turbidity ratio for emulsion stability

Upload: due-rensuke

Post on 11-Oct-2015

82 views

Category:

Documents


1 download

DESCRIPTION

emulsion

TRANSCRIPT

  • 5/20/2018 Turbidity Ratio for Emulsion Stability

    1/6

    Korean J. C hem. Eng.,

    19(3), 425-43 0 (2002)

    No ve l Evalu at ion M eth od for th e W ater - in -Oi l W /O) Em u ls ion S tab i li ty b y

    Tu rb id i ty Rat io M easu remen ts

    M y u n g - G e u n S o n g , S u n g - H o C h o , J o n g - Y u n K i m a n d 3 o n g - D u k K im

    D e p a l - ~ e n t o f C h e m i c a l E n g i n e e r i n g , K o r e a A d v a n c e d I n stit~ _~ te o f S c i e n c e a n d T e c h n o l o g y ,

    3 7 3 -1 G u s e o n g - d o n g , Y u s e o n g - g u , D a e j e o n 3 0 5 - 7 0 1 , K o r e a

    * L G H o u s e h o l d & H e a l t h C a r e R e s e a r c h P a rk , # 8 4 Ja n g - d o n g , Y u s u n g - g u , D a e j e o n 3 0 5 - 3 4 3 , K o r e a

    ( R e c e i v e d 1 4 J u n e 2 0 0 1 9 a c c e p t e d 1 5 F e b r u a r y 2 0 0 2 )

    A bs l r a c t - Th e tu rb id i ty r a t io me th od o f eva lua t ing the st a bi li ti e s o f w a ter -in -o i l e muls ions ha s be e n e s t a bl ishe d w i th

    t w o w a v e l e n g t h s ( 4 5 0 a n d 8 5 0 z m ~ ) b y t a ! d n g t h e i n t e n s i ty r a t i o o f t w o b e a n s . T h e s l o p e s o f t u rb i d i t y r a ti o o f s e v e ra l

    w a te r - in -o i l e muls ions w i th t ime w e re c a lc u la te d to e va lua te the e muls ion s t a b i l i t i e s a t d i f f e r e n t H LB (H ydrophi l i e -

    L ipop hi l e Ba la nc e ) , t he a m oun ts o f e muls i f i e r s , a nd w a te r c on te n t s . The r e st il ts o f the tu rb id i ty r a t io t e c hnique w e re

    c o n s i s t e n t w i t h t h e a m o u n t o f p h a s e s e p a r a t i o n o f e m u l s i o n s i n c u b a t e d f o r 3 0 d a y s a t r o o m t e m p e r at m - e . F r o m t h e

    turb id i ty r a t io me a sm -e me nts , w e de te m a me d tha t the r e qui r e d H LB of d ie se l o il w a s a b out 6 . 0 , a nd tha t the s t a b i l i ty

    of e m uls ion inc re a se d w i th the a mou nt o f emuls if ie r . Th e inc re a s ing a m oun t o f the w a te r show e d a ne ga t ive e f f e c t on

    e mu ls ion s t a b il ity . F ina l ly , th i s me tho d pro~4des a use fu l too l fo r the qu ic k e va lua t ion o f the r e qui r e d H LB a nd the

    c o n d i t i o n o f e m u l s i f ic a t i o n t h r o u g h o u t t h i s s t u d y .

    K e y w o r d s : S t a b i li t y o f E m u l s i o n , W / O E m u l s i o n , T u r b i d i t y R a t io , R e q u i r e d H L B , D r o p l e t S i z e D i sh J b u t io n

    I N T R O D U C T I O N

    T h e s t a b il i ti e s o f e m u l s i o n s a r e v e r y i m p o r t a n t f o r v a r i o u s i n -

    dusN a l p roc e s se s a nd e mu ls ion prc duc t s , bu t the e va lua t ion of e m ul -

    s ion s tabi l i ty is not easy. Genemlly, the kine t ics of the emuls ion-

    bre a k ing p roc e s se s i s go ve rne d by t t~-e e d i ff e re n t pa r t ic le los s me c ha -

    nisms: Bro wn ian f loccula t ion, sedimen ta t ion f lcccula tion, an d cream -

    i n g [ R e d @ a n d F o g l e i ; 1 9 8 1 ] . P a r t i c l e s u n d e r B r o w n i a n m o t i o n

