transient combustion processes in solid-propellant rocket chambers

5
TRANSIENT COMBUSTION PROCESSES IN SOLID-PROPELLANT ROCKET CHAMBERS Yu. A. Gostintsev, L. A. Sukhanov, I. M. Kofman, and A. V. Shmelev UDC 536.46+662.311 A solution is obtained for a previously formulated [1, 2] system of nonlinear equations for the volume- averaged internal-ballistics parameters with nozzle opening. As distinct from previous treatments [3-8], the effects of the nonadiabaticity of the nonstationary flame and the incompleteness of the chemical reactions in it on the chamber processes are taken jointly into account. Previous theoretical studies of the nonstationary processes associated with propellant combustion in a rocket chamber can be conventionally divided into two categories. Those in the first category [3, 4] are chiefly concerned with the inertia properties of the solid-phase induction zone and the associated combus- tion nonstationarity. In this case the flame above the combustion surface is assumed to be isothermal, and the energy equation for the gas is disregarded. In the second category [5-7] the energy equation is used for determining the gas temperature in the chamber, and sometimes [8] the pressure dependence of the net heat release is taken into account. However, the actual combustion of the propellant is assumed to be quasistationary (burning rate and flame tempera- ture dependent only on the pressure). At the same time, in a number of cases it is necessary to give simul- taneous consideration to the incompleteness of combustion and the reconstruction of the solid-phase induc- tion zone. In fact, the characteristic time for the induction zone t s ~ yc/K-2, and the characteristic pressure equalization time t k ~ W/(Pc) (% is the therm~il diffusivity, u is the steady-state burning rate, W and K are the free volume and the nozzle throat area, c is the speed of sound.) Accordingly, if the ratio X = tk/ts is close to unity, then the combustion nonstationarity must be taken into account, and only if • >> 1.0 is it possible to employ steady-state relations for the burning rate. In [I, 2] a complete system of equations for the volume-averaged parameters was obtained on the basis of a combustion model with a quasistationary flame and a quasistationary solid-phase reaction zone with allowance for both the above-mentioned effects. (1) 1 09 , 09 0% ~?(0,'0 = ~ (s~,cp), "e,( - ~ , ~ ) = ',~o, 9 ( ~ , 0 ) = - 0 o + ~ , -- ~~ e~ , (2) v = v (a,(p), -~'~ : e~ (a,q~), % = % (~,~), (3) dn ~ , (4) d}} g ,~, . . . . . . , '~)-a=, (5) dw -- -: r0~. d, (6) Here, we have introduced the nondimensional parameters and variables To, ( ~ )-t+~ ~ T.~ T~ -- , "-- - - , --:--, -" 7., ~dg : ~------, '~s 7: ~; , TF W ~]'1/2 ]// R'FF u p ,.,:.;,~- ~.{ "; Tg TF t ~'x W { Ov '. I Moscow. Translated from Fizika Goreniya i Vzryva, No. 4, pp. 476-482, October-December, 197i. Original article submitted April 21, 1971. 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 ~'est 17th Street, New York, N, Y. lO011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. /t copy of this article is available from the publisher ]s,r $15.00. 409

Upload: yu-a-gostintsev

Post on 09-Aug-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

T R A N S I E N T C O M B U S T I O N P R O C E S S E S IN

S O L I D - P R O P E L L A N T R O C K E T C H A M B E R S

Yu . A. G o s t i n t s e v , L. A. S u k h a n o v , I . M. K o f m a n , a n d A. V. S h m e l e v

UDC 536.46+662.311

A solution is obtained for a previously formulated [1, 2] sys tem of nonlinear equations for the volume- averaged in ternal -bal l i s t ics p a r a m e t e r s with nozzle opening. As distinct f rom previous t rea tments [3-8], the effects of the nonadiabaticity of the nonstat ionary flame and the incompleteness of the chemical react ions in it on the chamber p rocesses are taken jointly into account.

