timberfabric -researches-

Download TIMBERFABRIC -RESEARCHES-

Post on 19-Feb-2016

217 views

Category:

Documents

0 download

Embed Size (px)

DESCRIPTION

Book gathering researches about the Timber Fabric project of Yves Weinand and Markus Hudert. By Floriane Misslin - may 2013

TRANSCRIPT

  • 1TIMBERFABRIC

    TIMBERFABRICAPPLYING TEXTILE PRINCIPLES ON A BUILDING SCALE A P

    ROJE

    CT B

    Y YV

    ES W

    EINA

    ND &

    MAR

    KUS

    HUDE

    RT

  • 2TIM

    BERF

    ABRI

    C

  • 3TIMBERFABRIC

  • 4TIM

    BERF

    ABRI

    C

  • 5TIMBERFABRIC

    This thesis project proposes to investigate a new family of timber constructions based on the logic and principles of man-made fabrics. In fabrics, as well as in basketry, the coherence of the yarn elements is governed by friction. Additionally, the basic materials are, in principle, available with infinite length. This radically changes on a building scale. Whereas there might be a possibility of building struc-tures based on friction up to a certain size, it is certain that one needs to consider mate-rial limitations, for instance inlength, and how to deal with them. One has to address the question of how to trans-late textiles into buil-ding structures without be-traying their basic prin-ciples. Can textile principles be transformed into something new, something that is more than just a mere literal meta-phor of weaving? The consequences of such an approach might result in something that is not immediately recogni-zed as a textile structure, but yet adapts its logic in the most stringent way.

  • 6TIM

    BERF

    ABRI

    C

    YVES WEINAND is a belgium achitect and civil engineer, having his research department in Lige, Belgium, and hes also a professor at lEcole polytech-nique in Lausanne, Switzerland.

    MARKUS HUDERT is a german architect living in Lausanne.

    A PR

    OJEC

    T BY

  • 7TIMBERFABRIC

    The IBOIS, the laboratory for timber construction of the EPFL, is directed by Professor Yves Weinand, engineer and architect, since October 2004. The laboratory undertakes research and teaching within the framework of the civil engineering section of the ENAC.

    Practical and material orientated aca-demic research has become increasin-gly important for architectural practice. This is due to several reasons. First of all, it contributes to contemporary concepts in architecture and improves their im-plementation. Todays architects are looking for a deeper understanding of technical and technological questions related to architecture: technology, construction methods as well as structu-ral considerations are no longer seen as bothersome necessities, as it was often the case in the past. The importance of those aspects and the potential of inclu-ding them in the architectural design process as active stimulus are largely recognized. Its the limitations in time and capacities that more often than not confound the realisation of such ambi-tions. Academic research can fill this gap and provide architectural practices with the necessary resources.

    IBOIS

    Research is in charge for finding answers to one of the biggest architec-tural challenges of our time, namely sustainable building. Societys burgeo-ning awareness of the urgent need to use renewable materials for building construction is undeniable and has be-come an important parameter for archi-tectural production. As a result, timber constructions experience a new popula-rity and the importance of research on timber increased. The potential of this research becomes evident with some of the latest developments and inno-vations in this domain. Cross laminated timber panels open up new dimensions for massive timber construction and prefabrication in context with the digi-tal chain. Technologies like wood wel-ding or the densification of wood create new possibilities not only for architec-ture but also for furniture and product design. Timber as building material is therefore capable of satisfying both the demands of contemporary archi-tecture as well as the requirements of sustainable building. By doing so, a new generation of timber structures could be created.

  • 8TIM

    BERF

    ABRI

    C

  • 9TIMBERFABRIC

  • 10

    TIM

    BERF

    ABRI

    C

  • 11

    TIMBERFABRIC

    Timber is coming to the fore as a contem-porary construction material. Not only sus-tainable, its suppleness, adaptability and strenght make it highly attractive for expe-rimental designers. Yves Weinand founded the interdisciplinary timberfabric research at IBOIS, the Laboratory for Timbe Fabric, at the Ecole Polytechnique Fdrale de Lausanne (EPFL), in order to fully explore innovative timber construction techniques. Here Yves Weinand and Markus Hudert des-cribe the Textile Module, which Hudert de-veloped, in order to investigate timbers ability for social behaviour, or greater structural strength, one woven into a tex-tile-like form.

  • 12

    TIM

    BERF

    ABRI

    C

    Textiles are interesting from both a structural and an architectural point of view. Their patterns and textures, created by the interworking of yarn ele-ments, are not only highly appealing on an aesthetical level, they also possess load bearing qualities. The research pro-ject Structural Timber Fabric: Applying Textile Principles on Building Scale sets out to investigate this potential and pro-poses to develop a new family of timber constructions based on the logic and principles of textile techniques. In this context, and within the scope of several case studies, one of the core objectives is to create an innovative structural sys-tem with concise aesthetic, spatial and structural qualities. Thus, the proposal addresses important challenges at the frontiers of the fields of architecture and civil engineering.

    During the process of analyzing textile techniques regarding their suitability for large scale application, it became clear that, apart from the commonly known techniques such as felting, knitting, brai-ding and weaving, an immense amount of variants exists. This insight triggered an adjustment in the direction of inves-tigation. Instead of aiming at a com-prehensive overview of existing tech-niques, the quest for a least common denominator of textiles was launched. This quest resulted in the finding that practically all textile structures can be reduced to one in principle identical unit cell. This unit cell acts as a kind of basic module and consists of two intercrossing threads.

    TEXT

    ILE

    RESE

    ARCH

    ES

    Entangled fibre in felt, yarn structures of knitted

    and woven fabric.

  • 13

    TIMBERFABRIC

    FELTED FIBERS (simple fibre assembly)example:

    -felt-paper

    INTERWORKED ELEMENTS

    Primary Textile Techniques Transitional Techniques Advanced Textile techniques

    example:-mesh, fabrics

    -knitting, crocheting

    example:-braiding

    -plaiting (with active systems)

    example:-weaving

    CHARACTERISTICS OF WOVEN FABRICS - Application as structure -

    Weaving Loom; Source: Seiler-Baldinger 1994

    Plain weave pattern; Source:Seiler-Baldinger 1994

    Twill weave pattern; Source: Seiler-Baldinger 1994

  • 14

    TIM

    BERF

    ABRI

    C

    COMPARISON PLAIN WEAVE AND TWILL WEAVE PATTERN

  • 15

    TIMBERFABRIC

    IDENTIFYING A LEAST COMMON DENOMINATOR

    Exploring the variety and diversity of textile fabrics - expansive approach.

    Defining the Least Common Denominator.

    Unit cell in woven fabrics

    Source: Textile structural composites, T.-W. Chou and F.K.Ko, 1989

    Unit cell in knitted fabrics

  • 16

    TIM

    BERF

    ABRI

    C

    In a following step, the principle of this unit cell was brought to large scale by interbraiding two strands of glue laminated timber. By doing so, the researchs first promising outcome, the so-called Textile Module, was produced. It shows how the use of a particular textile technique of assembly, together with the properties of a specific mate-rial, can lead towards a particular and structurally efficient construct, whose geometry is automatically generated by the process of assembly.

    MOD

    ULE

  • 17

    TIMBERFABRIC

    Model of the textile module, top view. Model of the textile module, perspective view.

  • 18

    TIM

    BERF

    ABRI

    C

    DEVE

    LOPI

    NG S

    TRUC

    TURA

    L FA

    BRIC

  • 19

    TIMBERFABRIC

  • 20

    TIM

    BERF

    ABRI

    C

    TEXTILE MODULE

    SINGLE MODULE

    MUTLIPLE MODULESFR

    OM T

    EXTI

    LE F

    ABRI

    C TO

    TIM

    BER

    FABR

    IC

  • 21

    TIMBERFABRIC

    INTERCONNECTED

    LINEARCONNECTION

    LINEARSTRINGING

    MULITPLEARCHS

    ADDITIONALPERPENDICULAR

    ELEMENTS

    SUPERPOSITION OF ARCHS

    REGULAR

    IRREGULAR

    CABLETRUSSED

  • 22

    TIM

    BERF

    ABRI

    C

    Module length

    Module width Mod

    ule

    heig

    ht

    TENS

    ION

  • 23

    TIMBERFABRIC

    Additionally, it commands of exceptio-nal behaviour when put under pressure: the structure becomes longer and flat-ter but in the same time, the sectional triangle in the middle of the module narrows, becomes higher and therefore stiffens the structure.

    One of the structural advantages of tex-tiles is the already described system effect: they are made up of many basic elements that are interconnected and work together as a whole. Therefore the failure of one or several of the basic elements doesnt lead to the failure of the whole structure. In order to achieve a similar effect on building scale, it is likewise necessary to create a structure that is composed of a multitude of ele-ments.

    At present, the research work focuses on how this can be accomplished by using the Textile M

Recommended

View more >