vÄrldens skillnad

16
VÄRLDENS SKILLNAD “Grid Code testing of Full Power Converter Based Wind Turbines Using back-to-back Voltage Source Converter System” EWEA 2013, Vienna Nicolás Espinoza, PhD Student, Chalmers University of Technology [email protected]

Upload: anitra

Post on 24-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

“Grid Code testing of Full Power Converter Based Wind Turbines Using back-to-back Voltage Source Converter System” EWEA 2013, Vienna Nicolás Espinoza , PhD Student, Chalmers University of Technology [email protected]. VÄRLDENS SKILLNAD . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: VÄRLDENS SKILLNAD

VÄRLDENS SKILLNAD

“Grid Code testing of Full Power Converter Based Wind Turbines Using back-to-back Voltage Source Converter System”

EWEA 2013, Vienna

Nicolás Espinoza, PhD Student,Chalmers University of Technology

[email protected]

Page 2: VÄRLDENS SKILLNAD

• Introduction– Alternative approach of grid code for wind turbines– Grid code analysis regarding interconnection of wind turbines. – Simulation of existing testing setup: 4 MW FPC based WT

connected to an 8 MW back-to-back VSC system, operated as a test equipment.

– Control system for the wind turbine and test equipment are given.– Results shown the capability of the test equipment in controlling

the voltage while handling short circuit currents.– Unique opportunity of field test of wind turbine using VSC system.

“Grid Code testing of Full Power Converter Based Wind Turbines Using back-to-back Voltage Source Converter System”

Page 3: VÄRLDENS SKILLNAD

Contents• Grid codes• Simulation models• Results

Page 4: VÄRLDENS SKILLNAD

Reactive Power Requirements• Normal operation range.• Example:

• Strictest requirements: lagging power factor during upper limit of the normal voltage operation band.

0.850.925 0.95 0.975 1 0.975 0.95 0.925

Lagging

1

1.05

1.1

1.15

0.95

0.9

1.2

Syst

em V

olta

ge [p

u]

Power factor0.9

E.ON (Germany) [6]

Energinet.dk (Denmark) [10]

Red Eléctrica España (Spain) [8]

Leading

Page 5: VÄRLDENS SKILLNAD

Active Power Curtailment • Active power output vs. system frequency

• Example:

• Different active power control requirements.• Overfrequency control in Danish grid code.

100

80

60

40

20

047 48 49 50 51 52 53

A B C

D

E

Cont

rolla

ble

WFP

S’s

Activ

e Po

wer

Out

put

(as

a %

of a

vaila

ble

activ

e po

wer

)

System electrical frequency [Hz]

0

47 48 49 50 51 52 53

P available

Act

ive

Pow

er

System electrical frequency [Hz]

P produced

P min

P delta

Control bandDead band

Droop 1

Droop 2

Droop 3

Droop 4

f min f maxf1 f2 f3 f4

Page 6: VÄRLDENS SKILLNAD

Low Voltage Ride Through• Fault representation at the connection point• Example:

• Different requirements for active and reactive power.

00 1

0.3

0.4

0.5

0.6

0.2

0.1

0.7

Syst

em V

olta

ge [p

u]

Time [s]

E.ON (Germany) [6]

Energnet.dk (Denmark) [10]

Red Eléctrica España (Spain) [8]

0.8

0.9

1

2 30.50.25 0.75 1.25 1.5 1.75 2.25 2.5 2.75

Svenska Krafnät (Sweden) [11] Nordel [12]

EirGrid (Ireland) [9]

National Grid (U.K.) [7]

Page 7: VÄRLDENS SKILLNAD

Contents• Grid codes• Simulation models• Results

Page 8: VÄRLDENS SKILLNAD

Conventional Method• Impedance-based testing device

Page 9: VÄRLDENS SKILLNAD

VSC-Based Method• Overview of simulation setup and system modeling

Test Equipment: VSC in back-to-backGrid Code

TestingCoupling

Inductor and Filters

AC Grid

G

Wind TurbineOutput

TransfomerCoupling

Inductor and Filters

Wind Turbine

GeneratorFull Power Converter

LVRT profile

V/Vn

1.0

t [s]

Coupling Inductor and

Filters

Coupling Inductor and

FiltersAC

DC AC

DC AC

DC AC

DC

V/Vn

1.0

t [s]

Voltage dip

PCC

4 MW Full Power Converter WT8 MW Converter as Test Eq.

Page 10: VÄRLDENS SKILLNAD

Control Strategy for the WT model• Control overview for VSC

– Inner current control– Outer active and reactive power control – DC voltage control

*2DCv

2DCv

*P

P

*Q

du

qu

ωLDq to ABC

*,, CBAVt PWM

DCv

61Sw

S

Q

PI

PI

ωL

P

PI

Controller

*S

Current Controller

*dti

dti

*qtiqti

dsv

qsv

*dtv

*qtv

Active Power Controller

DC-Link Voltage Controller

Reactive Power Controller

Page 11: VÄRLDENS SKILLNAD

• Voltage Control: full controllability of the applied voltage– Amplitude– Phase angle– Frequency

• Implementation

Control Strategy for Test Equipment

PCC Voltage Control

)(dqsv

qsdsdqs jvvv )*(

)*( dqti

Page 12: VÄRLDENS SKILLNAD

Contents• Grid codes• Simulation models• Results

Page 13: VÄRLDENS SKILLNAD

Danish LVRT test.

LVRT TEST. (a) Danish grid code, (b) WT output power, (c) Controlled PCC voltage, and (d) test equipment terminal current.

Time [s] 0.0 1.0 2.0 3.0 4.0 5.0 ... ... ...

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

Volta

ge [p

u]

LVRT profile

Time [s] 0.0 1.0 2.0 3.0 4.0 5.0 ... ... ...

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

WT

Outp

ut P

ower

[pu]

VSC1 out 2

Time [s] 0.0 1.0 2.0 3.0 4.0 5.0 ... ... ...

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20

Volta

ge [p

u]

VSC1 out 2

Time [s] 0.0 1.0 2.0 3.0 4.0 5.0 ... ... ...

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

Curre

nt [p

u]

It1 ABC

(a) (b)

(c) (d)

Danish LVRT

Controled PCC voltage Test VSC terminal current

Active Power Reactive Power

Page 14: VÄRLDENS SKILLNAD

Conclusions• Comparison of different European grid codes:

– Dependencies between voltage, frequency and reactive power.– Active power curtailment strategies against frequency deviation – LVRT profiles are compared in terms of strictness and reactive

power management during the voltage dip. • Different approach of grid code testing. • Control strategies for WT and Test Eequipment. • Two representative case studies.• More reliable representation of grid.

Page 15: VÄRLDENS SKILLNAD

Upcoming Activities within the SWPTC• Laboratory setup at 100 kW / 400 V. • Field test at “Big Glenn” WT, programmed for autumn 2013.• Unique opportunity: Frequency test.

Page 16: VÄRLDENS SKILLNAD

Thanks for your attention

Nicolás Espinoza, PhD [email protected]

CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden.