilation Alveolar O2 tension

(PA O2) O2 is continually

removed from the alveoli by diffusion

Inspiration brings Fresh air into the

alveoli Maintain the

alveolar O2 tension (PA o2)at about 100 mm Hg

Portion of tidal volume air that remain in dead space (150 ml)

Portion of tidal air that gets into alveoli (350 ml)

Tid

al v

ol =

50

0 m

l

Alveolar air

Page 20: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 20

Alveolar – Capillary Gas Exchange

Pulmonary capillary blood 70 ml

Pulmonary blood flow 5000 ml/min

alveoli

Page 21: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 21

Alveolar/capillary Exchange

Composition of alveolar gas mixture Contain

respiratory gases Oxygen, carbon

dioxide Together with

Nitrogen, water vapour

CO2

CO2

CO2

O2

O2

O2

Alveolar space

Page 22: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 22

Alveolar/capillary Exchange

The volume of alveolar space Functional

residual capacity (FRC)

2.4 to 3 liters To this vol fresh

air is added O2 is removed CO2 is added

CO2

CO2

CO2

O2

O2

O2

Alveolar space

Page 23: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 23

Alveolar/capillary Exchange

The conc of O2 in the alveoli (FAO2) depends on Rate of diffusion

of oxygen in blood (VO2) Oxygen uptake

Rate of entry of O2 into the lung (FIo2) * (VA)

CO2

CO2

CO2

O2

O2

O2

Alveolar space

Page 24: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 24

Alveolar/capillary Exchange

Where (FIO2) is the

conc of O2 in inspired air

(VA) is alveolar ventilation

CO2

CO2

CO2

O2

O2

O2

Alveolar space

Page 25: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 25

Alveolar/capillary Exchange

The alveolar CO2 conc (FACO2) depends on Rate of

excretion of CO2 from blood into alveolar

Rate of CO2 removal from the alveoli (FACO2) * (VA)

CO2

CO2

CO2

O2

O2

O2

Alveolar space

Page 26: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 26

Alveolar/capillary Exchange

Where (FACO2) is the

alveolarCO2 conc

(VA) is alveolar ventilation

CO2

CO2

CO2

O2

O2

O2

Alveolar space

Page 27: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 27

Alveolar Partial Pressures In a mixture of gases

Each gas exerts its own partial pressure (tension)

According to Dalton’s law Partial pressure equal

Fraction of gas present (concentration) times the total pressure

Partial pressure of gas in a mixture is a measure of the concentration of the gas in the mixture

Page 28: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 28

Partial Pressure % Composition of dry air at sea

level contain O2 = 20.93% Co2 = 0.03% N2 = 79.04%

Partial pressure Total pressure * % conc

For O2 Po2 = 760 * 0.2093 = 159 mm hg

Page 29: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 29

Partial Pressure For CO2

PCO2 = 760 * 0.0003 = 0.2 mm Hg

For N2 PN2 = 760 * 0.7904 = 600 mm

Hg

Page 30: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 30

Partial pressures & conc of O2, CO2 in alveoli

Oxygen Conc of O2 in

alveoli (FAO2) & PAO2

Depend on Rate of

diffusion into blood (VO2)

Rate of entry of O2 in lungs

(FIO2) * (VA)

CO2 O2

Alveoli

Pulmonary capillary

PACO2 PAO2

CO2 O2

FAO2

Page 31: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 31

Partial pressures & conc of O2, CO2 in alveoli

Hence If you increase

O2 consumption (VO2)

You need to increase alveolar ventilation (VA) To maintain PAO2

at 100 mmHg CO2 O2

Alveoli

Pulmonary capillary

PACO2 PAO2

CO2 O2

FAO2

Page 32: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 32

Partial Pressures & conc of O2, CO2 in Alveoli

When the oxygen uptake (VO2) is 250 ml/min You require

alveolar vent of about 5 liters /min to maintain PAO2 = 100mm Hg

150

100

40

5 10 15 20 30

Alveolar ventilation (L/min)

PA

O2 &

PA

CO

2 mm

Hg

VO2 = 250 ml/min

VO2 = 1000 ml/min

PAO2 = 100 mm Hg

PACO2 = 40 mm Hg

Page 33: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 33

Partial Pressures & conc of O2, CO2 in Alveoli

When the oxygen uptake (VO2) is 1000 ml/min You require

alveolar vent of about 20 liters /min to maintain PAO2 = 100mm Hg

150

100

40

5 10 15 20 30

Alveolar ventilation (L/min)