    c ol l ide a nd th e n c o a le sc e to fo rm la rge r iz a rt ic l es . A t the s a me t ime ,

    pa r t i c l e s a r e c r e a ming ou t due to the d i f f e r e nc e be tw e e n the de ns i -

    t i es o f p a r ti c le s a n d c o n g r u o u s m e d i u m . S e d i m e n t a t io n f l o c c u l a ,

    t ion i s due to d ikTe re n ti al c r e a m ing r a te s o fpa r t i c l e s a n d c re a m s ou t

    a t a fas te r ra te th a i the sm alle r ones ; therefore , la rger par t ic les col l ide

    w i t h s l o w l y - m o v i n g s m a l l e r pa r ti c le s a s t h e y c r e a m o u t.

    Suc h e muls ion-bre a k ing proc e s se s ha ve be e n s tud ie d e x te ns ive ly

    by m a l y i tw e s tigators , ma d va iou s m e thods o f de te rmin ing the e mul -

    s ion s t a b il ity ha v e be e n pro pose d suc h a s d rop le t s i ze a na lyse s [Tre i-

    ne t e t a l ., 1989; Ta&o s, 1994] , mea suring phy sica l i :~werties o f em ul-

    s ion [ Ta nb e a n d Sha n~a a , 1994; D re h e r e t a l ., 1999] , a nd a c c e le r -

    a te d t e s t s [For s t e r e t a l ., 1992; L a t r e i l le a nd Pa q uin , 1990]. Turb id -

    i t y m e a s u r e m e i ~ h a v e a l s o b e e n u s e d to d e te m ~ in e t h e e m u l s i o n

    s ta b i li ty [K im a nd K im , 1988; Song e t a l. , 2000; L e e e t a l ., 1999] ,

    a n d a t e c h n i q u e u t i l i~ n g t h e s p e c t ra l a b s o r b a n c e a t s e v e ra l w a v e -

    Ie ig t tz s w a s prop ose d to a l low the de te nn ina t ion w i th in a r e l a t ive ly

    shor t pe r iod of t ime [Fre nke l e t al ., 1982; K a t f i -na n a nd G a rb , 1981;

    Gu nji e t al . , 1992] . T he tu rbidi ty "c is def ined in ten ,a s o f the a t -

    t e nua t ion of e l e c t roma gn e t i c r ac li a tion a t a s c a t t e ring a a g le o f 0 ~

    = } i n ( I / I ) ( I )

    ~To w ho m c one spond e nc e should be a ddre s se d .

    E-mail: [email protected]

    4 2 5

    wh ere l ks the pa th length, a nd I0 and I a re the inte t~s i t ies of the in-

    c ident and ~aansmit ted bea~as , respec t ive ly. Expe~-hnentaI 0m-bidi-

    t ie s c o u l d b e m e a s u r e d w i t h a c o n v e n t i o n a l U V / V I S s p ec ~ -o p h o-

    t o m e t e r , w h i c h r e a d s a b s o r b a n c e . I f t h e r e i s n o m o l e c u l a r a b s o r p -

    t io n , t h e t u r b i ~ t y i s re l a t ed t o t h e s a m p l e a b s o r b a n c e m e a s u r e d a t a

    w a v e l e n g t h ,

    9 =2.303 x (absorbance) (2)

    F o r a m o n c ~ i s p e r s e s y s t e m o f n o u a b s o r b i n g i s o ~r o pi c s p h e r e s i n

    the a bse nc e o f mu l t ip le a nd de pe nd e nt s ca t te r ing , the ~b i c l i ty i s

    g i v e n b y [ M e l i k a n d F o g l ei \ 1 9 8 3 ; K e r k e i \ 1 9 6 9 ]

    9 -~Nr~Q (r, 9~, m ) (3)

    w he re " c de pe nds

    o

    the par t ic le concenh-a t ion, N, the c ross sec-

    t iona I a r e a o f pa r t lc I e s , m 2 , a nd th e s c a t te r ing c oe f f i c i e n t, Q , w h ic h

    i s de f ine d a s the r at io o f the s ca t te z mg to g e o m ~i c a l c ros s se c tions.

