ucare report

6
Production and binding of D4 protein Bree Drda Purpose C. botulinium C2II domain four (D4) is a toxin binding domain protein with a general specificity towards eukaryotic cell surface glycosylation patterns which promotes cellular recognition and endocytosis of the toxin. It has not yet been characterized by crystallography or used in a biomedical application as a binding domain. Other research groups 1,2,3 have also investigated this protein and this project is a continuation of their work. The purpose of this report is to describe the methods and results of producing D4 protein and binding it to the endosomes of N2A cells. DNA electrophoresis, SDSPAGE, and confocal microscopy were used. Methods Cell line and expression: The DNA for D4 was amplified from the vector BDV/pGex2T by PCR with a 5’ BAMHIglycine extension and a 3’ ECORI extension using primers GCGGGATCCGGTCGTAAGGAAAACATCTCATCGATCAACATCATCAACG and CCGGAATTCTTAGATAATCAGTTTATCCAGTTCAATCAGAAACACGCCCGACAGAC. The vector BDV/pGEX2T was obtained from synthesized DNA by Genscript with codon optimized for E. coli expression. This insert corresponded to amino acids 593721 of PDB entry 2J42. The amplified fragment was ligated into the vector pGEX2T by directional cloning at the restriction sites BamHI and EcoRI to make the expression vector pGEX2T:D4. DH5α was transformed to propagate the vector and BL21 (DE3) was chosen as the expression host strain and transformed. The D4 sequence was confirmed by Operon sequencing services and did not contain errors. A colony was grown in 3 mL culture tubes with LB media and 100 ug/mL of ampicillin. After incubating for 18 hours at 37°C, 1 mL of the culture was added to 400 mL of LB media and grown until an OD of 0.3 – 0.5 was reached. The culture was induced with 0.5 mM IPTG once it had reached an OD of 0.5 – 0.8. It was then incubated for three hours. The cells were pelleted by centrifuging the mixture at 5,000 rpm, 4°C, for 10 minutes using 100 mL of culture/pellet. The pellets were stored at 20°C. Protein extraction and purification: A D4 cell pellet constituting 100 mL of culture volume was resuspended in 20 mL of 1 x PBS + 1% Triton pH 7.5. The sample was pressed 3 times at 1000 psig, (~16,000 psia cell pressure) using a French press. The cell debris was pelleted in a centrifuge at 10,000 rpm, 4°C, for 20 minutes and the supernatant containing the protein was decanted. This supernatant was then incubated with washed immobilized glutathione resin (Genscript) for one hour at 4°C to let the protein bind with the resin. The supernatant was washed of excess nonbinding protein by centrifuging the resin with two volumes of 8 mL of 1 x PBS + 1% Triton. The Triton was then removed by centrifuging with three volumes of 1 x PBS. All spins involving the resin were done at 2,000 rpm, 4°C, for five minutes. The final total volume of the solution after the last wash was then reduced to 1 mL, and 10 units of thrombin were added in order to cleave the protein from the resin. The resin and the protein dissolved in the supernatant were separated using a syringe plugged with glass wool. The protein elution was concentrated to ~ten times the initial concentration using 3K spin column filters and stored at 4°C.

Upload: bree-drda

Post on 15-Apr-2017

164 views

Category:

Documents


1 download

TRANSCRIPT

Production  and  binding  of  D4  protein  

Bree  Drda  

Purpose    

C.  botulinium  C2II  domain  four  (D4)  is  a  toxin  binding  domain  protein  with  a  general  specificity  towards  eukaryotic  cell  surface  glycosylation  patterns  which  promotes  cellular  recognition  and  endocytosis  of  the  toxin.    It  has  not  yet  been  characterized  by  crystallography  or  used  in  a  biomedical  application  as  a  binding  domain.    Other  research  groups  1,2,3  have  also  investigated  this  protein  and  this  project  is  a  continuation  of  their  work.    The  purpose  of  this  report  is  to  describe  the  methods  and  results  of  producing  D4  protein  and  binding  it  to  the  endosomes  of  N2A  cells.    DNA  electrophoresis,  SDS-­‐PAGE,  and  confocal  microscopy  were  used.  