PA

O2 &

PA

CO

2 mm

Hg

VO2 = 250 ml/min

VO2 = 1000 ml/min

PACO2 = 40 mm Hg

PAO2 = 100 mm Hg

Page 34: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 34

Partial pressures & conc of O2, CO2 in alveoli

For CO2 The alveolar CO2

conc (FACO2) and the PACO2 depend on rate of Excretion of CO2

from blood into the alveoli

CO2 removal from alveoli (VA * FACO2)

CO2 O2

Alveoli

Pulmonary capillary

PACO2 PAO2

CO2 O2

FAO2

Page 35: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 35

Partial Pressure of Respiratory Gases (mm Hg)Gas Atmospheric

airAlveolar gas

Expired air

O2 159.0 (20.84%) 104.0 (13.6%)

120.0 (15.7%)

CO2 0.3 (0.04%) 40.0 (5.3%) 26.0 (3.6%)

N2 597.0 (78.62%) 569.0 (74.9%)

566.0 (74.5)

H2O 3.7 (0.5%) 47.0 (6.2%) 47.0 (6.2%)

Total 760 (100%) 760 (100%) 760 (100%)

From Guyton

Page 36: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 36

Diffusion

Page 37: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 37

Diffusion of Gases Through the Respiratory Membrane

Fick’s law The rate of

transfer of gas through a sheet of tissue is proportional to Tissue area Diffusing gas

partial pressures Is inversely

proportional to Tissue thickness

Vgas (A/T)D(P1-P2)

P1 P2

T

A

D Sol/ √ MW

Vgas = gas transferred

A =area

T = thickness

D = diffusion const

Page 38: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 38

Diffusion of Gases Through the Respiratory Membrane

With respect to the lungs The area of

blood gas barrier is large

Thickness is very small

The dimensions are ideal for diffusion

Vgas (A/T)D(P1-P2)

P1 P2

T

A

D Sol/ MW

Vgas = gas transferred

A =area

T = thickness

D = diffusion const

Page 39: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 39

Diffusion of Gases Through the Respiratory Membrane

The rate of transfer is proportional to a diffusion constant which depends on Properties of the

tissue Particular gas

The diffusion constant is Proportional to

solubility of the gas Inversely

proportional to MW of the gas

Vgas (A/T)D(P1-P2)

P1 P2

T

A

D Sol/ MW

Vgas = gas transferred

A =area

T = thickness

D = diffusion const

Page 40: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 40

Diffusion of Gases Through the Respiratory Membrane

Hence CO2 diffuses about 20 times more fast than O2 because Has much

higher solubility But not very

different MW

Vgas (A/T)D(P1-P2)

P1 P2

T

A

D Sol/ MW

Vgas = gas transferred

A =area

T = thickness

D = diffusion const

Page 41: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 41

Partial Pressures & conc of O2, CO2 in Alveoli

The partial pressure of the respiratory gases in the alveoli PAO2 = 100 mmHg PACO2 = 40 mm hg

In the capillary at arterial end Pvo2 = 40 mmHg Pvco2 = 46 mm hg

CO2 O2

Alveoli PACO2 = 40 PAO2 = 100

CO2 O2

PvCO2 = 46 mm Hg

PvO2 = 40 mm HgPaCO2 = 40 mm Hg

PaO2 = 100 mm Hg

Page 42: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 42

Partial Pressures & conc of O2, CO2 in Alveoli

In the capillary at venous end PaO2 = 100 mmHg PaCO2 = 40 mm Hg

Thus there is Partial pressure

difference which form the driving force for diffusion of O2 and CO2

CO2 O2

Alveoli PACO2 = 40 PAO2 = 100

CO2 O2

PvCO2 = 46 mm Hg

PvO2 = 40 mm HgPaCO2 = 40 mm Hg

PaO2 = 100 mm Hg

Page 43: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 43

Diffusion Path in the Lungs

Alveolar capillary membrane

Made up of Capillary

endothelium Single layer

endothelial cells Basement membrane

Elastic collageneous tissue

Alveolar epithelium Single layer

epithelial cells

Capillary endothelium

Basement membrane

Alveolar epithelium

Surface lining

Alveolar capillary membrane (0.2 m)