    Th e s c a t t e r ing c ros s s e c t io n i s the to ta l r a d ia t ion a re a s c a t t e r e d by a

    s ing le sphe re f lo ra a n inc ide n t b e a n of un i t in t ens ity . Thi s s c a t t e r -

    ing c oe f t i c i e n t i s, i n tu rn , a fv i l c t ion of the pa r t i c l e s i z e , the r a t io o f

    the r e f r a c t ive inde x of the pa rhc le g~ to the r e fi -a c tive inde x o f the

    m e d i u m ~ ,, , d en o t e d b y m , a n d t h e w a v e l e n g t h o f t h e i n c id e n t w a v e

    in the d i spe i~ ing me dium, ~ . Th e w a v e le ng th 9~ i s e qu a l to kJ /. t, ,,

    w h e re ~0 i s the w a v e le n gth in a5 i~ Th e s c at te a -ing c oe f f ic i e n t i s c a l -

    c u la te d by us ing the M ie the ory of l igh t sc a t t e ma g S inc e the tu rb id-

    i t y o f a p o l y d i s p e r s i o n i s th e s u m o f a l l t h e c o n t t i b u ti o n s o v e r t h e

    var io us par t ic le s izes , the turbic li ty of the tota l dis tr ibut ion exp ressed

    in in te gra l fon~a i s [K e rke r , 1969]

    N ~ ~

    = -~ -~ c~ f( c~)Q (c ~,m)dc~ (4)

    wh ere cz(=2 nr~) is dimension less par t ic le size , and f(cZ) s the dis tri -

    bu t ion funct io i1 The re fore , the tu rb id i ty o f e muls io n c a n be e va lu -

  • 5/20/2018 Turbidity Ratio for Emulsion Stability

    2/6

    426

    M.-G. Song et al.

    ated with particIe size distribution (P SI)).

    The changes in PSI)

    ~der

    conditions of simultaneous floccula-

    don and creaming for vaz-ious times s howed that the PSI) shifts to

    large particle sizes, owing to flocculation of the small particles ihi-

    tally. Since the stability to flocculation increases exponentially with

    increasing particle size, the smaller particles flocculate quickly to

    form relatively stabIe larger parttcles [Becher, 1988]. Rathermore,

    the la ger particles cream out at a much faster rate than the smaller

    ones, thereby resulting in an observable shift of tile PSD back to

    the smaller after long brae. Finally, the PSD becomes increasingly

    na~xower for longer times because the total particle concentration

    is now exlremely low, thereby resulting only in tile slow creaming

    out of the sm aller particles. If the prepared emul siom were stable

    relatively, thes e cyclic changes or shit~ in PSI ) woul d occu r slowly.

    From this point of view, it is possible to evaluate the em ulsion sta-

    bility by measurement of the change of PSD with time and the ~r -

    bidity method can be a useful one, because the ~bi~ty measure-

    ments are rapid and simple.

    It is we ll established that the intemity of light scatteiqmg increases

    with decreastng droplet diameter, and therefore we can estimate

    the relative size dis~-ibution by measuring tile ratio of turbidity at

    two widely separated wavelengths. In fact, the change of IJarbidity

    ratio as a function of time exhibits the rel atve emulsion brealdng

    process by simultaneous flocculation and coalescence more exactly

    compared with turbidity at single wavelength.

    In order to appraise the turbidity ratio technique, several water-

    in-oil emul siom were tested by using co~m-nerdaUy available e~-nuI-

    sifters. Th e results of this technique were co mpared with other meth-

    ods such as -oplet size dis~-ibution and the m'nount of phase separ a-

    tion of emulsion.