Previous theoret ical studies of the nonstat ionary p roces se s associa ted with propellant combustion in a rocket chamber can be conventionally divided into two ca tegor ies . Those in the f i rs t ca tegory [3, 4] are chiefly concerned with the inert ia proper t ies of the sol id-phase induction zone and the associated combus- tion nonstationarity. In this case the flame above the combust ion surface is assumed to be isothermal , and the energy equation for the gas is d isregarded.

In the second ca tegory [5-7] the energy equation is used for determining the gas t empera tu re in the chamber, and somet imes [8] the p r e s s u r e dependence of the net heat r e lease is taken into account. However, the actual combustion of the propellant is assumed to be quasis ta t ionary (burning rate and flame t empera - ture dependent only on the p ressure ) . At the same time, in a number of cases it is neces sa ry to give s imul- taneous considerat ion to the incompleteness of combustion and the recons t ruc t ion of the sol id-phase induc- tion zone. In fact, the charac te r i s t i c t ime for the induction zone t s ~ yc/K-2, and the charac te r i s t i c p r e s s u r e equalization t ime t k ~ W/(Pc) (% is the therm~il diffusivity, u is the s teady-s ta te burning rate , W and K are the free volume and the nozzle throat area , c is the speed of sound.) Accordingly, if the rat io X = tk / t s is close to unity, then the combust ion nonstat ionari ty must be taken into account, and only if • >> 1.0 is it possible to employ s teady-s ta te relat ions for the burning rate. In [I, 2] a complete sys tem of equations for the vo lume-averaged pa rame te r s was obtained on the basis of a combustion model with a quasis ta t ionary flame and a quas is ta t ionary sol id-phase react ion zone with allowance for both the above-mentioned effects.

(1) 1 0 9 , 0 9 0 %

~?(0,'0 = ~ (s~,cp), "e,( - ~,~) = ',~o, 9 (~ ,0 )=-0o+ ~ , -- ~~ e~ , (2) v = v (a,(p), -~'~ : e~ (a,q~),

% = % ( ~ , ~ ) , (3)

dn ~ , (4)

d}} g ,~,

. . . . . . , ' ~ ) - a = , (5) dw - - - : r 0 ~ . d, (6)

Here, we have introduced the nondimensional pa r ame te r s and var iables

To, ( ~ )-t+~ ~ T.~ T~ - - , "-- - - , - - : - - , - " 7 . , ~ d g : ~------, ' ~ s 7 : ~ ; ,

TF W ~]'1/2 ]// R'FF u p ,.,:.;,~- ~.{ "; Tg

TF t ~'x W { Ov '. I

Moscow. Transla ted f rom Fizika Goreniya i Vzryva, No. 4, pp. 476-482, Oc tober -December , 197i. Original ar t ic le submitted April 21, 1971.

�9 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 ~'est 17th Street, New York, N, Y. lO011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. /t copy of this article is available from the publisher ]s,r $15.00.

409

where T0, Ts, TF, and Tg a re the initial t empera ture of the propellant , the surface t empera ture , the flame �9 t empera tu re , and the t empe ra tu r e of the gas in the chamber , respect ive ly ; S is the combustion surface; u is the burning ra te ; p is p r e s s u r e ; g is the nozzle throat a rea ; R is the gas constant; ~ is the t empera tu re gradient at the sur face in the direct ion of the solid phase. Steady-state values a re denoted by a bar .

Equation (1) de te rmines the recons t ruc t ion of the t empera tu re prof i le in the solid phase during the t rans ien t p r o c e s s e s . In this case for a complete formal descr ip t ion of nonstat ionary combustion within the f r amework of the phenomenological theory it is n e c e s s a r y to know th ree re la t ions [9] v(v, ~o), Os(~,r ~ F(V,~), which can be de te rmined e i ther exper imenta l ly f rom the s teady-s ta te re la t ions ~(p, T0) , Ts(P, T0) , TF(P,T~) , or theore t i ca l ly a f te r par t icular iz ing the s t eady-s ta te combust ion mechanism.