Alveolar diameter = 300 m

Diameter of RBC = 7.5 m

Page 44: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 44

Alveolar Capillary Membrane

Also to be included RBC membrane

Capillary endothelium

Basement membrane

Alveolar epithelium

Surface lining

Alveolar capillary membrane (0.2 m)

Alveolar diameter = 300 m

Diameter of RBC = 7.5 m

Page 45: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 45

Diffusion Capacity of the Lung

Ability of respiratory membrane (RM ) To exchange gas

between alveoli & pulmonary blood

Diffusion capacity Volume of gas

that will diffuse through the RM/min/mm Hg

CO2 O2

Alveoli

Pulmonary capillary

Page 46: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 46

Diffusion Capacity of the Lung Factors affecting diffusing

capacity of the lung include Membrane component Blood component

Membrane component Pulmonary diseases may affect

diffusion process by The SA (destruction of alveoli) Diffusion distance (oedema)

Page 47: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 47

Diffusion Capacity of the Lung Reducing the partial pressure

gradient for the diffusion of gases Ventilation/perfusion

abnormalities

Page 48: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 48

Diffusion Capacity of the Lung Blood component

Chemical combination of gases with Hb require finite time In Hb conc enhances the transfer

of gases Anaemic individuals would have

impaired diffusion capacity Increase in cardiac output (C.O)

enhance diffusion capacity

Page 49: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 49

Diffusion Capacity for O2

The extent to which diffusion can occur in the whole human lung Can be obtained

from Fick’s law of diffusion

Vgas (A/T)D(P1 – P2)

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 50: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 50

Diffusion Capacity for O2

Vgas = K(A/T)P VO2 = K(A/T)PO2 The amount that

diffuses must be identical to the oxygen uptake (VO2)

K, A, & T can not be measured in the human lung

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 51: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 51

Diffusion Capacity for O2

K(A/T) = DL DL new

constant Equals the

diffusion capacity of the lung

Oxygen uptake VO2 = DLO2 *

(meanPO2)

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 52: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 52

Diffusion Capacity for O2

DLO2 is the diffusion capacity of the lung for O2

MeanPO2 is the mean oxygen

partial pressure difference between the alveolar space and the blood in the lung

It is about 10 mm Hg

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 53: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 53

Diffusion Capacity for O2

In the human lung VO2 = 250 ml/min MeanPO2 = 10

mm Hg Thus

DLO2 = (VO2)/

MeanPO2 = 250/10 = 25 ml of O2 / min/ mm Hg

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 54: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 54

Diffusion Capacity for O2

Changes in O2 diffusion capacity

During exercise there is increase Pulmonary blood

flow Alveolar ventilation

Diffusion capacity for O2 increase Maximum of about

3 times resting value

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 55: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 55

Diffusion Capacity for O2

The increase is due to Opening up of

dormant capillaries

Extra dilatation of already open capillaries

All these lead to Increase in blood

flow Increase in SA

PO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 56: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 56

