transition-metal-catalyzed decarboxylative coupling november 13, 2007 dino alberico

53
Transition-Metal-Catalyzed Decarboxylative Coupling Transition-Metal-Catalyzed Decarboxylative Coupling November 13, 2007 Dino Alberico

Upload: tyra

Post on 13-Jan-2016

52 views

Category:

Documents


0 download

DESCRIPTION

Transition-Metal-Catalyzed Decarboxylative Coupling November 13, 2007 Dino Alberico. Decarboxylative Coupling. Decarboxylative Biaryl Coupling. Decarboxylative Heck-Type Coupling. Biaryl Compounds. Natural Products. Agrochemicals. Pharmaceuticals. PAH. Liquid Crystals. Ligands. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Transition-Metal-Catalyzed Decarboxylative Coupling Transition-Metal-Catalyzed Decarboxylative Coupling

November 13, 2007

Dino Alberico

Page 2: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Decarboxylative CouplingDecarboxylative Coupling

Decarboxylative Biaryl Coupling

Decarboxylative Heck-Type Coupling

OH

O

X = I, Br

RR

R'X

R'

+ transition-metal catalyst

OH

O

R R

+ transition-metal catalystR'

R'

Page 3: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Biaryl CompoundsBiaryl Compounds

cavicularin

O

HOHO

HO

NH

Me

Me

OH

OH

HO

korupensamine A

OMe

OMe

MeO

MeO

CO2Me

NHAc

allocolchicine

N

NH

O

rhazinilam

Cl

NH

O

NCl

CO2H

O

NN

N NH

N

N

N

N

CO2H

NF

HN

O

OH

OH

HO2C

C8H17OCN

C7H15

N

PPh2

OH

OH PCy2

Me2N

Diovan (Valsartan, Novartis) Micardis (Telmisartan, Boehringer) Boscalid (BASF)

NCB 807 (Merck)

Lipitor (Atorvastatin, Pfizer)

Natural Products

Pharmaceuticals Agrochemicals

LigandsPAHLiquid Crystals

Page 4: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Biaryl Formation Using Transition MetalsBiaryl Formation Using Transition Metals

X, Y: I, Br, Cl, OTf, ONs, B, Sn, Si, Zn, Mg, H

Transition Metal (either stoichiometric or catalytic): Cu, Ni, Pd, Pt, Ru, Rh, Ir

XR

YR' R R'

+transition metal

Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.

Page 5: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

XR

XR R R

+Cu (stoichiometric or excess)

MeO

MOMO

I

CONHiPr

Cu-bronze, 200 oCCONHPr

OMOM

MOMO

PrHNOC

OMe

MeO

66%

O

O

O

O

OMe

MeO NMe2

Taspine

Ullmann CouplingUllmann Coupling

Kelly, T. R.; Xie, R. L. J. Org. Chem. 1998, 63, 8045.

Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174.

Example:

Drawbacks: - stoichiometric amount of copper - high reaction temperatures - limited to symmetrical biaryls - unsymmetrical biaryl can be formed by using aryl halides of different reactivity but require a large excess of the activated aryl halide

Page 6: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Transition-Metal-Catalyzed Cross-CouplingTransition-Metal-Catalyzed Cross-Coupling

Lin, S.; Danishefsky, S. J. Org. Lett. 2000, 2, 2575.

Suzuki Coupling

Stille Coupling

Sauer, J.; Heldmann, D. K.; Pabst, R. Eur. J. Org. Chem. 1999, 1, 313.

OBn

BO

O

CO2Me

NHCbz NH

O

I

O

BocN

BnO

CO2Me

NHCbz

NH

O

O

BocNPdCl2(dppf)2, CH2Cl2,

K2CO3, DME, 80 oC, 2h

75%+

N

N

SnBu3

N

Br

N

N

N

+

Pd(PPh3)4, toluene, 110 oC

72%

XR'

YR R R'

+transition metal catalyst

aryl halide

X: I, Br, Cl, OTf

organometallic

Y: B, Sn, Si, Zn, Mg

Page 7: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Transition-Metal-Catalyzed Cross-CouplingTransition-Metal-Catalyzed Cross-Coupling

Amatore, C.; Jutand, A.; Negri, S.; Fauvarque, J.-F. J. Organomet. Chem. 1990, 390, 389.

Bumagin, N. A.; Sokolova, A. F.; Beletskaya, I. P. Russ. Chem. Bull. 1993, 42, 1926.

Hatanaka, Y.; Hiyama, T. Synlett 1991, 845.

