uc sf va medical imaging informatics 2009, nschuff course # 170.03 slide 1/31 department of...

30
UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS: Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff Professor of Radiology VA Medical Center and UCSF [email protected]

Upload: margaret-morgan

Post on 19-Jan-2016

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 1/31

Department of Radiology & Biomedical Imaging

MEDICAL IMAGING INFORMATICS:Lecture # 1

Basics of Medical Imaging Informatics:Estimation Theory

Norbert SchuffProfessor of Radiology

VA Medical Center and [email protected]

Page 2: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 2/31

Department of Radiology & Biomedical Imaging

What Is Medical Imaging Informatics?• Picture Archiving and Communication System (PACS) • Imaging Informatics for the Enterprise • Image-Enabled Electronic Medical Records • Radiology Information Systems (RIS) and Hospital Information Systems (HIS) • Digital Image Acquisition • Image Processing and Enhancement • Image Data Compression • 3D, Visualization and Multi-media • Speech Recognition • Computer-Aided Detection and Diagnosis (CAD). • Imaging Facilities Design • Imaging Vocabularies and Ontologies • Data-mining from medical image databases • Transforming the Radiological Interpretation Process (TRIP)[2] • DICOM, HL7 and other Standards • Workflow and Process Modeling and Simulation • Quality Assurance • Archive Integrity and Security • Teleradiology • Radiology Informatics Education • Etc.

Page 3: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 3/31

Department of Radiology & Biomedical Imaging

What Is Our Focus?Learn using computation tools to maximize information and

gain knowledge

Imaging

Measurements

Model

knowledge

Extract information Compare

withmodelRe-active

ImproveData

collectionRefine Model

Pro-active

Page 4: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 4/31

Department of Radiology & Biomedical Imaging

Challenge:Extract Maximum Information

1. Q: How can we estimate quantities of interest from a given set of uncertain (noise) measurements?

A: Apply estimation theory (1st lecture by Norbert)

2. Q: How can we code the quantities?

A: Apply information theory (2nd lecture by Wang)

Page 5: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 5/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example I

Gray/White Matter Segmentation

Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Hypothetical Histogram

GM/WM overlap 50:50;Can we do better than flipping a coin?

Page 6: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 6/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example II

Courtesy of Dr. D. Feinberg Advanced MRI Technologies, Sebastopol, CA

Goal:Capture dynamic signal on a static background

Page 7: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 7/31

Department of Radiology & Biomedical Imaging

Basic Concepts

1 , 2 ,...T

x x x N NxSuppose we have N scalar measurements :

We want to determine M quantities (parameters): 1 2, ,...T

M Mθ

Definition: An estimator is: j jθ̂ h ;N j M x

Error estimator: ˆθ θ θ; for N >M

Page 8: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 8/31

Department of Radiology & Biomedical Imaging

Examples of Estimators

100 300 500 700 900

Measurements (x)

-50

0

50

100

150

Inte

ns

itie

s (

Y)

Mean Value: 1

1ˆN

j

x jN

Variance 2

2

1

1ˆ ˆ ˆ1

N

j

x jN

100 300 500 700 900

Measurements

-100

0

100

200

Inte

nsi

ty

Amplitude:1̂

Frequency:2̂

Phase:3̂

Decay:4̂

Page 9: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 9/31

Department of Radiology & Biomedical Imaging

Some Desirable Properties of Estimators I:

ˆ ˆθ - θ = E θ 0 θ θE E E

Unbiased: Mean value of the error should be zero

2

θ̂ - θ 0 for large NMSE E

Consistent: Error estimator should decrease asymptotically as number of measurements increase. (Mean Square Error (MSE))

2 2θ̂ - θ - b bMSE E E

If estimator is biased

variance bias

Page 10: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 10/31

Department of Radiology & Biomedical Imaging

Some Desirable Properties of Estimators II:

1max

ˆ ˆθ-θ θ-θT

E J θC

Efficient: Co-variance matrix of error should decrease asymptotically to itsminimal value, i.e. inverse of Fisher’s information matrix) for large N

Page 11: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 11/31

Department of Radiology & Biomedical Imaging

Example:Properties Of Estimators Mean and Variance

1

1 1ˆ

N

j

E E x j NN N

Mean:

The sample mean is an unbiased estimator of the true mean

2

22 22 2

1

1 1ˆ

N

j

E E x j NN N N

Variance:

The variance is a consistent estimator becauseIt approaches zero for large number of measurements.

