theoretical biophysics

Upload: flaviana-catherine

Post on 03-Jun-2018

245 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/12/2019 Theoretical Biophysics

    1/73

    Theoretical Biophysics

    Stephan W. Grill 1,2 and Frank Julicher 2

    transcribed by Falk Hoffmann and Fabian Rost

    1Max-Planck Institute for Molecular Cell Biology and Genetics,

    Pfotenhauerstr. 108, 01307 Dresden, Germany 2Max-Planck-Institute for the Physics of Complex Systems,

    N othnitzerstrasse 38, 01187 Dresden, Germany

    1

  • 8/12/2019 Theoretical Biophysics

    2/73

    Contents

    A. Lecture: Theoretical Biophysics 4

    I. Biopolymers 5

    A. Freely jointed chain 5

    1. General facts 5

    2. Comparison with the diffusion of a Brown particle 6

    3. Statistical mechanics 8

    4. Freely jointed chain with external force 12

    B. Bead-and-Spring Model - Gaussian chain 14

    1. Small forces 14

    2. Large forces 15

    3. Effect of self-avoidance 17

    C. Experiments 19

    1. Magnetic Tweezers 19

    2. Optical Tweezers 20

    D. Semiexible Polymers 21

    1. Stiff/Semiexible polymers 22

    2. Effective stiffness 27

    II. Biomembranes 29

    A. Differential geometry (geometry of surfaces) 30

    1. Curves in R2 30

    2. Surfaces in R3 31

    3. Curvature of a surface 32

    4. Formalism of vectors and tensors 33

    5. Tensor of curvature 34

    6. Additional surface elements that are independent of parametrization: 35

    B. Bending energy of a uid membrane 36

    1. Expand bending energy 36

    2. Theorem of Gauss-Bonnet 37

    3. Biological implications 40

    2

  • 8/12/2019 Theoretical Biophysics

    3/73

    C. Monge-representation 40

    1. Tensor of curvature in Monge-representation 42

    D. Persistence length of a membrane 44

    1. Partition function 45

    2. Continuum limit 47

    3. Correlation functions 48

    4. Periodic boundary conditions 50

    5. Persistence length of a membrane 51

    E. Stretching elasticity of a membrane 52

    III. Dynamics of biological molecules 56

    A. One-dimensional harmonic oscillator with uctuations 591. Linear response function 59

    2. Correlation function 65

    3. Fluctuation-dissipation-theorem 66

    B. Stochastic motion in periodic potentials 66

    1. Periodic boundary conditions 67

    2. Kramers rules 68

    3. Transition state picture 69

    4. Detailed balance 70

    5. Effective diffusion 70

    6. Effective mobility 71

    C. Experiments 72

    3

  • 8/12/2019 Theoretical Biophysics

    4/73

    A. Lecture: Theoretical Biophysics

    Cytoskeleton: actin, microtubules

    Organells: nucleous, golgi, mitochondria, en-

    dosoms, endoplasmatic reticulum(ER)

    Molecular building blocks of the cell

    small molecules

    ions Lipids DNA/RNA Proteins

    H2O cell membrane chromosomes enzymes

    Ca++ Golgi, ER ribosomes actin, tubulin

    ATP mRNA motor proteins

    microRNAs ion channels

    Statistical physics of biomolecules exible

    semiexible

    Statistical physics of membranes

    Dynamics, non-equilibrium processes Langevin equation, Fokker-Planck equation

    detailed balance, uctuation dissipation theorem active processes, dynamic uctuations

    motor proteins

    Provide the basic tools required to work in theoretical biophysics

    4

  • 8/12/2019 Theoretical Biophysics

    5/73

    I. BIOPOLYMERS

    A. Freely jointed chain

    1. General facts

    Biopolymers are long chain molecules. An easy model to describe them is

    the freely jointed chain. In two dimensions it is similar to a bike chain.