Equations (4) and (5) a re the volume-averaged continuity and energy equations. Averaging in the gas - dynamic equat ions is c a r r i e d out in the assumption that the tempera ture , gas velocity, and p r e s s u r e g ra - dients in the chamber a re small . This assumption is justified for re la t ive ly small engines with a complex geomet ry in the p re sence of intense turbulent mixing of the products escaping f rom the combustion surface . Averaging the energy equation leads to the appearance of a t empera tu re discontinuity at the flame front under nonsta t ionary conditions. In the case of an exact solution of the unaveraged equations of gas dynamics (this is possible only for a one-dimensional product flow), the re is no such discontinuity, and the f lame genera tes p r e s s u r e and ene rgy waves in the products . System of equations (1)-(6) is nonlinear, and in the genera l case an analytic solut ion is impossible. A l inear approximation of (1)-(6) was cons idered [2]; the same a r t i c le gives the r e su l t of a numerical calculat ion of the nonlinear sys tem for the case when the pa r am- e t e r s in the combustion chamber undergo changes owing to nozzle opening. The initial conditions for (1)- (6) a re thei r s t eady-s ta te solutions

~g (o) = ~f(o) = if(o) = u (o) = ~(o) = 2 ( o ) = 1,o.

The law of var ia t ion of the nozzle throat a r ea is taken in the form

0 ~ " ~ In ~

Z I e x p ~ ' a In Y.~

(7)

In solving (1)-(7) the pr inc ipa l difficulty is the nonstat ionary heat conduction equation (1) de termined in a region with a moving boundary. In o rde r to s implify (1), we employ the method of integral re la t ions [10]. The t empera tu re dis t r ibut ion in the solid phase is found among the functions

~ (~,~) = ~0 + (0~ - - ~0) exp [ (~) ~, (S)

where &s and f a re functions of t ime subject to de terminat ion that sa t is fy the initial values

#s (0) = b~, [ ( 0 ) ---- 1 ,0 . (9)

Then, af ter integrating (1) with r e spec t to the ~ coordinate between -~o and 0 and af ter ce r ta in t r an s fo r - mations, we obtain

- : X ( ~ - - ~o) ( [ - - v ) , (10)

In o rde r to de te rmine the nonstat ionary re la t ions ~s(V,~), v(~r, ~0), it is possible to employ the exper imen- ta l ly substantiated equations [11]

= u ~ p ~ e x p [ ( f ~ p - I - ~o) To], u = Dexp (-- . ._~ ) , E s

which af te r the usual convers ion to the gradient dependence give

Os q~ Oo ],

\

bs (~,~) ---- 1--elnv ' (12)

where k0r) = (/3 lzrp + fi 0) @s - To), ~ = (8 lP + fl 0) @s ~ To), ~ = RTs/Es" Now, using (l l) and (12) and the fact that f = ~o(~ s - $ 0)/(~s - $0), we el iminate the function b( r ) f rom {10) and obtain

410

- - g s - - ~ ( 1 - - e l--n v) ~ @ - k(~) - - d , fiiY) + A ) - s +

0s - - 0o 7~ - - ~o "

Here, A - In v - - v ln~ k 8.0

The d e t e r m i n a t i o n of the f l ame t e m p e r a t u r e dependence ~F(~r,~) is based on the fol lowing c o n s i d e r a t i o n s . At high p r e s s u r e s in the c o m b u s t i o n p r o c e s s the fuel e n e r g y Q is c o m p l e t e l y r e l e a s e d ; acco rd ing ly , the p r e s - s u r e dependence of T F is a s s o c i a t e d only with the ad iabat ic c o m p r e s s i o n or e xpa ns i on of the gas in the f l ame ,

i .e . ,

r e ( p , T o ) = - ~ To +'~-;~ ~ W ] "< ' ( P ~ P ~ ) '

where p~ is the p r e s s u r e above which c o m b u s t i o n is comple t e . At p r e s s u r e s p < P3 the c h e m i c a l c o m p o s i t i o n of the p r o d u c t s e s c a p i n g f rom the f l ame a l so beg ins to depend on p r e s s u r e and the f lame t e m p e r a t u r e is a p p r o p r i a t e l y d e s c r i b e d by the funct ion

Here ,

r ~ ( p , r d = ( 1 - - ~ . ) T ~ ( p , T d + ~ ~ o~-i-2~]\-~; ] .