Page 12: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 12/31

Department of Radiology & Biomedical Imaging

Least-Squares Estimation

Generally: 0Nv

Linear Model: N M Nx Hθ v where N > M

0 50 100 150 200 250

Y1

40

60

80

100

Y2

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

... ....

N N N N

x h h v

x h h v

x h h v

Page 13: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 13/31

Department of Radiology & Biomedical Imaging

Least-Squares Estimation

LSEˆ 0 T T

NH x H H θ

Minimizing ELSE with regard to leads to

1

LSE

T T

nθ H H H x

The best what we can do:

21 1arg min

2 2T

LSE N N M N ME v x H x H

•LSE is popular choice for model fitting•Useful for obtaining a descriptive measure

But •Makes no assumptions about distributions of data or parameters•Has no basis for statistics

Page 14: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 14/31

Department of Radiology & Biomedical Imaging

Maximum Likelihood (ML) Estimator

1 , 2 ,...T

x x x T NxWe have:

Xn is random sample from a pool with certain probability distribution.

ˆ arg max |ML p Nx θ

Goal: Find that gives the most likely probability distribution underlying xN.

Max likelihood function

ln | 0ML

dyp

d

Nθ θ

x θθ

ML can be found by

Page 15: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 15/31

Department of Radiology & Biomedical Imaging

Example I: ML of Normal Distribution

ML function of a normal distribution

/ 2 22 22

1

1| , 2 exp

2

NN

j

p x j

Nx

log ML function 22 22

1

1ln | , ln 2

2 2

N

j

Np x j

Nx

1st log ML equation 22

1

1ˆ ˆ ˆln | , 0

ˆ

N

ML ML MLjML

dp x j

d

Nx

MLE of the mean 1

N

MLj

x jN

2nd log ML equation 22 2 4

1

1ˆ ˆ ˆln | , 0

ˆ ˆ ˆ2 4

N

ML ML MLjML ML

d Np x j

d

Nx

MLE of the variance 2

1

1ˆ ˆ

N

ML MLj

x jN

Page 16: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 16/31

Department of Radiology & Biomedical Imaging

Example II: Binominal Distribution(Coin Toss)

!| , 1

! !n yyn

f y n w w wy n y

Probability density function:n= number of tossesw= probability of success

1 2 3 4 5 6 7 8 9 10N

0.0

0.1

0.2

0.0

0.1

0.2

y 0.3

0.7

y

f(y|n=10,w)

Page 17: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 17/31

Department of Radiology & Biomedical Imaging

Likelihood Function Of Coin Tosses

( | 7, 10) | 0.7, 10L w y n f y w n

Given the observed data f (y|w=0.7, n=10) (and model), find the parameter w that most likely produced the data.

0.1 0.3 0.5 0.7 0.9W

0.00

0.05

0.10

0.15

0.20

0.25

Like

lihoo

d

Page 18: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 18/31

Department of Radiology & Biomedical Imaging

ML Estimation Of Coin Toss

ln |0

1

d L w y n yy

dw w w

0(1 ) MLE

y nw yw

w w n

!ln | ln ln ln 1

! !

nL w y y w n y w

y n y

Compute log likelihood function

Evaluate ML equation

According to the MLE principle, the PDF f(y|w=y/n) for a given n is the distribution that is most likely to have generated the observed dataof y.

Page 19: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 19/31

Department of Radiology & Biomedical Imaging

Connection between ML and LSE

are independent of vN

ML and vN have the same distribution

vN is zero mean and gaussian

Assume:

| |p p θ N v Nx θ x Hθ θ

ML function of a normal distribution

2

2 2

1 1| exp exp

2 2T

p

N N N Nx θ x Hθ x Hθ x Hθ

Clearly, p(x|) is maximized when LSE is minimized

Page 20: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 20/31

Department of Radiology & Biomedical Imaging

Properties Of The ML Estimator

• is consistent: the MLE recovers asymptotically the true parameter values that generated the data for N inf;

• Is efficient: The MLE achieves asymptotically the minimum error (= max. information)

Page 21: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 21/31

Department of Radiology & Biomedical Imaging

Maximum A-Posteriori (MAP) Estimator

1 , 2 ,...T

x x x T NxWe have random sample:

ˆ arg max |MAP p p Nx θ θ

Goal: Find the most likely (max. posterior density of ) given xN.