Negishi Coupling

Hiyama Coupling

Kumada Coupling

Me Si(Me)2F2 TfOH

O

H

OMe

Pd(PPh3)4,

n-Bu4NF, THF,

50 oC, 5 h

92%

+

S

N

MeMeO

MeO

S

N

MeMeO

MeO ZnCl Br

PdCl2(dppf),THF, rt, 1.5 h

97%+

CNIS MgBr

Pd(PPh3)4,THF, rt, 2 h

73%CN

S+

Page 8: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Direct ArylationDirect Arylation

X: I, Br, Cl, OTf B, Sn, Si, Mg, Zn

XR'

YR R R'

+transition metal catalyst

aryl halide

X: I, Br, Cl, OTf

organometallic

Y: B, Sn, Si, Zn, Mg

XR'

HR R R'

+transition metal catalyst

Cross-Coupling

Direct Arylation

Challenge: - how to arylate a typically unreactive aryl C-H bond - how to selectively arylate an aryl C-H bond

1. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (Shameless Promotion)

2. Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.

Page 9: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Direct ArylationDirect Arylation

Bringmann, G.; Ochse, M.; Götz, R. J. Org. Chem. 2000, 65, 2069.

Intramolecular Direct Arylation

Examples:

Julie Côté, Shawn K. Collins

Y

X

Y

HR1

R2

R1 R2

transition metal catalyst

O

OBr

N

Oi-Pr

Oi-Pr

Me

Me

Bn

NaOAc, DMA, 140 °C O

O

N

Me

Me

Bn

Oi-Pr

Oi-Pr

NH

Me

Me

OH

OH

HOP

korupensamine A

5'

OPd

OOPd

O

P

P

Meo-Tol o-Tol

o-Tolo-Tol

Me(10 mol%)

74%

OMe

O

O

Cl

NO2

Cl

O

O

NO2

O2N

O2N

Pd catalyst

Page 10: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Direct ArylationDirect Arylation

Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113.

Intermolecular Direct Arylation – Using a Directing Group

Examples:

Alexandre Larivée, James Mousseau, André Charette

XR'

HR R R'

+transition metal catalyst

DG DG

OH NHROROH

O O

H

NR

NN

O

N

RN

NN

NHR

OHN R

O

Directin Group (DG):

N+

N-

O

BrN+

N-

O

Pd(OAc)2, P(tBu)3, K2CO3, M.S., toluene, 125 °C

80%

+

N

O [RuCl2(6-C6H6)]2, (2.5 mol%),

PPh3, K2CO3, NMP, 120 °C

100%

N

OPh

Ph

Br

+

(2.5 equiv)

Page 11: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Direct ArylationDirect Arylation

Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467.

Intermolecular Direct Arylation – Electronic Bias of Heterocycles

Examples:

Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles, 1990, 31, 1951.

YX+ transition metal catalyst

Y

N

NR

NR

NN

O O

NN

S

S

N

NR

NO

N

N

O

R

N

N

O

R

N N

N

N

N N

NN

N N

N

Pd(OAc)2 (5 mol%), PPh3, Cs2CO3,DMF, 140 °C

83%

N

N

N

NI+

S

Pd(PPh3)4 (5 mol%), KOAc, DMA, 150 °C

66% SNO2

Br NO2+

NR

NR

Page 12: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Cross-Coupling of Aromatic C-H SubstratesCross-Coupling of Aromatic C-H Substrates

Li, X.; Hewgley, B.; Mulrooney, C.A.; Yang, J.; Kozlowski, M.C. J. Org. Chem. 2003, 68, 5500.

Stuart, D. S.; Fagnou, K. Science 2007, 316, 1172.Stuart, D. S.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.

Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B.Org. Lett. 2007, 9, 3137.

Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.

OH

OH

OH

NH

NH

10 mol%

CuI (10 mol%), O2,

Cl(CH2)2Cl, 40 °C

85%

CO2Me

CO2Me

CO2Me

NAc

MeO

NAc

MeO

Pd(TFA)2 (10 mol%),

Cu(OAc)2 (3 equiv),

CsOPiv (40 mol%),

pivalic acid, MW, 140 °C

84%

+

O

O

Pd(OAc)2 (10 mol%),

H4PMo11VO40 (10 mol%),

AcOH/benzene (3:2),

O2 (3 atm), 120 °C

98%

+

(30 equiv)

excess

N

+

(100 equiv)

Pd(OAc)2 (10 mol%),

benzoquinone (0.5 equiv),

Ag2CO3 ( 2equiv),

DMSO (4 equiv),

130 °C, 12 h

89%

N

HR'

HR R R'

+transition metal catalyst

Page 13: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Limitations to Aforementioned Transition-Metal Catalyzed MethodsLimitations to Aforementioned Transition-Metal Catalyzed Methods

X: I, Br, Cl, OTf

XR'

HR R R'

+transition metal catalyst

-preparation of organometallic partner can require several synthetic steps - more solvents, more purifications, more time, higher costs, more harmful to the enviroment

- a stoichiometric amount of undesired, and sometimes toxic, organometallic by-product is produced

