theoretical nuclear physics - royal institute of … · theoretical nuclear physics (sh2011, second...

43
Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, [email protected]

Upload: vanphuc

Post on 18-Aug-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Theoretical Nuclear Physics(SH2011, Second cycle, 6.0cr)

Commentsandcorrectionsarewelcome!ChongQi,[email protected]

Thecoursecontains12sections

1-4Introduction◇BasicQuantumMechanicsconcepts◇Basicnuclearphysicsconcepts:Pairing,single-particleexcitations,squarewell,Magneticresonances5-11Nuclear shell model ◇Single-particle model and the spin-orbit interaction(5) ◇Nuclear deformation and the Nilsson model, rotation(6) ◇Second quantization and Hartree-Fock (7-8) ◇Two-particle system, LS and jj coupling(9) ◇Isospin and neutron-proton coupling scheme(10) ◇One-nucleon operators, gamma transition (10) ◇beta decay, 14C-dating β decay(11) 12 Summary and applications (12)

▪ Much of the progress in the past 50 years has been based on empirical models (most with microscopic degrees of freedom) tuned to experimental data• Single-particle model• Nuclear coupling schemes (pairing, np coupling)• Hartree-Fock, RPA and TDA

▪ The physics of nuclei impacts the programs because nuclei are the source of the energy and they are important diagnostics• Fission • Decay• Nuclear reactions• Astrophysics

WhyFocusonMicroscopicNuclearTheories?

▪ Modern theories• No-core shell model and Ab inito theories for light nuclei• Large scale shell model for medium nuclei• Modern energy density functional approaches (Hartree-Fock) for heavy nuclei

WhyFocusonMicroscopicNuclearTheories?

Whatweintroducedinthiscourseisthebasisofallthesepractices.

➢NNinteraction(tensor,three-body…)➢Novelcouplingschemes➢Noveldecays

JaguaratORNL2.3petaflops

1Teraflop=1012flops1peta=1015flops1exa=1018flops

Connections to computational science

Kcomputer,RIKEN,Japan,10.51Petaflops,power1.27*10^4kW

Lindgren,305Teraflops

Beskow,PDC1973 TeraFLOPS

➢Theoryofnuclearfission➢Stabilityofsuperheavyelements➢Nucleosysthesis(selectedtopics)

Audietal.,Nucl.Phys.A729(2003)3-128

Fission

Fusion

Theoryofnuclearfission(liquiddropmodel)

thenucleusinanunstablestatevibratesandchangesformfromsphericaltoapeanut-likeshape.TheCoulombrepulsionbetweenthepartsseparatesthem,arrivingtotwowelldifferentiatedsphereswhichfinallydepartfromeachother,thusfissioningthemothernucleus.

2.6Mmeshpoints

Types of Multipole Deformatiions

The monopole mode

Theassociatedexcitationistheso-calledbreathingmodeofthenucleus.Alargeamountofenergyisneededforthecompressionofnuclearmatterandthismodeisfartoohighinenergy.

Dipoledeformations,tolowestorder,donotcorrespondtoadeformationofthenucleusbutrathertoashiftofthecenterofmass,i.e.atranslationofthenucleus,andshouldbedisregardedfornuclearexcitationssincetranslationalshiftsarespurious.

The dipole mode

ThequadrupolemodeThemostimportantnuclearshapesandcollectivelowenergyexcitationsofatomicnuclei.

TheoctupolemodeTheprincipalasymmetricmodesofthenucleusassociatedwithnegative-paritybands.

Thehexadecupolemode

Spherical Prolate Obolate

asymmetric&symmetricmodes

PRL105,252502(2010)

Exoticmode Mercury-180

180Hg->90Zr+90Zr?no

Related problem: heavy-ion fusion • nucleus-nucleus potentials • adiabatic fusion barriers

IslandofstabilityAccordingtoclassicalphysics,elementswithZ>104shouldnotexistduetothelargeCoulombrepulsion.TheoccurrenceofsuperheavyelementswithZ>104isentirelyduetonuclearshelleffects.

S.G.NilssonandI.Ragnarsson:ShapesandShellsinNuclearStructure,CambridgePress,1995

Mapofsuperheavyelements

Coldfusion

Hotfusion Stabilityisland

Neutronnumber

Proton

num

ber

Shellclosureinsuperheavynuclei(anopenproblem)

SynthesisofaNewElementwithAtomicNumberZ=117,PRL104,142502(2010)

Thenucleiinthechartdecaybyαemission(yellow),spontaneousfission(green),andβ+emission(pink).Physics3,31(2010)http://physics.aps.org/articles/v3/31

However,thenucleuscannotbeviewedasarigidbodyduetheshortrangeofstrong-forceinteractions;typicallymeasuredmomentsofinertiaforlow-spinstatesare30−50%relativetothatofarigidbody.