    N : angle to the horizontal

    a: segment length

    RN = R0 + a

    N

    i=1

    cosi

    sin i

    R = RN R0 = aN

    i=1

    cosi

    sin i

    The probability for the conguration i has to be normalized

    20 d1 . . . 20 dN P (1, . . . , N ) = 1No angle is preferred, so the probability is

    P (1, . . . , N ) = 1(2)N

    The rst expectation value for the end-to-end-distances:

    < R > = 20 d1 . . . 20 dN RP = a 20 d1 . . . 20 dN N i=1 cosisin i 1(2)N = 0because

    2

    0d cos =

    2

    0d sin = 0

    The next expectation value is

    < ( R)2 > = a2 20 d1 . . . 20 dN N i,j =1 (cos i cos j + sin i sin j ) 1(2)N < ( R)2 > = Na2 20 d1 . . . 20 dN 1(2)N = Na2

    5

  • 8/12/2019 Theoretical Biophysics

    6/73

  • 8/12/2019 Theoretical Biophysics

    7/73

    Diffusion equationP t

    = D P

    We can solve this equation with a Greens function. In two dimensions we get the following

    solution:P (R, t ) =

    14Dt

    exp (R R0)2

    4DtA repetition how to solve a gaussian integral:

    dx e A2 x2 = 2A dx x2e A2 x2 = 2A 1A

    The total probability must be normalized

    dx dy P (R, t ) = 14Dt dx exp (x x0)24Dt dy exp (y y0)24Dt = 1With A = 12Dt we get

    < (R R0)2 > = 1

    4Dt

    dx (x x0)2 exp x x04Dt

    2A

    dy (y y0)2 exp y y04Dt

    2A

    + dx exp (x x0)24Dt dy exp (y y0)24Dt< (R R0)2 > =

    2A

    = 4 Dt (3)

    Now we look to the distribution of the end-to-end-distance

    R = RN R04Dt a

    2N

    P N ( R) = 1a 2N

    e( R ) 2

    a 2 N

    2.2. Three dimensions:

    7

  • 8/12/2019 Theoretical Biophysics

    8/73

    < ( R)2 > = Na2

    P N ( R) = 3

    2a 2N

    32

    e3( R ) 2

    2a 2 N

    P (R, t ) = 1

    4Dt

    32

    exp (R

    R0)2

    4Dt

    < R2 > = 6Dt (4)

    6Dt = Na2

    4Dt = 23

    Na 2

    Now we want to discuss the situation with an external force.

    Therefore we need statistical mechanics.

    3. Statistical mechanics

    3.1. Basics

    Microscopical conguration: n

    Microcopic state energy: E n

    The Micro state energy underlays a probability distribution.

    Boltzmann distribution: P n = 1Z e E n

    Partition function: Z = n e E n = 1kB T Free Energy: F =

    kB T ln Z

    Inner Energy: U = < E > = 1Z n E n e E n

    F = U T S dF = dU T dS SdT

    8

  • 8/12/2019 Theoretical Biophysics

    9/73

    The First Law of thermodynamics:

    dU = dW + TdS

    dQ

    dF = dW SdT Entropy: dW = 0: S = F T Therefore:

    S = F T

    = kB ln Z kB T

    Z T

    n

    E n e E n

    Z

    ln Z = 1Z

    S = kB ln Z

    F T + 1

    TZ n

    E n e E n

    U T TS = F + U

    This comes from information theory. The expectation value of ln P says something about

    the entropy. The idea is:

    S = kB n P n ln P nP n =

    1Z

    e E n

    S = kBn

    e E n

    Z (E n ln Z )

    S = kB ln Z + 1ZT

    n

    E n e E n = F T

    (5)

    3.2. Statistical mechanics with external force

    Steric expansion in micro condition nLn Force-Ensemble

    Partiton function:

    Z =n

    exp( (E n fL n ))

    9

  • 8/12/2019 Theoretical Biophysics

    10/73

  • 8/12/2019 Theoretical Biophysics

    11/73

    Now we look to the effective stiffness. Lets assume a linear stiffness(spring):

    F (T, < L > ) 12

    K (< L > L0)2 (10)with L0 = < L > |f =0Lets calculate spring constant from the partition function!

    F < L >

    = f = K (< L > L0)

    2F

    < L > 2 = f

    < L > = L0= K

    f < L > = L 0

    = < L >

    f f =0

    1

    = 2H f 2 f =0

    1

    2H f 2 f =0

    = 1K

    (11)

    We can use the thermodynamic potential H to calculate K.