- challenging to control regioselectivity- for intermolecular direct arylation reactions of arenes, a directing group is needed;

which may take several steps to introduce and then remove if not desired in the final product

- challenging to control regioselectivity

- large excess of one arene is needed

- an excess of oxidant is needed (sometimes an organometallic reagent is used)

HR'

HR R R'

+transition metal catalyst

XR'

YR R R'

+transition metal catalyst

aryl halideX: I, Br, Cl, OTf

organometallicY: B, Sn, Si, Zn, Mg

R

protections,

lithiations,

halogenations,

metallations, etc.

organometallic by-product

+

Page 14: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Aryl-Aryl Bond Formation via Decarboxylative CouplingAryl-Aryl Bond Formation via Decarboxylative Coupling

X: I, Br, Cl, OTf

XR'

CO2HR R R'

+transition metal catalyst + CO2

Advantages (for best case scenario): - aryl carboxylic acids are ubiquitous in nature - many are commercially available and inexpensive - easier to control regioselectivity - no extra steps are needed to introduce the acid moiety

- fewer purifications- use of less solvent- less time - less energy wasted www.carbonfootprint.com- lower costs- more environmentally friendly

- more environmentally friendly CO2 by-product

(compared to toxic organometallic reagents) Albert Arnold (Al) Gore Jr.

Nobel Peace Prize 2007Academy Award Winner 2007

CO2 Sucks!

Baudoin, O. Angew. Chem. Int. Ed. 2007, 46, 1373.

Disadvantages:

Page 15: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

It’s Done in NatureIt’s Done in Nature

HN

N

O

O

R O

O

NH2

H O

O

HN

N

O

O

R O

O

NH2

HO

O

HN

N

O

O

R

H

NH2

O

OOC

O

Enzymatic decarboxylation of orotidine monophosphate (OMP), followed by protonation of the carbanion

Begley, T. P.; Ealick, S. E. Curr. Opin. Chem. Biol. 2004, 8, 508.

Page 16: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Earlier Work – Stoichiometric Transition MetalEarlier Work – Stoichiometric Transition Metal

Peschko, C.; Winklhofer, C.; Steglich, W. Chem. Eur. J. 2000, 6, 1147.

Nilsson, M. Acta Chem. Scand. 1966, 20, 423.

N

O

OiPrO

MeO

iPrO

MeO MeOOiPr

Lamellarin L triisopropyl ether

N

O

O

iPrO

MeO MeOOiPr

Br

OiPr

OMe

HO2CPd(OAc)2 (1 equiv), PPh3 (2 equiv),

CH3CN / Et3N (3:1), 150 °C, 80 min

97%

NO2 O

OHBr

NO2

+

MeO

OMe

(1 equiv)(1.2 equiv)

Cu2O (0.8 equiv),

quinoline, 240 °C 15 min

50%

NO2 O

OHI

NO2

+

(1 equiv)(1.2 equiv)

Cu2O (0.8 equiv),

quinoline, 240 °C 15 min

"The yield of crystalline product was 10%, but can probably be improved to ca. 30%"

Page 17: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Effect of the Additive:

NHOH

O Pd[P(tBu)3]2 (5 mol%), additive (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min

N

Br

+

NH

Me MeMe

none

nBu4NOAc

nBu4NI

nBu4NBr

nBu4NCl

nBu4NCl H2O

nBu4NF

77%

64%

76%

86%

74%

88%

77%

9%

18%

8%

5%

trace

trace

11%

(2 equiv) 1 (equiv)

N

OHOH

O

Me

Pd[P(tBu)3]2, nBu4NBr, DMF, MW, 170 °C, 8 min

N

OOH

O

Me

Br

+N

OH

Me

Catalytic Decarboxylative Coupling of Heteroaryl CarboxylatesCatalytic Decarboxylative Coupling of Heteroaryl Carboxylates

X

Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350.

Page 18: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Y

XOH

O Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min Y

X

Br

+

(2 equiv) 1 (equiv)

N

OOH

O

Me

NOH

OMe

OOH

OO

OH

O

MeN

SOH

O

MeN

SOH

OO

OH

O

O

Me

OH

O

N

O

Me

N

Me

O O

MeN

S

MeN

S O

O

Me

Ph Ph Ph Ph Ph Ph Ph

Ph

R R

53% 88% 86% 41% 74% 23% 63%

SOH

O

Me

S

Me

Ph

86%

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min

no reaction

St-Onge Decarboxylative Coupling ReactionSt-Onge Decarboxylative Coupling Reaction

Starting Materials:

Products:

Page 19: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Scope of the Aryl BromideScope of the Aryl Bromide

NOH

O Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min

N Ar+

(2 equiv) 1 (equiv)