Diffusion Capacity for O2

There is also better matching between Ventilation of

alveoli Perfusion of

capillariesPO2 = 100

Alveoli

Pulmonary capillary

PO2 = 100

PO2 = 40

PO2 = 100

PO2 = 60PO2 = 0

Page 57: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 57

Diffusion Capacity for CO2

Diffusion capacity of the lung for CO2 Has been

estimated to be equal to

400 to 450 ml of CO2 /min/mm Hg

PCO2 = 40

Alveoli

Pulmonary capillary

PCO2 = 40

PCO2 = 46

PCO2 = 40

PO2 = 60PO2 = 0

Page 58: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 58

Equilibration for O2 Diffusion of O2

occurs from alveolar gas to pulmonary capillary blood Normal Alveolar

O2 tension (PAO2) = 100 mm Hg

Oxygen tension of blood entering the capillary (PvO2) = 40 mm Hg

PaO2 = 100

Alveoli

Pulmonary capillary

PAO2 = 100

PvO2 = 40

PAO2 = 100

PO2 = 60PO2 = 0

Page 59: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 59

Equilibration for O2 Diffusion of O2

occurs from alveolar gas to pulmonary capillary blood Normal Alveolar

O2 tension (PAO2) = 100 mm Hg

Oxygen tension of blood entering the capillary (PvO2) = 40 mm Hg

PaO2 = 100

Alveoli

Pulmonary capillary

PAO2 = 100

PvO2 = 40

PAO2 = 100

PO2 = 60PO2 = 0

HbHb Hb

O2

O2

O2

Page 60: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 60

Equilibration for O2 After crossing

the alveolar/capillary membrane O2 diffuse in

plasma Raising plasma

O2 tension Cause O2 to

diffuse into RBC

PaO2 = 100

Alveoli

Pulmonary capillary

PAO2 = 100

PvO2 = 40

PAO2 = 100

PO2 = 60PO2 = 0

HbHb Hb

O2

O2

O2

Page 61: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 61

Equilibration for O2 Equilibration time

Enough O2 diffuse across the alveolar/ capillary membrane

Blood O2 tension and alveolar O2 tension Equalize in about

0.25 seconds

PaO2 = 100

Alveoli

Pulmonary capillary

PAO2 = 100

PvO2 = 40

PAO2 = 100

PO2 = 60PO2 = 0

HbHb Hb

O2

O2

O2

Page 62: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 62

Equilibration for CO2 Diffusion of CO2

occurs from pulmonary capillary blood to alveolar gas Normal Alveolar

CO2 tension (PACO2) = 40 mm Hg

CO2 tension of blood entering the capillary (PvCO2) = 46 mm Hg

PaCO2 = 40

Alveoli

Pulmonary capillary

PACO2 = 40

PvCO2 = 46

PACO2 = 40

PCO2 = 6PCO2 = 0

Page 63: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 63

Equilibration for CO2 CO2 diffuse

From capillary blood into alveoli

It is estimated that the time required for The blood CO2

tension and the alveolar CO2 tension to equalize Is approximately

0.25 sec

PaCO2 = 40

Alveoli

Pulmonary capillary

PACO2 = 40

PvCO2 = 46

PACO2 = 40

PCO2 = 6PCO2 = 0

HbHb Hb

CO2

CO2

CO2

Page 64: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 64

Equilibration Blood transit time

during its passage through the capillaries At rest transit time

is 0.75 sec By 0.25 sec blood

and alveolar air have equalized for O2 and CO2 tensions

During exercise blood transit time Reduced to 0.34

sec

100 mm Hg

40

46

Oxygen

Carbon dioxide

0 0.25 0.50 0.75 seconds

Transit time

RBC CO2, O2

Alveolus

Page 65: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 65

Factors Affecting Gas Exchange

Amount of gas exchanged across the respiratory membrane may be dependent on Perfusion or Diffusion

properties

Alveoli

Pulmonary capillary

Page 66: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 66

Perfusion Limited Gas Exchange

As soon as the O2 equilibrates Net transfer of

O2 ceases No additional

uptake of O2 occurs until Capillary blood

is replaced by new blood

100 mm Hg

40

46

Oxygen

Carbon dioxide

0 0.25 0.50 0.75 seconds

Transit time

RBC CO2, O2

Alveolus

Page 67: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 67

Perfusion Limited Gas Exchange

Increase in gas exchange can only Be achieved by

increase in blood flow

Average RBC Spends 0.75 sec

in pulmonary capillary

O2 equilibration occurs in 0.25 sec

100 mm Hg

40

46

Oxygen

Carbon dioxide

0 0.25 0.50 0.75 seconds

Transit time

RBC CO2, O2

Alveolus

Page 68: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 68

Perfusion Limited Gas Exchange

There is normally no increase in the O2 content for the last 0.5 sec This provides

for a safety factor

100 mm Hg

40

46

Oxygen

Carbon dioxide

0 0.25 0.50 0.75 seconds

Transit time

RBC CO2, O2

Alveolus

Page 69: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 69

Diffusion Limited Gas Exchange

Occurs whenever Equilibration does

not occur Many pulmonary

diseases Reduce the rate of

O2 transfer By altering with

RM Reduce alveolar O2

tension Reduces

diffusion rate

100 mm Hg

40

46

Oxygen

Carbon dioxide

0 0.25 0.50 0.75 seconds

Transit time

RBC CO2, O2

Alveolus

Page 70: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 70

Diffusion Limited Gas Exchange

The diffusion rate can be increased by Raising the

alveolar O2 tension (PAO2)