Maximize joint density

ln | ln | ln 0MAP

dyp p p p

d

N Nθ θ

x θ θ x θ θθ θ θ

MAO can be found by

pθ θ We also have random parameters:

Page 22: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 22/31

Department of Radiology & Biomedical Imaging

MAP Of Normal Distribution

We have random sample:

2 22 2

1 1

1 1ˆ ˆ ˆ ˆ ˆ ˆln | , , 0

ˆ ˆ ˆ

N N

MLj j

p p x j pu

N xx μ

x

The sample mean of MAP is:

2

2 21

ˆN

jx

x jT

MAPμ

If we do not have prior information on , inf or T inf

MAP MLˆ ˆ ˆ, LSEμ μ μ

Page 23: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 23/31

Department of Radiology & Biomedical Imaging

Posterior Density and Estimators

X

p(|x)

MAPMSE

Page 24: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 24/31

Department of Radiology & Biomedical Imaging

Summary

• LSE is a descriptive method to accurately fit data to a model.

• MLE is a method to seek the probability distribution that makes the observed data most likely.

• MAP is a method to seek the most probably parameter value given prior information about the parameters and the observed data.

• If the influence of prior information decreases, i.e. many any measurements, MAP approaches MLE

Page 25: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 25/31

Department of Radiology & Biomedical Imaging

Some Priors in Imaging

• Smoothness of the brain• Anatomical boundaries • Intensity distributions• Anatomical shapes• Physical models

– Point spread function– Bandwidth limits

• Etc.

Page 26: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 26/31

Department of Radiology & Biomedical Imaging

Imaging Software Using MLE And MAP

Packages Applications Languages VoxBo fMRI C/C++/IDL MEDx sMRI, fMRI C/C++/Tcl/Tk SPM fMRI, sMRI matlab/C iBrain IDL FSL fMRI, sMRI, DTI C/C++

fmristat fMRI matlab BrainVoyager sMRI C/C++

BrainTools C/C++ AFNI fMRI, DTI C/C++

Freesurfer sMRI C/C++ NiPy Python

Page 27: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 27/31

Department of Radiology & Biomedical Imaging

Segmentation Using MLE

A: Raw MRIB: SPM2C: EMSD: HBSA

fromHabib Zaidi, et al, NeuroImage 32 (2006) 1591 – 1607

Page 28: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 28/31

Department of Radiology & Biomedical Imaging

Brain Parcellation Using MLE

Manual EM-Affine EM-NonRigid EM-Simultaneous

Kilian Maria Pohl, Disseration 1999Prior information for Brain parcellation

Page 29: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 29/31

Department of Radiology & Biomedical Imaging

MAP Estimation In Image Reconstruction

Human brain MRI. (a) The original LR data. (b) Zero-padding interpolation. (c) SR with box-PSF. (d) SR with Gaussian-PSF.

From: A. Greenspan in The Computer Journal Advance Access published February 19, 2008

Page 30: UC SF VA Medical Imaging Informatics 2009, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS:

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 30/31

Department of Radiology & Biomedical Imaging

Literature

Mathematical• H. Sorenson. Parameter Estimation – Principles and Problems.

Marcel Dekker (pub)1980.

Signal Processing• S. Kay. Fundamentals of Signal Processing – Estimation Theory.

Prentice Hall 1993.• L. Scharf. Statistical Signal Processing: Detection, Estimation, and

Time Series Analysis. Addison-Wesley 1991.

Statistics:• A. Hyvarinen. Independent Component Analysis. John Wileys &

Sons. 2001.• New Directions in Statistical Signal Processing. From Systems to

Brain. Ed. S. Haykin. MIT Press 2007.