N

Me

77%

Me Me

OMeN

Me NO2

Ar Br

N

Me

S MeN

Me N

66% 78% 85%

Page 20: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Proposed MechanismProposed Mechanism

OOH

O

Ar

PdL2 O Ar

R

O PdLAr

R

Ar Br

Ar PdL Br

OOH

O

R

OOH

O

PdLArR

CO2

OOH

O

PdLAr

If R = H

C2

C3

C3 to C2 migration and decarboxylation

reductive elimination

oxidative addition

coordination to carboxylatefollowed by

electrophilic palladation at C3

deprotanation

reductive elimination

O

Ar

Ar

side-product in some cases

Page 21: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Comparison of Regioselectivity with Direct ArylationComparison of Regioselectivity with Direct Arylation

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),DMF, MW, 170 °C, 8 min

SOH

O

Me

S

Me

O

HO

S

Me

Br

S

Me

S

Me

S

Me

S

Me

63%only product

19%only product

+

3.3:139%

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),DMF, MW, 170 °C, 8 min

Br

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),DMF, MW, 170 °C, 8 min

Br

Page 22: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Decarboxylative Coupling of Aromatic CarboxylatesDecarboxylative Coupling of Aromatic Carboxylates

NO2 O

OH Br Cl

NO2Cl

+ conditions

NO2

HNO2

O2N

Cl Cl Cl

These substrates were selected for optimization for two reasons:

1. Reactants, products, and by-products can be detected by GC

2. The product is a precursor to Boscalid (BASF)

Cl

NH

O

NCl

Boscalid (BASF)

Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 13, 662.Goossen, L. J.; Rodriguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy, L. M. J. Am. Chem. Soc. 2007, 129, 4824.

Page 23: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

OptimizationOptimization

Other Notable Reagents: Pd Source: PdCl2 Ligands: BINAP, P(Cy)3

Additives: KBr, NaF Base: Ag2CO3

Solvents: DMSO, DMPU, diglyme

NO2 O

OH Br Cl

NO2Cl

+ conditions

Catalyst

Pd(acac)2 (2 mol%)

none

Pd(acac)2 (2 mol%)

Pd(acac)2 (2 mol%)

Pd(acac)2 (2 mol%)Pd(acac)2 (2 mol%)

Pd(acac)2 (2 mol%), CuI (30 mol%)

Pd(acac)2 (2 mol%), CuI (1 mol%)

Catalyst

PPh3 (6 mol%)

PPh3 (6 mol%)

PPh3 (6 mol%)

PPh3 (6 mol%)

PPh3 (6 mol%)P(iPr)Ph2 (6 mol%)

bipyridine (30 mol%)

1,10-phenanthroline (3 mol%)

Base (1.5 equiv)

K2CO3

CuCO3

CuCO3

CuCO3

CuCO3

CuCO3

K2CO3

K2CO3

Additives (1.5 equiv)

none

none

none

KF

KF / 3 A mol sievesKF / 3 A mol sieves

3 A mol sieves

3 A mol sieves

Solvent

NMP

NMP

NMP

NMP

NMPNMP

NMP

NMP

Temperature ( °C)

120

120

120

120

120120

160

160

Yields

0

0

5%

32%

84%98%

78%

98%

(1.5 equiv) (1 equiv)

Page 24: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Proposed MechanismProposed Mechanism

XR'L2Pd

R'

X

L2PdR'

R'

R

Pd(0)L2

O

O [Cu]+X-

R R

[Cu]+

O

O

R

R

[Cu]CO2oxidativeaddition

reductiveelimination

transmetallation

decarboxylation

anionexchange

Page 25: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Scope of Aryl HalideScope of Aryl Halide

Br BrBr Br

OMe

Cl Cl I

Cl CN

N

Br

N

Br

A: 93%B: 23%

A: 80%B: 30%

A: 94%B: 94%

A: 88%B: 97%

A: 13%B: 53%

A: 14%B: 98%

A: 0B: 66%

A: 12%B: 96%

A: 84%B: 38%

A

Pd(acac)2 (2 mol%), P(iPr)Ph2 (6 mol%),

CuCO3 (1.5 equiv), KF (1.5 equiv),

mol sieves, NMP, 120 °C, 24 h

B

Pd(acac)2 (2 mol%), CuI (1 mol%),

1,10-phenanthroline (3 mol%), K2CO3 (1.5 equiv),

mol sieves, NMP, 160 °C, 24 h

NO2 O

OH

NO2

Ar+

(1.5 equiv) (1 equiv)

Ar X

Br

R

R = H, Me, nPr, OMe, SMe, F, CN, C(O)Me, C(O)Ph, CHO, CO2Et, NO2, CF3

A: 67-97%

B: 62-98%

stoichiometric Cu

catalytic Cu

Page 26: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Pd(acac)2 (2 mol%), P(iPr)Ph2 (6 mol%),

CuCO3 (1.5 equiv), KF (1.5 equiv),

mol sieves, NMP, 120 °C, 24 h

Pd(acac)2 (2 mol%), CuI (1 mol%),

1,10-phenanthroline (3 mol%), K2CO3 (1.5 equiv),

mol sieves, NMP, 160 °C, 24 h

+

(1.5 equiv) (1 equiv)

Ar X

stoichiometric Cu

catalytic Cu

O

OH

R R

Ar

Except for R = 2-NO2

X

Scope of Aryl CarboxylateScope of Aryl Carboxylate

Stoichiometric Cu Conditions: Works well for a wide range of aryl carboxylic acids.