    E X P E R J M E N T A L

    1. M at er i a l s an d M et h od s

    The oil phase w as res~icted to dieseI (com posed of C12-C20 hydro-

    carbon mLxture) and was obtained from H anw ha Enelgy Co. The re-

    fiactive index of oil meas~-ed with Abb6 reffactometer is 1.469 at 20

    ~ No a -iitiveswere contained in oil and deioi/zed water was us ed

    For emulsifiers, sorbitan moncoleate (Sp an 80), polyoxyeth ylene

    sorbitan monooleate (Tween 80), polyoxyethylene 2-cetyl ether

    (Brij 52), and polyoxyethylene 2- and 12-nonylphenyl ethers (NP2

    and NP12) flora Sigma C hemicals were used without ftather puri-

    fication. Emulsio ns were prepa red by dissolving the hy opho bic

    emulsifiers in oil phase and mixed thoro~@aly with slowly adding

    the water phase contmned with hydrophilic emulsifier. L abor atoly

    homogenizer (Heidolph DIA X 900) was used at 10,000 rpm for

    8 minutes. All the emulsions were aJiowed to age for 24 hours at

    room tem perature and diluted 500 ~'nes in oil within 1 minute. Spec-

    tral absorbance was measured after dilv~on by using the Jasco V -

    570 UV/V-LS speclrophotometei: Tile IJarbidity ratio was desigilated

    as R(='cJ'cs, L: long wavelength, S: short wavelength).

    Droplet size distributions were analyzed by means o f dynamic

    light scattering technique with a Zetaplus instrument (Brookhaven

    Instruments Co.) aider dilv~on with 500 ames. Multlmodal size dis-

    tribution was calculated based on Non-Negatively Comtrained Least

    Square (NNLS) method and the results were plotted as Iognon-naI

    size distributions. The droplet size variation was monitored with time.

    The emulsions were incubated in order to measure the amount

    of phase separation of the water phase from the oil phase. T he fleshly

    prepared emulsions were replaced into 25 ml-cylindticaI test tubes

    and incubated at room tempera~e. After 30 days, tile sepa-ation

    heights were measured and compared with ~trbidity ratio measure-

    m

    ent.

    R E S U L T S A N D D I S C U S S I O N

    Fig. 1 shows the speclru m o f typical optical densities w ith wav e-

    1.0

    06

    _E 6o

    40

    0 500 1000 1500 2000

    D i a m e t e r / nm

    Fig. 10. Time dependence of the droplet size distribution of an

    emulsion prepared with Span 80 and Tween 80 (HLB=6.0,

    2.5 wt of emulsifie~; and 10 wt of wate r) after 500

    times dilution measm'ed by using a dyn amic light scatter-

    ing technique.

    e 0 mini

    9 -o- 10 min :

    100 ~ n n n n n . --~ 30 min [

    ? . ~ ~ = . -o_ 50mn I

    t. # ~ ~ 9 . o 7o_mm]

    .o N xrR

    It'/ ...9 \ \ \ . -.

    . . . . i t _ . , __ . _ 9

    0 500 1000 ]500 2000 250o 3000 3500

    D i a m e t e r / n m

    Fig. 11. Time dependence of the droplet size distribution of an

    emulsion prepared with Span 80 (2.5 wt of emulsifie~;

    and 10 wt of wate r) after 500 times dilution measured

    by using a dynam ic l ight scattering technique.

    Since tile tw-bidity ratio method provides indirect size distn"ou

    tioil, we obse rved tile ddroplet size distribution in diluted emul sion

    system wi th time. It is woithwh ile to com t:are two methods. There-

    fore, tile ~n e dependence of tile droplet size dish-ibution was mon i-

    tored by using dynamic light scattering tectmique.

    Figs. 10 and 11 show tile time dependencies of the size di~i bu -

    tion of enm lsion di-oplets diluted with 500 ~n es in oil phase. EmuI-

    sion with Span 80 and Tween 80 at HL B= 6.0 was us ed in Fig. 10,

    and with Span 80 only (HLB=4.3) in Fig. 11. From Fig. 4, enml-

    sion at 6.0 of HLB ks more stable than at 4.3. Both emuls iom con-

    tam 2.5 wt% of emulsifier and 10 wt% of water. In Fig. 10, the water

    droplets are small and the size distribLaon is initially narrow, but

    the size distribution shifts toward lager partMe sizes and becomes

    broader, o wing to simultaneons flocculation or coales cence of the

    smaller particles w ith time. In Fig. 11, the di-oplet size distribution

    also shifts toward la ge r size, but muc h faster and broader than in

    Fig. 10. Generally, the turbidity decreases with time at any wave-

    length, because the nu mber of droplets decreases b y the emulsion-

    breaking process. Furthermore, tile turbidity at longer wavel ength

    decreases much faster thai at shorter wavelength, since tile larger

    par~cles cream out at a much faster rate than the smaller ones. The

    mo re unstable tile enmls ion is, the faster the turbiclity ratio decreases.