Methods  

Cell  line  and  expression:  

The  DNA  for  D4  was  amplified  from  the  vector  BDV/pGex-­‐2T  by  PCR  with  a  5’  BAMHI-­‐glycine  extension  and  a  3’  ECORI  extension  using  primers  GCGGGATCCGGTCGTAAGGAAAACATCTCATCGATCAACATCATCAACG  and  CCGGAATTCTTAGATAATCAGTTTATCCAGTTCAATCAGAAACACGCCCGACAGAC.    The  vector  BDV/pGEX-­‐2T  was  obtained  from  synthesized  DNA  by  Genscript  with  codon  optimized  for  E.  coli  expression.    This  insert  corresponded  to  amino  acids  593-­‐721  of  PDB  entry  2J42.    The  amplified  fragment  was  ligated  into  the  vector  pGEX-­‐2T  by  directional  cloning  at  the  restriction  sites  BamHI  and  EcoRI  to  make  the  expression  vector  pGEX-­‐2T:D4.    DH5α  was  transformed  to  propagate  the  vector  and  BL21  (DE3)  was  chosen  as  the  expression  host  strain  and  transformed.    The  D4  sequence  was  confirmed  by  Operon  sequencing  services  and  did  not  contain  errors.      A  colony  was  grown  in  3  mL  culture  tubes  with  LB  media  and  100  ug/mL  of  ampicillin.    After  incubating  for  18  hours  at  37°C,  1  mL  of  the  culture  was  added  to  400  mL  of  LB  media  and  grown  until  an  OD  of  0.3  –  0.5  was  reached.    The  culture  was  induced  with  0.5  mM  IPTG  once  it  had  reached  an  OD  of  0.5  –  0.8.    It  was  then  incubated  for  three  hours.    The  cells  were  pelleted  by  centrifuging  the  mixture  at  5,000  rpm,  4°C,  for  10  minutes  using  100  mL  of  culture/pellet.    The  pellets  were  stored  at  -­‐20°C.      

Protein  extraction  and  purification:  

A  D4  cell  pellet  constituting  100  mL  of  culture  volume  was  resuspended  in  20  mL  of  1  x  PBS  +  1%  Triton  pH  7.5.    The  sample  was  pressed  3  times  at  1000  psig,  (~16,000  psia  cell  pressure)  using  a  French  press.    The  cell  debris  was  pelleted  in  a  centrifuge  at  10,000  rpm,  4°C,  for  20  minutes  and  the  supernatant  containing  the  protein  was  decanted.    This  supernatant  was  then  incubated  with  washed  immobilized  glutathione  resin  (Genscript)  for  one  hour  at  4°C  to  let  the  protein  bind  with  the  resin.    The  supernatant  was  washed  of  excess  non-­‐binding  protein  by  centrifuging  the  resin  with  two  volumes  of  8  mL  of  1  x  PBS  +  1%  Triton.    The  Triton  was  then  removed  by  centrifuging  with  three  volumes  of  1  x  PBS.    All  spins  involving  the  resin  were  done  at  2,000  rpm,  4°C,  for  five  minutes.    The  final  total  volume  of  the  solution  after  the  last  wash  was  then  reduced  to  1  mL,  and  10  units  of  thrombin  were  added  in  order  to  cleave  the  protein  from  the  resin.    The  resin  and  the  protein  dissolved  in  the  supernatant  were  separated  using  a  syringe  plugged  with  glass  wool.    The  protein  elution  was  concentrated  to  ~ten  times  the  initial  concentration  using  3K  spin  column  filters  and  stored  at  4°C.  