Catalytic Cu Conditions: Only works with 2-nitro substituted aryl carboxylic acid.

Page 27: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Examining the DecarboxylationExamining the Decarboxylation

O

OH

Cu2O, (7.5 mol%),

1,10-phenanthroline (15 mol%),NMP / quinoline, 170 °C, 6 h

R R

H

NO2

H

CN

H HH H

F

H

O2N

O iPrO OOMe

H HNC

100% 40% 79% 70% 75% 28% 52% 23%

NO2

CO2H

In order to design an effective catalyst for a range of carboxylic acids, they examined

the relative reactivity toward decarboxylation compared to 2-nitrobenzoic acid.

Aryl-Aryl Coupling - Stoichiometric Cu: excellent yield

Aryl-Aryl Coupling - Catalytic Cu: excellent yield

Protodecarboxylation - Catalytic Cu: excellent yield

Discrepancies:CN

CO2H

Aryl-Aryl Coupling - Stoichiometric Cu: modest yield

Aryl-Aryl Coupling - Catalytic Cu: no reaction

Protodecarboxylation - Catalytic Cu: modest yield

Page 28: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Examining the DecarboxylationExamining the Decarboxylation

O

OH

Cu2O, (7.5 mol%),

1,10-phenanthroline (15 mol%),

NMP / quinoline, 170 °C, 6 h

(KBr)

H

NO2

H

CN

H

No KBr:

15 mol% KBr

100 mol% KBr

with 1,10-phenanthroline: 100%no 1,10-phenanthroline: 95%

with 1,10-phenanthroline: 40%no 1,10-phenanthroline: 15%

with 1,10-phenanthroline: 100%no 1,10-phenanthroline: 95%

with 1,10-phenanthroline: 25%no 1,10-phenanthroline: 10%

with 1,10-phenanthroline: 95%no 1,10-phenanthroline: 60%

with 1,10-phenanthroline: 10%no 1,10-phenanthroline: 0

R R

Page 29: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

More General Catalytic Copper ConditionsMore General Catalytic Copper Conditions

PdBr2 (3 mol%), CuBr (10 mol%),

1,10-phenanthroline (10 mol%), K2CO3 (1 equiv),

mol sieves, NMP, 160 °C, 24 h+

(1 equiv) (1.2 equiv)

Br

O

OH

R R

CO2H CO2H CO2H CO2H CO2H S CO2HCO2H

F OMe CF3OH O

61% 69% 76% 46% 31% 62% 79%

CO2H CO2H CO2H CO2HCO2H

CN SO2Me NH NHAc

34%55%

42%97%

091%

042%

041%

MeO

catalytic Cu:stoichiometric Cu:

Page 30: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Application – Synthesis of ValsartanApplication – Synthesis of Valsartan

Cl

NC

B(OH)2

NC

H2N CO2Me

1. NBS2.

+Pd cat., K2CO3,

H2O, TBAB, , 2 d

NC

HN CO2Me

B

NC

Br

NC

+ Pd cat., K2CO3

1. nBuCOCl, Et3N2. NaN3, nBu3SnCl3. NaOH

O

O

H

O

H2N CO2Me

NaCNBH3H

O

N CO2H

NN

N NH

O

nBu

Valsartan (Diovan, Novartis)

69% 70-90%

73% no yield reported

60-85%

Buhlmayer, P.; Furet, P.; Criscione, L.; de Gasparo, M.; Whitebread, S.; Schmidlin, T.; Lattmann, R.; Wood, J. Bioorg. Med. Chem. Lett. 1994, 4, 29.

Page 31: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Application – Synthesis of ValsartanApplication – Synthesis of Valsartan

Goossen, L. J.; Melzer, B. J. Org. Chem. 2007, 72, 7473.