    Therefore, it is a usefi, I, rapid, and relatively simple me tho d fo r the

    evaluation of tile emu lsion stability.

    C O N C L U S I O N S

    Tile validity of the ~-bidity ratio measurement to evaluate water-

    in-diesel oil emulsion stability has been examined tt~-oughout tt~

    study. Tile turbidity ratios were measured with fine after dilution

    of emulsion, and the slot:es of the tarbi~ty ratio were compared.

    Vaiious fa~oz~ affecting emuIsion stability, such as HLB of emuI-

    sifiez; tile amoun t of emuIsifier an d wate r concentration were tested

    by using this method. The turbidity technique has been comp ared

    with sepaation ano unt of emulsion after 30 days incubation at room

    temperatare.

    As tile results of tile turbidity ratio measurements, the required

    HL B of diesel oil was 6.0 and the stability o f emulsion was increased

    with the am ount o f emulsifier. T he increasing amou nt of the water

    showed a negative effect on emuIsion stability. These results were

    well in accord with those of inner phase setx~ation meas urem e:~.

    Thr oug hou t this study, turbidity ratio techniq ue prov ed to be a

    simple, rapid, an d relatively accurate metho d for the evaluation of

    the emulsion stability.

    A C K N O W L E D G E M E N T

    This investigation was canied out in collaboration with In chon

    Oil Refinery Co. and was financially supported by tim company

    and BK21 project.

    R E F E R E N C E S

    B~&er, t~, ~%ncyclopedia of Emulsion Tectmolog,f,,' Marcel Deld

  • 5/20/2018 Turbidity Ratio for Emulsion Stability

    6/6

    43

    M.-G. Song e t a l.

    t ion~ ' A c a d e m ic th -e s s, N e w Y ork (1969) .

    Kim , J. G. and Kim , J. D. , Turbid i ty and Stabi li ty o f Sonica ted Lec i-

    t hi n L i p o s o m e 7 H W A H A K

    K O N G H A K ,

    26, 171 (1988) .

    Latre il le , B. and Paquin, R, Evalu a t ion of Em uls ion Stabi l ity by Cen -

    tr ifugat ion with Conductivi ty Measurements , X Food So t , 55(6),

    1666(1990) .

    Lee , M . H. , Ta i , C. Y. and L u, C. H. , Syn thes is of Spherica l Zirconia

    by Re ve r se Emuls ion th -e dpi t a t ion-Ef fe c t s o f Sur fa c tml t Type : '

    KoreanJ . Chem. Eng . , 16, 818 (1999).

    Melik, D. H. and Fogle l ; H. S. , ~17 6 Detemm~ation of Par t i-

    c le Size Dis~ibutions ofCo lIoida l Systems~'~ Colloidlnterfaee Sei.,

    92 161 1983) .

    Red @, S. R. and Fo~ea; H. S. , Em uls ion Stabi l ity: Delinea tion o f Dif-

    ferent Par t tc le Loss Med~a~isms~' J

    Colloid Interface Sr

    79(1),

    l a8 1981) .

    Song, M . G., Jho, S. H. , Kim , J. Y and Kim , J. D. , Rapid Evalua t ion

    of Water- in-Oii(W/O)

    Em uls ion Stabi l i ty by Turbidity Ratio M eas-

    urements; ',I Colloid Inte rf Sci ., 230, 213 (2000) .

    Ta &-os, 11 F ., ~176 th ' indple s o f Emuls ion Te dm olog y a nd

    Th eir Applicattoi~s~'Colloid SurfacesA.: Physieoch em. Bng. Aspects,

    91, 3 9 (1994) .

    Ta n be , D . E . a nd Sh a m a , M. M. , ~ Ef fec t o f Col lo idal Pa ra de s on

    Fluid-Fluid Interracia l lh-op ~aes and Emuls ion Sta bi l i~ 'A dv Col-

    loidInterfae., 52, 1 (1994).

    Treine~; C., L aure1~t,A., Fessi, H. and O recchiozli, A. M., ~

    Em uls ion Inves t iga t ion m the System ~ Bfi j -35, Phenoxy, 2-Etha-

    nol Sea-W ater-Com pa ' ison of Par ti t iozmag and Drop le t Size Data~'

    J . Co l lo id In te r f Se i. , 129(1) , 201 (1989) .

    May 2002