~={10 at o>~m at p ~ p ~ ,

and T~(p, To) i s t aken f r o m the e x p e r i m e n t a l data . We a p p r o x i m a t e T~(p, To) with a p o l y n o m i a l of t h i rd d e - g r ee in the p r e s s u r e with coe f f i c i en t s tha t depend on the i n i t i a l t e m p e r a t u r e

Cs Q T~ (I3,To) -- -c;- To + ~ + b (To) ( p - - p~) + c (To) (p - - p~)~ + d (To) (p - - p~):'.

If for a c e r t a i n p a i r of spec i f i c p r e s s u r e va lues pl and p~ we know the e x p e r i m e n t a l dependences

T~ (p~,r0) = "Fe~ (To), TF (p,,To) = TF2 (To),

which can be r e p r e s e n t e d by the l i n e a r func t ions

T'--F~ (To) = a~To + b~, ~ ' m (To) = a~To + b.~ ;

then , a f t e r f inding the expans ion coef f ic ien t s and going through the u sua l p r o c e d u r e of the T O ~ ~ t r a n s i t i o n , for the n o n d i m e n s i o n a l f l ame t e m p e r a t u r e we have

t~F = (1 --- ~) g~A + O, 1 'v ~ - - ~ ~a [ ~_~_v_~ ,~ ~ ' + n (~ - - ~)"- + m (~ - - ~ ) ~ . + ~g~A + ~ , ~ ~ ) ~ , (14)

where

B 1

[ % \ ~ n~ + A l p ~- (~'l - n3) ~ -I- A.,.p ~ (.~ - - ~3) '~ ,

c s r .~ \~-__t _ BI-~ B . ~ - - - - Y ~ ] T / - - - -

O, - 0 A, = (m-- p3) c~ __ (m -- p~) c.. c~ T F ' (Pz--P~)~(P~--P 1) (P2--P3)2(P~--P 1) '

(Pl -- P3) s (P2 -- pl) (p*. -- p3) ~ (p~ -- pl) ' (P'- -- P3) ~ (P~ -- P0 (pl -- pa) ~ (p~. -- pl) '

d.. dx T- - I pl--p:~ , B2 ---- (p~__p3)~(p~__pl) - - (pl__p3)~(pe__px) , cl = aj. - - 1 - - ~ p3

ca = a.a - - I T - - I p2--p~ d 1 = b~ - - + T P3 ' Cp T

Q ( I + T - I P , - - P 3 ) d2 -~ b2 - - c--f T p~ "

411

We note tha t the ob ta in ing of the d e p e n d e n c e SF0r,~0) f r o m the e x p e r i m e n t a l da t a can be r e p l a c e d by a t h e r - m o d y n a m i c c a l c u l a t i o n .

S y s t e m of e q u a t i o n s (4)- (7), (11)-(14) was s o l v e d n u m e r i c a l l y on a c o m p u t e r fo r v a r i o u s nozz le opening r a t e s and v a l u e s of the p a r a m e t e r X (the change of f r e e v o l u m e d u r i n g the t r a n s i e n t p r o c e s s was not t aken into accoun t , i . e . , i t was a s s u m e d tha t 6 = 0.) As the i n v e s t i g a t e d p r o p e l l a n t we s e l e c t e d a m o d e l m i x t u r e c o n s i s t i n g of 75% NH4C104 wi th a 4 5 - p p a r t i c l e s i z e and 25% p o l y b u t a d i e n e b i n d e r . F o r th i s m i x t u r e m a n y of the p a r a m e t e r s have been e x p e r i m e n t a l l y d e t e r m i n e d [11], in p a r t i c u l a r ,

v=0,45, ~o= 1,2.10 -3 I/~ ~z=3" 19 -6 l/arm. ~

tl I = 0.092 c m / s e c (atm) u , D = 2241 c m / s e c , E s = 16,000 c a l / m o l e , R = 1.98 e a l / m o l e �9 deg , ~ = 1.87 �9 10 -~ c m 2 / s e c , c s = 0.03 c a l / ~ �9 g, p s = 1.5 g / c m ~, Q = 800 c a l / g , T O = 300~