N CO2H

NN

N NH

O

nBu

Valsartan (Diovan, Novartis)

R

NC

HO2C

NC

R

Br+

HO2C

NC

R

Br+

PdBr2 (2 mol%), CuO (15 mol%),

PPh3 (20 mol%), KF (0.5 equiv), K2CO3 (1 equiv),

mol sieves, quinoline, 170 °C, 24 h

(1 equiv) (1.2 equiv)

NC

R

NC NC NC NC

O

H

O

O

OMe

MeO

71% 51% 81% 80%

Page 32: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Application – Synthesis of ValsartanApplication – Synthesis of Valsartan

1. NaN3, nBu3SnCl

TBAB

2. NaOH

NCBr

O

HO

O

81%

HO2C

NC

+

1. PdBr2, CuO, PPh3, KF,

K2CO3, mol sieves,

quinoline, 170 °C, 24 h

2. HCl

H2N CO2Me

NaCNBH3

NC

HN CO2Me

nBuCOCl, pyridine

NC

N CO2Me

O

N CO2H

NN

N NH

O

90%

98%

55%

Valsartan39% yield over 4 steps

Page 33: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Decarboxylative Coupling of Electron-Rich Aryl CarboxylatesDecarboxylative Coupling of Electron-Rich Aryl Carboxylates

Other Reagents Examined:

Catalyst Source: PdCl2(MeCN)2, Pd(O2CCF3)2, Pd(CN)2, Pd(OAc)2,

Pd(dppf)2Cl2(CH2Cl2)2, Pd(PPh3)4, Pd2(dba)3,

NiCl2(PPh3)2, Ni(acac)2

Ligands: BINAP, P(Cy)3, DavePhos, xanthphos

Additives: LiBH4, LiCl, MgCl, CaCl2, CsCl, BiCl3, CuI

Base: Li2CO3, Na2CO3, K2CO3, Cs2CO3, AgOAc, TMSOK

Solvents: DMA, DMF, DMSO/DMF mixtures, sulfolane

OMe

OMe

CO2HI OMe

OMe

OMe

OMe

+

(1 equiv)(1.3 equiv)

PdCl2 (30 mol%), AsPh3 (60 mol%),Ag2CO3, (3 equiv), DMSO, 150 °C, 6 h

90%

Becht, J.-M.; Catala, C.; Le Drain, C.; Wagner, A. Org. Lett. 2007, 9, 1781.

Optimization:

Page 34: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Scope of Aryl CarboxylateScope of Aryl Carboxylate

CO2HI OMe

OMe

+

PdCl2 (30 mol%), AsPh3 (60 mol%),

Ag2CO3, (3 equiv), DMSO, 150 °C, 6 h

OMe

OMe

OMe OMe

OMe

OMe

MeO

OiPr

OiPr

OMe NO2OMe

NO2OMe F

F

OMeF

Cl

OMe

Br OMe

MeO

F

F

F

75% 65% 65% 79%

63% 92% 82%

RR

OOMe

65%

Page 35: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Scope of Aryl IodideScope of Aryl Iodide

CO2HI+

PdCl2 (30 mol%), AsPh3 (60 mol%),

Ag2CO3, (3 equiv), DMSO, 150 °C, 6 h

OMe

OMe

OMe

OMe

MeOMe

OMe

ClOMe

Br

OMe

OMe

OMe

OMe

Ac

OMe

OMe

89% 62% 76% 78% 58%

84% 77% 70%

OMe

OMe

OMe

OMeR

R

OMe

OMe

OMe

OMe

OMe

CF3

OMe

OMe

71%

NO2

OMe

OMe

59%

CO2Et

Page 36: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Decarboxylative Heck-Type CouplingDecarboxylative Heck-Type Coupling

OH

O

R R

+ transition-metal catalystR'

R'

Page 37: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Heck-Mizoroki ReactionHeck-Mizoroki Reaction

I R+

Pd catalyst

R

Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320. Review: Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.

Example:

Larson, R. D. et. al. J. Org. Chem. 1996, 61, 3398.

NCl OH

CO2Me

I+

NCl O CO2MeNCl S

CO2H

OH

singulair

Pd(OAc)2 (1 mol%),Et3N, MeCN, 85°C NCl OH CO2Me

tautomerization

83%

Page 38: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Mechanism of the Heck Reaction of Aryl HalidesMechanism of the Heck Reaction of Aryl Halides

Pd0L2 X

PdIIL2X

R

R

RPdIIL2H

base oxidativeaddition

insertion

ß-hydrideelimination

PdIIL

L

PdIIL

R

HH

PdIIL2XH

R

X = I, Br, Cl, OTf

XX

X

internalrotation

base.HX

Page 39: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Decarboxylative Heck-Type CouplingDecarboxylative Heck-Type Coupling

Optimized Conditions:

Notes: - 5:95 DMSO/DMF is important - DMF alone or DMSO alone gave lower yields - at least one ortho substitutent is needed

Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.