    H =

    kB T ln Z (f )

    H f

    = 1Z n

    Ln exp( (E n fL n ))

    2H f 2

    = Z 2 n

    Ln exp( (E n fL n ))2

    Z n

    L2n exp( (E n fL n )) 2H f 2

    = (< L 2 > < L > 2) f =0=

    1K

    < L 2 > < L > 2= < (L< L > )2 > = kB T 2H f 2

    Temperature and stiffness set the scale of uctuation (Kubo-relation) For f = 0:

    < L 2 > < L > 2= kB T

    K (12)

    The Equipartition theorem:

    12

    K (< L 2 > < L > 2) = 12

    kB T (13)

    11

  • 8/12/2019 Theoretical Biophysics

    12/73

    4. Freely jointed chain with external force

    n = 1, . . . , N

    E n = 0

    L = ai

    cos i

    We write the partition function

    Z = 20 d1 . . . 20 dN exp af i cos i= 20 d eaf cos N

    I (A) = 2

    0d eA cos

    A = af

    Z = I (af )N

    H (T, f ) = kB T N ln I (af )dI dA

    = I = 20 d cos eA cos d2I dA2 = I =

    2

    0 d cos2

    eA cos

    We look at f=0 A=0: Relaxed state!I (0) = 2

    I (0) = 0

    I (0) =

    < L > = H f

    = kB TNaI I

    = 0(= L0)

    2H f 2 f =0

    = kB TN 2a2I I

    = 12

    Na 2

    kB T

    < R 2x > = < L2 > = kB T

    2H f 2

    = 12

    Na 2

    < R2 > = < R 2x > + < R2y > = N a

    2

    12

  • 8/12/2019 Theoretical Biophysics

    13/73

    So we have the following results for equipartition:

    K = 2kB T

    Na 2 (14)

    < L 2 > = kB T

    K =

    1

    2Na 2 (15)

    That is the entropic elasticity.

    4.1. Effective stiffness

    Entropic feather:

    K = 1 2 H f 2

    = 2kB T

    Na 2

    F (T, < L > ) 12K < L >

    2

    F = U

    U =0 T S

    S = F T

    = K T

    < L > 2

    dQ = T dS

    S

    kB

    Na2 < L >

    2

    Rubber elasticity: Network of entropic feathers

    T K contractionT K expansionthermical expansion coefficient is negative

    f K (< L > L0) (16)

    stretching leads to cooling!

    13

  • 8/12/2019 Theoretical Biophysics

    14/73

    B. Bead-and-Spring Model - Gaussian chain

    1. Small forces

    contour length s = aN = anM

    Rn = x

    yN = nM

    Entropic elasticity k = 2k

    BT

    na 2

    Z = d2R1 . . . d2RM exp k2kB T i (R i+1 R i)2 + i (R i+1 R i)f Z = d2 R1 . . . d2 RM exp k2 i ( R i)2 + i R if Z = dx dy exp k2 (x2 + y2) + xf M

    Again have to solve a gaussian integral:

    dx exp A2 x2 + Bx = 2A eB 22AZ = 2k eM f 22k = 2kB T k e M 2kk B T f 2H =

    M 2k

    f 2 + H 0

    1 2 H f 2

    = K = kM

    = 2kB T

    Na 2 (17)

    14

  • 8/12/2019 Theoretical Biophysics

    15/73

    1.1. Effective stiffness

    Bead-and-Spring model is only correct for small forces.

    L2 a2N 2

    L f K = Na2f

    2kB T aN af

    2kB T 1a =

    2kB T f

    f 2kB T

    a

    Blob picture

    L = M

    2 = na 2

    N = nM

    n = 2

    a2

    L = N n

    = Na2

    =

    fNa 2

    2kB T =

    f K

    2. Large forces

    f kB T

    a (18)

    af 1

    Z = 20 d eaf cos N This integral can be explicitely solved with the Bessel function:

    I nAi

    = 12i n 20 d exp[(A cos() + in )]

    15

  • 8/12/2019 Theoretical Biophysics

    16/73

    with n = 0 and A = af :

    20 d eA cos = 2 I 0(A)Z = 2I

    0

    af

    i

    N

    Sidenote about the Bessel function

    The Bessel function looks like

    I n (x) = 12i n 20 d exp[i(x cos() + n)]

    For non-integer n it is combined by the following expressions:

    J n (x) =x2

    n

    m =0

    (

    1)m

    m!(m + n + 1)x2

    2m

    J n (x) =x2

    n

    m =0

    (1)mm!(m n + 1)

    x2

    2m

    I n (x) = c1J n (x) + c2J n (x)

    with complex c1 and c2.