U n f o r t u n a t e l y , no d a t a a r e a v a i l a b l e on the d e p e n d e n c e of the f l a m e t e m p e r a t u r e T F on the i n i t i a l t e m - p e r a t u r e for t h i s fuel . A c c o r d i n g l y , a s an a p p r o x i m a t i o n we e m p l o y e d the on ly known p u b l i s h e d func t ion T---F(T0) ob t a ined e x p e r i m e n t a l l y fo r a b a U i s t i t e [12]. Then the c o e f f i c i e n t s in (14) a r e equa l to a 1 = 0 .27 /~ b 1 = 1079~ a 2 = 11/~ b2 = 1650~ Pl = 1 a tm , P2 = 10 a t m , p~ = 30 a tm .

T A B L E 1

Variant - ~ / ~ - ~',cm 2 ~ ~

9,5 9,5

19,0 28,5

0,068 0,068 0,068 0,068

1,0

1,5

1,0

1,0

6,0

6,0

6,0

6,0

3 0 ,042

3 0,042 6 0,084 9 0,126

r i

/

- - Osl

~, v,

o,e ' \ [ e r ' N s

O,J " 3

0>4 0 ,8 2 6 rE

Fig. 1. - ,Yg, ~F, ~s' v, ~r, a as functions of the nondimen-

sional time T = t}t k for variants 1 and 2.

~6

o,o" 1,2

Fig . 2

"i " ~ J

,",a 2,4 ~

In the c o m b u s t i o n p r o d u c t s i t was a s s u m e d tha t 3, = 1.22, c 2 = 0.40, c s = 0.30, # = 29. The c a l c u l a t e d v a r i a n t s a r e p r e s e n t e d in the t ab l e .

The r e s u l t s of the c a l c u l a t i o n s fo r the d e p e n d e n c e s of ~_ , ,Y~, ~o , v, 7r, ~ on non- JL" O d i m e n s i o n a l t i m e a r e shown g r a p h i c a l l y in F ig . 1 for v a r i a n t s 1 and 2. F i g u r e s 2 and 3 i l l u s t r a t e the c o r r e s p o n d i n g d e p e n d e n c e s fo r v a r i a n t s 3 and 4. He re , in add i t i on to the a b o v e - m e n t i o n e d quan t i t i e s , the n o n d i m e n - s i ona l func t ion ~ fo r the net hea t r e l e a s e in the f l a m e i s a l s o inc luded . The e x p r e s s i o n for ~ can be ob ta ined f rom the e n e r g y c o n s e r - va t ion equa t ion for the i n e r t i a l e s s r e a c t i o n zones in the s o l i d p h a s e and the f l a m e [9]

_ - - _ _ ( , - - eo) - - e,, + .~ ,~. ( 1 5 ) Cp TF Cp

F r o m (15) and the g r a p h s i t fo l lows tha t l o s s of p r e s s u r e i s a s s o c i a t e d with the i n c o m - p l e t e r e l e a s e of c h e m i c a l e n e r g y in the c o m - bus t i on c h a m b e r , the u n d e r c o m b u s t i o n b e i n g d e t e r m i n e d not on ly b y the q(p) d e p e n d e n c e

I

o o,# ~,2 7,8 ,c

Fig . 3

v(~}

0,8

\\\ I ~

0,2 V~

0 1,o o,8 0,8 o,4 0,2 o

Fig . 4

~sCg') O,,~2a

O,&8a

Fig . 2. I n t e r n a l - b a l l i s t i c s p a r a m e t e r s a s funct ions of n o n d i m e n s i o n a l t i m e for v a r i a n t 3.