100 mm Hg

40

46

Oxygen

Carbon dioxide

0 0.25 0.50 0.75 seconds

Transit time

RBC CO2, O2

Alveolus PAO2

Page 71: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 71

Blood Flow

Q

Page 72: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 72

Pulmonary Blood Flow The entire blood

flow from the right ventricle Distributed to

the pulmonary vessels

Pulmonary blood flow is essentially equal to cardiac output (5 l/min)

Alveoli

Pulmonary capillary

Q

Page 73: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 73

Pressure in Pulmonary System Pressure in the pulmonary

system Pressure in the RV = 25/0 mm hg In the PA = 25/8 mm hg

Mean pressure of 15 mm hg Capillary = 7 mm hg LA & PV = 2 mm hg

Varies between 1 – 5 mm hg

Page 74: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 74

Blood Volume Blood volume of the lungs

Is about 450 ml 9% of total blood volume

About 70 ml of this is in the capillaries

The remaining is divided equally between arteries and veins

Page 75: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 75

Distribution of Blood Flow

Effect of gravity Gravity has marked

effect on pulmonary circulation

In upright position Upper portion of

the lung are well above the level of the heart

The bases are well below the level of the heart

Level of RA

Zone 1 PA >Pa >Pv

Zone 2 Pa >PA >Pv

Zone 3 Pa >Pv >PA

Page 76: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 76

Distribution of Blood Flow

There are marked pressure gradients In the

pulmonary arteries from top to bottom of the lung

Level of RA

Zone 1 PA >Pa >Pv

Zone 2 Pa >PA >Pv

Zone 3 Pa >Pv >PA

Page 77: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 77

Distribution of Blood Flow

Pressure in capillaries at apex (zone 1) Close to

atmospheric in the alveoli

Pulmonary arterial pressure is normally sufficient to maintain perfusion

Level of RA

Zone 1 PA >Pa >Pv

Zone 2 Pa >PA >Pv

Zone 3 Pa >Pv >PA

Page 78: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 78

Distribution of Blood Flow

If it is reduced or if alveolar pressure increases Some capillaries

collapse Thus there will

be No gas exchange Cause alveolar

dead space

Level of RA

Zone 1 PA >Pa >Pv

Zone 2 Pa >PA >Pv

Zone 3 Pa >Pv >PA

Page 79: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 79

Distribution of Blood Flow

In the middle of the lung (zone 2) Pulmonary arterial

pressure exceed alveolar pressure

Venous pressure is still low

Blood flow is determined by difference between arterial & alveolar pressure

Level of RA

Zone 1 PA >Pa >Pv

Zone 2 Pa >PA >Pv

Zone 3 Pa >Pv >PA

Page 80: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 80

Distribution of Blood Flow

In the lower portion of the lung (zone 3) The alveolar

pressure is Lower than

pressures in all parts of the pulmonary circulation

Blood flow is determined by Arterial – venous

pressure difference

Level of RA

Zone 1 PA >Pa >Pv

Zone 2 Pa >PA >Pv

Zone 3 Pa >Pv >PA

Page 81: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 81

Control of Distribution of Blood Flow

When conc of O2 in the alveolus decease Less than 70%

normal ; or <73 mm Hg

Adjacent blood vessel constrict within 3 to 10 sec

This increases resistance

under ventilated alveolus PAO2, PACO2

vasoconstriction

Well ventilated alveolus PAO2 = 104, PACO2 = 40

Page 82: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 82

Control of Distribution of Blood Flow

This restrict blood flow through the affected alveoli Diverts blood to

well oxygenated alveoli

An important mechanism for Balancing blood

flow and ventilation

under ventilated alveolus PAO2, PACO2

vasoconstriction

Well ventilated alveolus PAO2 = 104, PACO2 = 40

Page 83: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 83

Control of Distribution of Blood Flow

Generalized hypoxia as in Exposure to high

altitude (>5000 – 7000 feet)