    For integer n J n (x) and J n (x) are not independent. So we need the Neumann function

    N n (x) = J n (x)cos n J n (x)sin nxand the Hankel functions

    H (1)n (x) = J n (x) + iN n (x)

    H (2)n (x) = J n (x) iN n (x)I n (x) = c1H (1)n (x) + c2H

    (2)n (x)

    with complex c1 anc c2.

    But we want to look for an easier way to solve the integral by using a saddle-point

    approximation.

    With the gaussian integral:

    e x2 = 16

  • 8/12/2019 Theoretical Biophysics

    17/73

    Saddle-Point-Approximation(large A, small ):

    20 d eA cos d exp A 1 22

    d exp A 1 2

    2 eA

    2A

    Z 2af

    N 2

    eaNf

    H kB T N af 12

    ln af

    2 = Naf +

    12

    kB T N ln af

    2

    < L > = H f Na

    kB TN 2f

    (19)

    3. Effect of self-avoidance

    For the gaussian chain: = 12 . That are normal uctuations in the absence of force.

    Effective Free Energy F :

    dF = d W S dT isothermal :dT =0= d W

    17

  • 8/12/2019 Theoretical Biophysics

    18/73

    System can perform work until F at minimum (d F =0)

    F = kB T ( R Na )2

    Na 2F

    R =

    2kB T

    Na2 ( R

    Na )

    2F R2

    = K = 2kB T

    Na 2

    System will progress until F R = 0

    R2 = N a2

    Add an interaction potential V int ( R)

    F ( R) = kB T ( R Na )2

    Na 2 + V int ( R)

    V int ( R) ddx (x)2We have introduced the density (x) = N ( R )d .

    F ( R) = kB T ( R Na )2

    Na 2 +

    N 2

    ( R)d

    We minimize the free energy:

    F R

    = 2kB T

    Na 2 ( R Na ) d

    N 2

    ( R)d+1 = 0

    Scaling Arguments:

    RN N

    12 N 2

    Rd+1 0 R N

    12

    N 3

    Rd+1 0 Rd+2 N

    12 Rd+1

    0 for d small

    N 3

    0 for d large

    0

    d small:

    Rd+2 N 3 R N

    3d +2

    Flory : F = 3d + 2

    18

  • 8/12/2019 Theoretical Biophysics

    19/73

    d large:

    Rd+2 N 12 Rd+1

    R N 1

    2

    Gaussian chain : = 12

    d F

    1 1 1

    2 343 35 0,588

    4 1

    212

    5 3712

    . . . . . . . . .

    C. Experiments

    Now we want to have a look of some experiments with our models Gaussian chain, Freely

    jointed chain and Bead and spring.

    Measure elasticity of DNA.

    Magnetic Tweezers, Optical Tweezers(Lasertrap)

    1. Magnetic Tweezers

    Paramagnetic beads, several mTurn on force by turning on magnetic eld and measure the length the molecule of DNA

    attains.

    19

  • 8/12/2019 Theoretical Biophysics

    20/73

  • 8/12/2019 Theoretical Biophysics

    21/73

    Measured elastcity of single-stranded DNA:

    Gaussian chain, s=100nt 30nm, a=1nt 0.3nm (N=sa =100)

    k = 2kB T

    Na 2 =

    2kB T sa

    8 pN nm30nm 0.3 nm 0.8

    pNnm

    Measured: 0.3 pNnma =

    2kB T sk

    8 pN nm2

    30nm 0.3 pN 0.8 nm 2.5ntA hinge every 2-3 bases!

    DNA is a semiexible polymer!

    D. Semiexible Polymers

    E [i] =N 1

    i=1

    k2

    i+1 i2

    L = aN

    i=1

    cos i

    Z = 20 d1 . . . 20 dn exp N 1i=1 k2(i+1 i)2 af N

    i=1

    cos i

    Continuum limit:

    E [i] =N 1

    i=1

    a ka2

    K (i+1 i)2a2

    i (s); s = iaE [(s)] = Lmax0 ds K 2 2

    = dds

    K. . .Bending rigidity

    s. . .Arc length

    R i R(s)dRds

    s = R; R2 = s2

    (dRds

    )2 = 1

    21

  • 8/12/2019 Theoretical Biophysics

    22/73

    1. Stiff/Semiexible polymers

    s. . .Arc length

    c. . .curvature

    R = t; t = cn; n = ct; t = cos

    sin ; n = sin

    cos ; c =

    Bending Energy:

    E = Lmax0 ds K 2 c2R(s) =

    s

    0ds t(s) =

    s

    0ds cos(s )

    sin (s )

    Z = D(s) exp Lmax0 ds K 2 2Z = D(s) exp Lmax0 ds K 2 2 + f cos

    Correlation function:

    D(s s ) = < t (s)t(s ) > = < cos ((s) (s )) >D(s s ) =

    1Z D(s) cos((s) (s ))exp K 2kB T Lmax0 ds 2

    We have to solve a gaussian path integral

    Gaussian path integral:

    I (B) = Ds(x) exp 12 dD x dD y s(x)K (x, y)s(y) + dD x B(x)s(x)Discreetion: x xi ; s i = s(xi); B i = a

    D

    B(xi); K kl = a2D

    K (xk , x l)

    I [B i] = i ds i exp 12 kl skK kl s l k Bksk

    22

  • 8/12/2019 Theoretical Biophysics

    23/73

    K kl . . . symmetric matrix

    eigen vectors u(i)k and eigen values (i)

    l

    K kl u(i)l =

    (i)u(i)k

    l

    u(i)l u( j )l = ij

    i

    u(l)k u(i)l = kl

    Variable transformation sk = l ukl s l; ukl = u(k)lUnitar matrix l U kl (U T )lm = S km ; det U kl = 1I [B i] =

    i

    ds i det sk

    s l 1exp

    1

    2 k (k)s 2k +

    k

    skBk

    Bk =l

    ukl B l

    I [B i] =k dsk exp 12 (k)s 2k Bksk

    ds e 2 s2 + Bs = 2 eB 22I [B i] =

    k 2

    (k)e

    B 2k2 ( k )

    12

    k

    Bk1

    (k)Bk =

    12

    lm

    B lK 1lm Bm

    I [B i] = (2)

    N 2

    det K ij exp12

    ij

    B iGij B j

    Gij

    = ( K 1)ij

    23

  • 8/12/2019 Theoretical Biophysics

    24/73

    Continuum limit: Bi = aD B(xi); K ij = a2D K (xi , x j ); Gij = G(xi , x j ); l K kl Glm = km

    dD x K (y, x)G(x, z ) = (D )(y z )aD

    l

    K (xk , x l)G(xl, xm ) = kl

    aD

    I [B] = N det K exp

    12

    P ij B i G ij B j

    dD x dD y B(x)G(x, y)B(y)

    I [B] = N det K exp

    12 dD x dD yB (x)G(x, y)B(y)

    dD x K (y, x)G(x, z ) = (D )(y z )

    det K ij =k

    (k) = expk

    ln (k) = eTr(ln K ij )

    Continuum limit: det K ij exp dk (k)I [B]I [0]

    = exp12 dD x dD y B(x)G(x, y)B(y)

    D(s1 s2) = < cos((s1) (s2)) > = < exp(i((s1) (s2))) >D(s1 s2) =

    1Z D(s) exp 12 ds K kB T 2 cos((s1) (s2))

    D(s1 s2) = 1Z D(s) exp Lmax0 ds K 2 2 + Lmax0 ds B (s)(s)

    I [B] = D(s) exp Lmax0 ds K 2 2 Lmax0 ds B (s)(s)B(s) = i (s s1) i (s s2)

    D(s1 s2) = I [B]I [0]

    24

  • 8/12/2019 Theoretical Biophysics

    25/73

    I [B] = D(s) exp 12 ds ds (s)K (s, s )(s ) + ds B (s)(s)K (s, s ) =

    K kB T

    2s (s s )

    ds K (s, s )G(s , s ) = (s s )I [B] = N det K exp 12 ds ds B(s)G(s, s )B(s )I [B]I [0]

    = exp12 ds ds B(s)G(s, s )B(s )

    G(s, s ) = G(s s ) = dq 2 G(q )exp( iq (s s ))K (s, s ) =

    dq

    2K (q ) exp(iq (s

    s ))

    G(q ) = ds G(s, 0)e iqs (s) =

    12 dq eiqs

    (q q ) = 12 ds exp(i(q q )s )

    ds

    dq 2

    K (q )exp( iq (s s ))