Protein  Induction  with  N2A  Cells:  

Four  well  plates  on  a  24-­‐well  well  plate  were  seeded  with  100,000  N2A  cells  in  1  mL  of  EMEM  +  10%  FBS  +  1%  Pen  Strep  and  grown  at  37°C  with  5%  CO2.    After  24  hours,  three  of  the  wells  were  inoculated  with  Bacmam  2.0  early  endosome  labeling  kit  (Molecular  Probes)  baculovirus  at  a  concentration  of  50  particles  per  mammalian  cell  (PPC)  and  left  to  incubate  at  37°C  for  24  hours.    D4  protein  labeled  with  Alexa  Fluor  was  added  to  the  well  plates  at  following  concentrations:  0,  1,  5,  and  10  µg/mL.    The  cells  were  then  fixed  with  4%  paraformaldehyde  and  stained  with  DAPI.    The  collagen  coverslips  were  removed  and  mounted  on  glass  slides.    The  cells  were  examined  using  confocal  microscopy  at  60X  zoom.  

Results  

Protein  purification  gel:    

 

   

Lanes  7  and  8  show  the  purified  D4  protein  after  it  has  been  cut  from  the  resin.    The  amount  of  material  present  in  lane  5  is  considerably  more  than  lane  9.    This  suggests  that  the  protein  bound  to  the  resin  in  lane  5  has  been  cut  off,  which  is  what  we  see  appearing  in  lanes  7  and  8.    There  are  some  impurities  present  in  lane  7,  which  can  be  seen  more  distinctly  in  lane  6,  which  is  the  concentrated  fraction.    The  purity  of  the  protein  in  lanes  7  and  8  is  estimated  to  be  90%.  

 

Lanes 1 – Ladder 2 – Cell debris pellet 3 – Supernatant 4 – Final wash supernatant 5 – Resin, pre-thrombin 6 – Concentrated elution fraction from 10/12 purification (same cell paste lot) 7 – Elution fraction 1 8 – Elution fraction 2 9 - Resin, post-thrombin

Expected  Masses                           kDa

D4/pGex-­‐2T         40

D4         14

DNA  gel  of  restriction  digest  of  transformed  DH5a  to  screen  for  inserted  D4  DNA  

             This  gel  shows  a  digest  of  the  vector  plus  D4  insert  by  BamHI/EcoRI  restriction.    This  confirms  the  presence  of  the  D4  gene  in  the  appropriate  cloning  site  for  pGEX-­‐2T.    The  expected  masses  of  the  fragments  are  4.9  kb  (pGex-­‐2T)  and  0.4  kb  (D4).              Screen  for  D4  inserted  in  pGex-­‐2T:  D4  in  DH5α  DNA  gel  1  –  GeneRule  1kb  Plus  DNA  ladder  2  –  colony  4  from  isolate  patch  plate  3  –  colony  5  from  isolate  patch  plate          

         

 

 

 

 

 

 

 

20000  

10000  7000  

 5000  

 4000  

 3000  

 2000  

 1500  

 1000  

 700  

 500  

 400  

 

1                    2                      3  

Confocal  microscopy,  60  X  Zoom:    

These  figures  show  N2A  cells  that  were  incubated  with  10  µg/mL  D4  protein.    Bacmam  2.0  targets  specifically  endosomes.    The  overlap  of  green  and  red  areas  in  Figure  3  and  Figure  4  shows  the  colocalization  of  Bacmam  2.0  and  D4.  

   

   

Figure  1:  N2A  cells  incubated  with  Bacmam  2.0  (green),  DAPI  (blue),  and  Alexa  Fluor  568  labeled  D4  (red).    a)  Bacmam  2.0  b)  Alexa  Fluor  568  c)  Bacmam  2.0  +  Alexa  Fluor  568  d)  Bacmam  2.0  +  Alexa  Fluor  568  +  DAPI  

Figure  2:  Zoom  of  Figure  1c  

a)   b)  

c)   d)  

Figure  3:  Zoom  of  Figure  1d  

 

 

From  these  images  it  appears  that  there  is  colocalization  between  D4  and  early  endosomes  (Rab5a).    In  figure  1D  there  is  a  lack  of  green  label,  but  it  appears  that  D4  has  still  localized  to  a  similar  location  as  protein  that  has  green  labeling  in  the  same  frame.    Therefore,  we  are  assuming  that  this  protein  is  most  likely  also  colocalized  to  endosomes.    