Hypoventilation Hypoxic

vasocosntriction can cause Increase in total

pulmonary resistance Pulmonary

hypertension

under ventilated alveolus PAO2, PACO2

vasoconstriction

Well ventilated alveolus PAO2 = 104, PACO2 = 40

Page 84: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 84

Ventilation – Perfusion Ratio

The alveolar O2 (PAO2) tension and CO2(PACO2) tension Determined by the

rate of Alveolar

ventilation (VA) and

Transfer of O2 & CO2 through the respiratory membrane

Alveoli

Pulmonary capillary

Q

VA

Page 85: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 85

Ventilation – Perfusion Ratio

In the lung with normal ventilation & blood flow some areas are well Ventilated but

poorly perfused Perfused but poorly

ventilated In either of these

situation Gas exchange at the

respiratory membrane would be impaired

Alveoli

Pulmonary capillary

Q

VA

Page 86: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 86

Ventilation – Perfusion Ratio

Ventilation – perfusion ration Expressed as

VA/Q Where

VA = alveolar ventilation for a given alveolus

Q = capillary blood flow for the same alveolus

Alveoli

Pulmonary capillary

Q

VA

Page 87: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 87

Ventilation – Perfusion Ratio

For the entire lung VA = 4.2 liters /

min Q = 5 liters/ min

Thus the VA/Q = 4.2/5 = 0.84 This is the

normal ratio

Alveoli

Pulmonary capillary

Q (5)

VA (4.2)

Page 88: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 88

Effect of Ventilation-perfusion Ratios

If an alveolus is well ventilated & well perfused The VA/Q = 0.84

In this case there will be normal gas exchange The alveolar gas

equilibrates with the capillary blood partial pressures of O2 & CO2

VA Q

PaCO2 = 40PVCO2 = 46

PAO2 = 104

PACO2 = 40

VA / Q = 0.84

PaO2 = 98

PVO2 = 40

Page 89: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 89

Effect of Ventilation-perfusion Ratios

If an alveolus is not ventilated but is well perfused The VA/Q = 0

In this case there will be no gas exchange Pulmonary

capillary blood not oxygenated Shunt

VA QPVO2 = 40

PVCO2 = 46

PAO2 = 40

PACO2 = 46

VA / Q = 0

PaO2 = 40PaO2 = 46

Page 90: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 90

Effect of Ventilation-perfusion Ratios

The alveolar gas equilibrates with the venous blood partial pressures of O2 & CO2

If an alveolus is well ventilated but not perfused The VA/Q = ∞

VA Q

PVO2 = 40

PVCO2 = 46

PAO2 = 149

PACO2 = 0

VA / Q = ∞

Page 91: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 91

Effect of Ventilation-perfusion Ratios

In this case there will be no gas exchange Pulmonary capillary

blood not oxygenated

The alveolar gas equilibrates with the atmospheric air partial pressures of O2 & CO2

Dead space

VA Q

PVO2 = 40

PVCO2 = 46

PAO2 = 149

PACO2 = 0

VA / Q = ∞

Page 92: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 92

Physiologic Shunt In a poorly

ventilated alveolus VA is low while

Q is normal The VA/Q < 0.8

VA QPVO2 = 40

PVCO2 = 46

VA / Q < 0.8

Page 93: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 93

Physiologic Shunt Certain portion

of venous blood does not become oxygenated Poorly aerated

blood leaves pulmonary capillary (shunted blood)

VA QPVO2 = 40

PVCO2 = 46

VA / Q < 0.8

Page 94: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 94

Physiologic Shunt Physiologic

shunt There is a fall

in PaO2

Only slight elevation of PaCO2 CO2 is

eliminated in ventilated alveoli

VA QPVO2 = 40

PVCO2 = 46

VA / Q < 0.8

Page 95: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 95

Physiologic Dead Space When VA is normal

but Blood flow (Q) is decreased The VA/Q > 0.8

Some of the alveolar ventilation (VA) is wasted No blood flow to

carry out gas exchange

This is physiologic dead space

VA

Q

PVO2 = 40PVCO2 = 46

VA / Q > 0.8

Page 96: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 96

Ventilation – Perfusion Ratios in Lung

In the lung of upright individual Upper part is less

well ventilated than the lower part, but

It is also poorly perfused

VA/Q > 0.8 This amounts to

Dead space

Level of RA

Zone 1 VA/Q > 0.8

Zone 2 VA/Q = 0.8

Zone 3 VA/Q < 0.8

Page 97: Ventilation 27-Apr-17 Ventilation

May 3, 2023 Ventilation 97

Ventilation – Perfusion Ratios in Lung

In the lung of upright individual Lower part is well

ventilated, but It is also very well

perfused VA/Q < 0.8 This amounts to

physiologic shunt

Level of RA

Zone 1 VA/Q > 0.8

Zone 2 VA/Q = 0.8

Zone 3 VA/Q < 0.8