MeO

MeO OMe

O

OH MeO

MeO OMe

Pd(O2CCF3)2 (20 mol%),

AgCO3 (3 equiv),

5% DMSO-DMF,

80 °C, 1 h(1.5 equiv)

+

91%

Page 40: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

O

OH R'

Pd(O2CCF3)2 (20 mol%),

AgCO3 (3 equiv),

5% DMSO-DMF,

80 - 120°C, 0.5 - 3 h(1.5 equiv)

+

42 - 99%18 examples

R'

R R

R''

R''

CO2H CO2H CO2H CO2H CO2H

OMe

MeO

MeO

OMe

OMe OMe

CO2H CO2H

CO2H CO2H CO2H

Me

Me Me

F

F

F

F

F

F

F

Cl

Cl

OMe

OMe

Br

NO2 NO2

MeO

MeO

OOS

F3C

CO2H

Me

CO2HCO2H

Me N OMeMeO

CO2H

CO2Et CO2tBu

Me

ScopeScope

Scope of Aryl Carboxylic Acid:

Scope Of Alkene:

Page 41: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Side ReactionsSide Reactions

MeO

O

OH MeO

OMe

Pd(O2CCF3)2, AgCO3,

5% DMSO-DMF, 120 °C, 3 h+

MeO

OMe

O

OH

Pd(O2CCF3)2, AgCO3,

DMF, 120 °C, 3 h+

major product

MeO

O

OH

MeO

Pd(O2CCF3)2, AgCO3,

5% DMSO-DMF, 120 °C, 3 h+

major product

O

O

OMe

MeO

O

OOMe

71%

Importance of 5% DMSO-DMF

Importance of ortho substituent

These side reactions probably occur by a C-H insertion or ortho-palladation reaction

Page 42: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Arylation of 2-Cycloalken-1-onesArylation of 2-Cycloalken-1-ones

O

OH

Pd(O2CCF3)2 (20 mol%),

AgCO3 (2 equiv),

5% DMSO-DMF,

80 - 120°C, 0.5 - 3 h(1.5 equiv)

+

R R

O

R R'

( )nO

( )nRR'

O

OMe

O

Me

O

OMe

O

NO2 N

O

OMe

OMe Me

Me

OMe

Br

MeO

MeO MeO

89% 61% 58% 49% 63%

OMeO

MeO OMeO

OMeMeO

O

OMeMeO

30%

O

OMeMeO

86%

O

64%

O

81% 65%

Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.

Page 43: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Reaction of 2-Methyl-cyclopenten-1-oneReaction of 2-Methyl-cyclopenten-1-one

O

OH

Pd(O2CCF3)2 (20 mol%),

AgCO3 (2 equiv),

5% DMSO-DMF,

80 - 120°C, 0.5 - 3 h

+

O

MeO MeO

O

MeOOMe

OMeOMe

MeO

O

OMeMeO

24% 5%

OMe

MeO

OOMe

Page 44: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Heck Reactions of Aryl Carboxylates vs Aryl HalidesHeck Reactions of Aryl Carboxylates vs Aryl Halides

ineffective in decarboxylative Heck-type coupling

O

OH

Pd(O2CCF3)2 (20 mol%),

AgCO3 (2 equiv),

5% DMSO-DMF, 80 °C, 0.5

92%

+

MeO OMe

O

I+

MeO OMe

O

MeO OMe

O

Pd(OAc)2, NaHCO3,

Bu4NCl, DMF, 80 °C, 17 h

57% MeO OMe

O

I

Me

Pd(OAc)2, NaHCO3,

Bu4NCl, DMF, 80 °C, 21 h

100% (HPLC)

+

O

Me

O

O

OH

Me

7 reported reactions yields range 3% - 57%

Page 45: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Mechanistic Studies – Insight into the Decarboxylation StepMechanistic Studies – Insight into the Decarboxylation Step

Heck Reaction with Aryl Halides – Oxidative Addition Occurs

Heck Reaction with Aryl Carboxylic Acids – What Happens?

Pd(0)

Pd(0)

I Pd(II)

O

OH

I

L

Loxidative addition

Pd(II) X

L

L

Does this intermediate form.

If so, how does it form and what are X and L.

Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.

Page 46: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Mechanistic Studies – Insight into the Decarboxylation StepMechanistic Studies – Insight into the Decarboxylation Step

Pd

OMe

MeO

OMe

OCF3

O

C

1H NMR Studies

At 80 oC, A and B start disappearing and C forms.

After 15 min at 80 oC, only C is observed.