    K (s,s ) dq

    2G(q )exp( iq (s s ))

    G(s,s )=

    dq

    2 exp(iq (s s ))

    12 dq dq (q q )K (q )G(q )exp( i(qs q s )) = dq 2 exp(iq (s s ))

    K (q )G(q ) = 1

    K (q ) = ds K (s, 0)e iqs = ds K kB T (s)e iqs = Kq 2kB T G(q ) =

    kB T

    Kq 2

    G(s s ) = dq 2 kB T K exp(iq (s s ))q 2

    25

  • 8/12/2019 Theoretical Biophysics

    26/73

    J = 12 ds ds B(s)G(s, s )B(s )

    J = ( i)212 ds ds ( (s s1) (s s2))G(s, s )( (s s1) (s s2))

    J =

    1

    2(G(s1, s1)

    G(s1, s2)

    G(s2, s1) + G(s2, s2))

    J = 12

    kB T K dq 2 2 exp(iq (s1 s2)) exp(iq (s1 s2))q 2

    J = kB T K dq 2 1 cos

    u

    qsq 2J =

    kB T K |s| du2 1 cos(u)u2

    12J =

    kB T 2K |s|

    < t (s1)t(s2) > = I [B]I [0]

    = e J = exp kB T 2K |s1 s2|

    With persistence length = 2K kB T and K = 12 kB T ([K] = energy * length):

    < t (s1)t(s2) > = e |s1 s2 |

    Explicit values are:

    DNA: 50nmActin: 16 mMicrotubuley: 2 mm

    Now we calculate the end-to-end-distance: R = R(s) R(0) = s

    0 ds t(s )

    26

  • 8/12/2019 Theoretical Biophysics

    27/73

    < R2 > = s0 ds s0 ds < t (s )t(s ) >=

    s

    0ds

    s

    0ds exp |

    s s |

    = 2 s

    0ds

    s

    0ds exp

    s s

    = 2 s0 ds exp s s s0= 2 s0 ds (1 e s )

    < R2 > = 2|s|+ 2 2(e |s | 1) (20)

    |s

    |:

    < R2 > 2|s| a2N N =

    sa 2a = a

    22 = a

    |s| :< R2 > |s|2 + O

    s3

    < R2 >

    2

    |s

    |+ 2 2 1

    |s|

    + |s3|

    33 + . . .

    1

    = 12 |s| 21|s|+ |s|2 13|s|3

    + . . . |s|2 O |s|3

    2. Effective stiffness

    F (T, < L > ) 12

    K (L L0)2L0 = < L >

    |f =0

    K = 2H f 2 f =0

    1

    2H f 2

    = (< L 2 > < L > 2)

    27

  • 8/12/2019 Theoretical Biophysics

    28/73

    small forces, freely jointed boundaries:

    1K

    = 2

    < R2 >

    K = kB T

    < R2

    > =

    kB T

    2|s|+ 2 2(e |s |

    1)(21)

    compare with K f jc = 2kB T Na 2

    28

  • 8/12/2019 Theoretical Biophysics

    29/73

    II. BIOMEMBRANES

    Amphiphile moleculespolar head (hydrophilic)

    chain (hydrophobic)

    spontaneous formation of micelles beyond a critical concentration

    spherical

    cylindrical

    Lipidspolar head

    two chains

    formation of micelles is sterically hindered

    spontaneous formation of a bilayer instead membrane

    Hydrophobic chains are in contact to water at

    boundary: Energetic cost!

    E = l

    with the line tension and the length of

    boundary lFormation of closed structures: Vesicles

    29

  • 8/12/2019 Theoretical Biophysics

    30/73

    Holes close spontanously

    E = 2r

    Therefore: Lipid membranes are extremely stable!