S.Ćwioketal.,Nature(London)433,705(2005).

Superheavynucleimayalsobe“deformed”.

Prolateshapesarecolouredred–orange,oblateshapesareblue–green,andsphericalshapesarelightyellow.

Single-particle energy scheme as a function of deformation parameters. What are they?

NuclearPhysicstoday:Shellevolutioninneutronrichdriplinenuclei

Spectrumofsingle-neutronorbitals,obtainedbythesphericalWoods-Saxonpotential,forA/Z=3nuclei.Thelinesarelabeledbythesingle-particleorbitals.Themagicnumbersareindicatedbythenumbersinsidethecircles.Phys.Rev.Lett.84,5493–5495(2000)

Intensiverecentresearchessuggestthatmagicnumberorshellclosureisalocalconcept.

Recentapplicationofspin-orbitcouplinginotherfields

Forexample,Spin–orbitqubitinasemiconductornanowire,S.Nadj-Perge,S.M.Frolov,E.P.A.M.Bakkers&L.P.Kouwenhoven,Nature468,1084(2010).http://www.nature.com/nature/journal/v468/n7327/full/nature09682.html

Spin–orbit-coupledBose–Einsteincondensates,Y.-J.Lin,K.Jiménez-García,I.B.Spielman,Nature471,83(2011).http://www.nature.com/nature/journal/v471/n7336/full/nature09887.html

Abundance of the element in the Universe

The 11 Greatest Unanswered Questions of Physics (National Research Council, NAS, USA, 2002):

1. What is dark matter? 2. What is dark energy? 3. How were the heavy elements from iron to uranium made? 4. Do neutrinos have mass? …

Strong neutron fluxes are expected in core-collapse supernova explosions or in the mergers of neutron stars.

BriefSummaryofnucleosynthesis

Processesthatthestructureofthenucleiinvolvedmayplayabigrole:Productionof7LiinBBNHoylestate

Starsareformedthroughthepresenceoffreeprotonsinspacewhichclumptogetherundertheinfluenceofthegravitationalfield.

Inthecenterofthestarsthusformedtheprotonsareconcentratedinahightemperatureandhighdensityenvironment.Inthisenvironmenttheprotonsinteractwitheachothertoproduceheavierisotopesinaprocessthatgoesonuntiltheprotonsaredepleted.

Theppchain

Q=1.44MeV

Attheendofthereactionsonlyalphaparticlesleft.

ThehydrogenburningoftheppchainandtheCNOcyclecontinuesuntilthehydrogenfuelisnearlyconsumed.

BesidestheppchainthereisanotherpaththroughwhichHydrogenisburned.

Astrophysicalmotivation:Bigbangnucleosynthesis

Theprimordialabundanceof7LiaspredictedbyBBNismorethanafactor2largerthanwhathasbeenobservedinmetal-poorhalostars.

http://arxiv.org/pdf/1202.5232v2.pdf

electroncapture(n,p)

HeliumburningWhenastarreachesthestageofaredgiantitscoreconsistsmainlyofhelium.

Hoylestate

neutrons

protons

rpprocess

rprocess

Mass knownHalf-life knownnothing known

sprocess

stellarburning

BigBang

pprocess

Supernovae

CosmicRaysH(1)

Fe(26)

Sn(50)

Pb(82)

35

Example:

Resonancecontributionsareontopofdirectcapturecrosssections

Core-collapsesupernovae(typeII,Ib,Ic).

1

The Fate of Stars •  The final stages of a star occur when the hydrogen fuel is

exhausted and helium fuses. Heavier elements are then created until the process reaches the iron region.

•  At this point the elements in the star have the highest binding energy per nucleon and the fusion reactions end.

1

The Fate of Stars •  The final stages of a star occur when the hydrogen fuel is

exhausted and helium fuses. Heavier elements are then created until the process reaches the iron region.

•  At this point the elements in the star have the highest binding energy per nucleon and the fusion reactions end.

S-process (slow neutron capture) It mainly operates in the red giant phase. • R-process (rapid neutron capture) The principal mechanism for building up the heavier nuclei. Occurs during supernova explosion. • P-process (proton capture) Also occurs in supernovae, is responsible for the lightest isotopes of a given element. The principal difference between the s-process and r-process is the rate of capture relative to the decay of unstable isotopes.