OMeMeO

MeO CO2Na DMSO-d6, rt

Pd OO

OCF3F3C

O

(1.2 equiv)

O

O

PdO

O

O

O

PdO CF3

OOMe

MeO

OMe

OMe

MeO

OMe

OMe

OMe

OMe

A:B ratio = 6:1

+

A

B

+

Page 47: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Mechanistic Studies – Insight into the Decarboxylation StepMechanistic Studies – Insight into the Decarboxylation Step

OMeMeO

MeO CO2Na DMSO-d6, room temperature

Pd OO

OCF3F3C

O

(1.2 equiv)O

O

PdO

O

O

O

PdO CF3

OOMe

MeO

OMe

OMe

MeO

OMe

OMe

OMe

OMe

+

A B

13C

13C NMR Studies

After 8 min at 60 oC, C and 13CO2 observed

Pd

OMe

MeO

OMe

OCF3

O

C

13CO2+

Page 48: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

X-Ray of Palladium IntermediateX-Ray of Palladium Intermediate

Page 49: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Proposed Mechanism for the Decarboxylation StepProposed Mechanism for the Decarboxylation Step

Trifluoroacetate Plays a Key Role in the Decarboxylative Palladation

- an excess of NaO2CCF3 only slightly slowed the rate of decarboxylative palladation

- addition of 1.1 equiv of LiBr or nBu4NBr results in no decarboxylative palladation

- Pd(OAc)2, PdCl2, PdO2, Pd(OTf)2 were ineffective

- electron-donating phosphine or trialkyl amine ligands inhibit the reaction

Importance of DMSO:- rate of decarboxylation is dependent on the solvent

- 19:1 DMF-d7 : DMSO-d6 was 2-fold greater than DMSO-d6 alone

- this is consistent with the dissociation of DMSO occurring prior to or during the rate-determining step

Pd(O2CCF3)2DMSO-d6,

23 °CMeO

MeO OMe

O

ONaMeO

MeO OMe

O

O Pd O2CCF3

DMSO

DMSO

80 °COPd

O

DMSO

F3CCO2

MeOOMe

MeOPd O2CCF3

DMSO

DMSO

OMe

MeO

MeO

CO2

rate-determining step

- Conclusion: electron-deficient Pd center is needed for decarboxylative palladation

Page 50: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Final Steps: Alkene Insertion and Final Steps: Alkene Insertion and ββ-Hydride Elimination-Hydride Elimination

R alkene insertion

ß-hydrideeliminationPd O2CCF3

DMSO

DMSO

MeOMeO

R

Pd(II)

H

MeO

R

+

OMe

OMe OMe

OMe

OMe

MeO

NMR, X-ray, and deuterium experiments indicate the final steps are alkene insertion and

β-hydride elimination (similar to Heck reactions involving aryl halide)

However, NMR studies indicate a reactivity pattern opposite to that of Heck reactions of aryl halides,

that is:

CNCO2tBu> >

Page 51: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Competition ExperimentsCompetition Experiments

CO2H

OMeMeO

I

OMeMeO

I

OMeMeO

Pd(O2CCF3)2 (20 mol%), AgCO3,

5% DMSO-DMF, 80 °C, 24 h

OMeMeO

R

+

+

+

OMeMeO

R

OMeMeO

R

Pd(OAc)2 (10 mol%), NaHCO3,

nBu4NBr, DMF, 110 °C, 30 h

Pd(PPh3)4 (10 mol%), Et3N, DMF, 110 °C, 30 h

CN CO2tBu Ph+ +

(1 equiv) (1 equiv) (1 equiv)

CN CO2tBu Ph+ +

(1 equiv) (1 equiv) (1 equiv)

CN CO2tBu Ph+ +

(1 equiv) (1 equiv) (1 equiv)

R = CN < CO2tBu < Ph

1 : 2 : 2.7

R = CN < CO2tBu < Ph

17 : 7 : 1

R = CN < CO2tBu < Ph

17 : 6 : 1

Conclusions: These differences are due to the electron-deficient nature of the Pd(II) species

Page 52: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

Other Interesting Transition-Metal Catalyzed Decarboxylative CouplingsOther Interesting Transition-Metal Catalyzed Decarboxylative Couplings

OMe

OMe

CO2H

R

Pd(O2CCF3)2 (20 mol%),

CF3CO2H (10 equiv),

5% DMSO-DMF, 70 °C

OMe

OMe

H

R

Dickstein, J. S.; Mulrooney, C. A.; O'Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. Org. Lett. 2007, 9, 2441.

CO2H

R

ArAr

R

Ar

Ar

Ar

Ar

[Cp*IrCl2]2 (2 mol%), Ag2CO3,

o-xylene, 160 °C, 6h+

Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007

BnS OH

O O

H R

O

Cu(2-ethylhexanoate)2(20 mol%),

wet THF, air, 23 °C

NH

NMeO

+

(22 mol%)

BnS R

O OH

Lalic, G.; Aloise, A. D.; Shair, M. D. J. Am. Chem. 2003, 125, 2852.

Page 53: Transition-Metal-Catalyzed Decarboxylative Coupling  November 13, 2007 Dino Alberico

The EndThe End

I Love CO2!

Albert Arnold (Al) Gore Jr.Nobel Peace Prize 2007 and future CO2 lover