    Biological membranes

    Lipid bilayer + proteins More than 200 types of lipidsBilayer is attached to the cytoskeletonAway from thermal equilibrium

    Physical properties: morphology, mechanical properties, thermal uctuations

    Fluid membranes

    Relative position of lipids is not xed

    Rapid Diffusion (D 1 10 m2

    s )

    Number of molecules is constant

    surface is constant

    Incompressible surface, no shear stress within bilayer ( water)Bending of the plane surface costs energy

    Only important degree of freedom is the geometry (or shape) of surface Theory of uc-tuating geometries

    Physics is invariant with respect to the choice of parametrisation of the surface

    A. Differential geometry (geometry of surfaces)

    1. Curves in R 2

    t: tangent vector

    n: normal vector

    R(s); s: arc length

    30

  • 8/12/2019 Theoretical Biophysics

    31/73

    Measure a distance:

    ( R)2 = ( R(s2) R(s1))2 dRds

    s2

    = t2( s)2

    s is an arc length if t2 = 1

    R2 = s2; t = R; t2 = R2

    = 1

    t = cnn = ct

    c: curvature

    t n = cn20 c; c = t n = R

    2nd derivative

    n

    Circle:

    x = R cos sRy = R sin sR

    t = R = sin sR

    cos sR; t2 = 1: parametrization is correct

    t = R = 1R

    c

    cos sRsin sR

    n

    2. Surfaces in R 3

    ui : parametrization (compare to arc length s)

    Problem: There is no arc length parametrization for a surface!

    31

  • 8/12/2019 Theoretical Biophysics

    32/73

    innitesimal displacement d ui

    dR = Ru i

    dui = eidui

    dui as contravariant vectors, i covariant

    tangent vector (not normalized)

    ei = Ru i

    = iR

    distance on a surface

    ds2 = (d R)2 = ei e j duidu jgij = ei e j

    Metric tensor

    We can now measure arc length using the metric tensor!

    Local reference system ei = iR; e1 and e2; that is non-orthogonal

    a = a ieinotation will become clear

    later...Some things depend on parametrization chosen, some things do not.

    Physics (e.g. Energy, curvature) cannot depend on the parametrization.

    What are the parametrization-independent objects in this formalism?

    3. Curvature of a surface

    Tangent plane e1e2Normal vector n

    How does the normal vector/tangent plane change with a displacement d ui?

    32

  • 8/12/2019 Theoretical Biophysics

    33/73

    in = C ji e j (22)

    ie j = D ij n + kij ek (23)lives in tangent plane

    lives everywhere

    Note C ji and D ij describe a curvature

    C ki gkj = D ij related to the tensor of curvature

    Christoffel-symbol (23): kij = ek ( ie j ) igki Divergence of a vectorRelationship between C ji and D ij

    n ei = 0 i(n e j ) = ( in) e j + ( ie j ) n = 0(22) : ( in) e j = C ki ek e j = C ki gkj

    (23) : ( ie j ) n = D ij n2 + kij ek n = D ij

    C ki gkj = D ij

    C ki is the tensor of curvature

    D ij = ( ie j ) ne j = j R

    D ij =

    n

    i j R (24)

    curvature: 2 nd derivative!

    How can we extract the curvature from C ji and D ij ?

    Information is there: Geometry of the surface is locally characterized by C ji (and gij to

    dene a metric).

    4. Formalism of vectors and tensors

    eis are not normalized and not orthogonal

    Introduce a conjugate base e j

    33

  • 8/12/2019 Theoretical Biophysics

    34/73

    ei e j = i jTwo coordinate systems: a = ai

    contravariantei =

    a i

    covariant

    ei

    Coordinate transformation:

    a i = a ei = a j e j ei = a j ji = aia i = a ei = a j e j ei = a j i j = a i

    but also

    a i = a ei = a j e j ei = a j g jiThe metric tensor transforms coordinates from contra- to covariant bases!

    a i = a j g ji ; a j = aigij ; gij = ( gij ) 1

    Scalar product:

    a b = aib j ei e j = aib j gij = aib j ei e j = aib j ji = aibiParametrization-independent objects

    Scalar: a b = aibiVector: a = aiei = a iei

    Tensor: a = aij

    (eie j ) = a

    i j (eie

    j

    )Example: T a = T i j (eie j ) a = T i j (eie j akek) = T i j a j ei is a vector

    5. Tensor of curvature

    C ji = n gkj

    symmetric

    i k

    symmetric

    R

    C ji is symmetric and can be diagonalized

    2 Eigenvalues c1 and c2

    2 orthogonal Eigenvectors

    independent of parametrizationTwo scalars of curvature

    (i) Mean curvature H = 12 T r(C ji ) =

    12 (c1 + c2)

    34

  • 8/12/2019 Theoretical Biophysics

    35/73

    (ii) Gaussian curvature K = det( C ji ) = c1c2

    c1 and c2 the principal curvatures. The corresponding two axes of principal curvature are

    orthogonal.