F ig . 3. I n t e r n a l - b a l l i s t i c s p a r a m e t e r s a s func t ions of n o n d i m e n s i o n a l t i m e for v a r i a n t 4.

F ig . 4. Burn ing r a t e v and s u r f a c e t e m p e r a t u r e ~s a s func t ions of the v a r i a b l e va lue of the t e m p e r a t u r e g r a d i e n t r in the s o l i d p h a s e for v a r i a n t s 1, 2, and 4 (the d e v i a t i o n of the v ( r c u r v e f r o m a s t r a i g h t l i ne c h a r a c t e r i z e s the d e g r e e of n o n s t a t i o n a r i t y of the p r o c e s s . )

412

but a lso by the ra te of r econs t ruc t ion of the so l id -phase induction zone. (Under nonsta t ionary conditions at l a rge values of the gradient ~ the combust ion p r o c e s s is qual i ta t ively the s a m e as at low initial t e m p e r a - tu res under s t a t iona ry conditions.)

Noteworthy is the osc i l l a to ry nature of the heat r e l e a s e and f lame t e m p e r a t u r e functions with per iod of the order of the chamber re laxat ion t ime t k. In Fig. 4 the su r face t e m p e r a t u r e and burning ra t e v a re plotted as functions of ~ for va r i an t s 1, 2, and 4. Clear ly, the combust ion of the propel lant in the chamber can be cons idered quas i s t a t iona ry only at X -> 10.

We have intentionally r e f r a ined f r o m invest igat ing the question of quenching of the propel lan t with loss of chamber p r e s s u r e . This is because of the l ack of a ma thema t i ca l quenching c r i t e r ion for a p r o p e l - lant with a va r i ab le su r face t e m p e r a t u r e and because , if the p r e s s u r e falls s teeply, the f lame t e m p e r a t u r e is sha rp ly reduced, and the c h a r a c t e r i s t i c reac t ion t ime m a y become comparab l e with the res idence t ime of the gas in the chamber . Clear ly , in this case our phenomenological model of nonsta t ionary p rope l lan t combust ion with a thin f lame is inapplicable, and the engine is desc r ibed by the s y s t e m of equations for a homogeneous chemica l r eac to r , whose solution in the genera l case should a l so provide the answer to the question whether sha rp p r e s s u r e drops r e su l t in the quenching of the propel lant .

LITERATURE CITED

1. Yu. A. Gost intsev, L. A. Sukhanov, and P. F. Pokhil, Dokl~ Akad. Nauk SSSR, 195, No. 1 (1970). 2. Yu. A. Gost intsev, L. A. Sukhanov, and P. F. Poldlil, Zh. Pr iM. Mekhan. i Tekh. Fiz. , No. 4 (1971). 3. Ya. B. Zel 'dovich, Zh. Pr iM. Mekhan. i Tekh. Fiz. , No. 1 (1963). 4. B . V . Novozhilov, Zh. Pr ik l . Mekhan. i Tekh. Fiz., No. 5 (1962). 5. A . A . Shishkov, Gas Dynamics of Solid Prope l lan t Rocket Motors [in Russian], Moscow (1968). 6. N. Cr ie r , J. Tjen, et al. ,AIAA J. , No. 2 (1968). 7. J. Tjen, W. Sirignano, and M. Summerf ie ld , AIAA J. , No. 1 (1970). 8. R . E . Sorkin, Gas The rm odynam i cs of Solid Prope l lan t Rocket Engines [in Russian], Moscow (1967). 9. Yu. A. Gost intsev, L. A. Sukhanov, and P. F. Pokhil, Zh. Pr iM. Mekhan. i Tekh. Fiz., No. 3 (1971).

10. Yu. A. Gost intsev, Fiz. Goreniya i Vzryva, 3, No. 3 (1967). 11. M. Summerf ie ld , L. Kaveny, e t a l . ,AIAA Pape r 70-667 (1970). 12. A . A . Zenin, O. I. Leipunskii , e t al. , Dokl. Akad. Nauk SSSR, 169, No. 3 (1966).

413