Discussion:  

The  confocal  microscope  images  show  cells  with  areas  where  Bacmam  2.0  and  labeled  D4  overlap  (colocalization)  and  are  represented  by  a  yellow  color.    Bacmam  2.0  targets  the  endosomes  of  cells  as  a  GFP/Rab5a  fusion,  bringing  GFP  to  Rab5a  locations.    Rab5a  is  a  protein  that  specifically  localizes  to  early  endosomes.    The  fact  that  the  two  are  present  in  the  same  areas  of  cells  shows  that  D4  is  in  the  same  subcellular  location  as  the  endosomes  of  cells.    Therefore,  it  is  plausible  that  D4  may  be  useful  as  an  endosomal  targeting  moiety  in  a  drug  delivery  application.    Based  on  the  SDS-­‐PAGE  results,  we  can  see  that  this  purification  procedure  produces  D4  protein  at  an  estimated  90%  purity.    Determining  the  structure  of  this  protein  with  crystallography  would  require  ~15  mg  of  highly  pure  D4  protein.    This  batch  of  D4  E.  coli  cells  produced  0.5  mg/L.    In  the  future,  we  will  explore  using  a  reactor  in  order  to  produce  more  D4  protein.    

 

Appendix:  D4  construct  sequences    

This  corresponds  to  amino  acid  residues  593  to  721  with  the  addition  of  GR  at  the  N-­‐terminus  for  thrombin  cleavage  consensus.  

Figure  4:  N2A  cells  incubated  with  Bacmam  2.0  (green),  DAPI  (blue),  and  Alexa  Fluor  568  labeled  D4  (red).    a)  Bacmam  2.0  +  Alexa  Fluor  568  +  DAPI  b)  Alexa  Fluor  568  c)  Bacmam  2.0  d)  Bacmam  2.0  +  Alexa  Fluor  568  

a)  

c)  

b)  

d)  

Figure  6:  Zoom  of  Figure  4a  

1 GRKENISSIN IINDTNFGVE SMTGLSKRIK GNDGIYRAST KSFSFKSKEI 50 51 KYPEGFYRMR FVIQSYEPFT CNFKLFNNLI YSNSFDIGYY DEFFYFYCNG 100 101 SKSFFDISCD IINSINRLSG VFLIELDKLI I 131

DNA sequence confirmed by sequencing 1 GGATCCGGAT TCATGCGTAA GGAAAACATC TCATCGATCA ACATCATCAA 50 51 CGACACGAAC TTCGGCGTGG AAAGTATGAC CGGTCTGTCC AAACGTATTA 100 101 AGGGCAACGA TGGTATCTAT CGCGCGTCAA CCAAATCGTT TAGCTTCAAA 150 151 TCGAAGGAAA TTAAGTACCC GGAAGGTTTT TATCGTATGC GCTTCGTTAT 200 201 CCAGTCTTAT GAACCGTTCA CCTGTAACTT CAAGCTGTTC AACAACCTGA 250 251 TCTACTCTAA CAGTTTCGAC ATCGGCTACT ACGATGAATT TTTCTACTTC 300 301 TACTGCAACG GTTCCAAATC ATTTTTCGAC ATCAGTTGTG ATATCATCAA 350 351 CTCAATCAAC CGTCTGTCGG GCGTGTTTCT GATTGAACTG GATAAACTGA 400 401 TTATCTAAGA ATTC 414  

 

References  

1. Schleberg,  C.,  Hochmann,  H.,  Barth,  H.,  Aktories,  K.,  &  Schulz,  G.  E.  (2006)  Structure  and  Action  of  the  Binary  C2  Toxin  from  Clostridium  botulinum.  Journal  of  Molecular  Biology,  364,  705-­‐715.  

2. Eckhardt,  M.,  Barth,  H.,  Blöcker,  D.,  &  Aktories,  K.  (2000)  Binding  of  Clostridium  botulinum  C2  Toxin  to  Asparagine-­‐linked  Complex  and  Hybrid  Carbohydrates.  The  Journal  of  Biological  Chemistry,  275(4),  2328-­‐2334.  

3. Nagahama,  M.,  et  al.,  Binding  and  Internalization  of  Clostridium  botulinum  C2  Toxin.  Infection  and  Immunity,  2009.  77(11):  p.  5139-­‐5148.