    C ii = 2 H ; C ji C i j = (2 H )2

    2K

    c1 > 0

    c2 > 0

    H > 0

    K > 0

    c1 < 0

    c2 < 0

    H < 0

    K > 0

    c1 > 0

    c2 < 0

    K < 0

    saddle point

    6. Additional surface elements that are independent of parametrization:

    Normal vector n

    n = e e2| e1 e2 | ; n2 = 1

    Surface element d A

    ndA = ( 1Rdu1) ( 2Rdu2) = ( 1R 2R)du1du2 = ( e1 e2)du1du2

    (ndA)2 = d A2 = ( e1

    e2)2(du1du2)2 = ( g11g22

    g12g21)

    [(e1 e2 )2 = e21 e22 (e1 e2 )2 ](du1du2)2

    (ndA)2 = d A2 = det gij (du1du2)2

    g = det gij

    dA = gdu1du2 independent of parametrization!A = gdu1du2

    35

  • 8/12/2019 Theoretical Biophysics

    36/73

    B. Bending energy of a uid membrane

    1. Expand bending energy

    E = dA f (C ji (R))where C ji is the tensor of curvature and f (C

    ji ) is a scalar, which is independent of the

    parametrization. We now develop f to second order terms:

    f a0 + a1C kk + a2(C kk )2 + a3C ki C ik + O (C ji )3

    So we now have 4 parameters and 2 scalars of curvature H and K :

    C kk = 2H

    C ki C ik = (2 H )

    2 2K With a0 = + 2 (c0)

    2, a1 = c0, a2 = + 2 and a3 = 2 , f is typically written as:f = +

    2

    (2H c0)2 + K 2 Scalars of curvature:

    H = 12 C kk mean curvature

    K = det C ji gaussian curvature

    4 Parameters:

    bending rigidity

    gaussian rigidity

    surface tension

    c0 spontaneous curvature

    With that the bending energy looks like

    E = A

    constant+ dA 2(2H c0)2 + K discuss nextThe rst term A is constant, when A is constant. We are now going to discuss the last

    term, which leads us to the Theorem of Gauss-Bonnet.

    36

  • 8/12/2019 Theoretical Biophysics

    37/73

    2. Theorem of Gauss-Bonnet

    A

    dA K = 4 n (25)

    The integrated surface must be closed. n = 1g, whereg is the topological genus (or the number of holes) of

    the surface.

    Gauss interpreted it in the following way: As above d A is:

    dA n = ( 1R 2R)du1du2dA = g du1du2

    g = det ( iR j R) = det gijNow lets look at the surface created by n(u1, u2). If the surface you integrate over is closed,

    the surface created by all vectors n(u1, u2) is a sphere with radius 1. In anology to d A we

    determine the surface element of this unit sphere d As2 :

    dAs2 n s2 = ( 1n 2n)du1

    du2

    dAs2 = k du1du2k = det ( in j n)

    One can see that

    A

    dAs2 n = 4n (26)

    37

  • 8/12/2019 Theoretical Biophysics

    38/73

    Be aware that n is the normal vector and n is the one from equation (25). We now determine

    k:

    in j n = C ki ek C l j el = C ki gkl C l jk = det ( C ki gkl C l j ) = K 2 g

    We used equations (22) and (23). So now:

    4n = A

    dAs2 n = A

    k du1du2 = A

    g du1du2 dAK =

    A

    dA K

    A closed integral of gaussian curvature is topological invariant.

    38

  • 8/12/2019 Theoretical Biophysics

    39/73

    Making equation (26) plausible

    Lets look at a torus as an example. There exist two parallel normal vectors n and n for

    each direction of n. So the surfaces created by n are two spheres with radius 1.

    But it is not clear if d As2 is parallel

    or antiparallel to n. We will check

    this for the two normal vectors n and

    n and the parametrization shown in

    the gure on the left.

    dAs2 = ( 1n 2n)du1du

    2

    nu 1

    du1 = n(u1 + d u1, u2) n(u1, u2)

    We have two different situations for n and n :

    n and n s2 parallel n and ns2 antiparallel

    So one sphere gives a surface area of 4 whereas the other gives 4:

    dAs2 n = 4 4 = 0

    39

  • 8/12/2019 Theoretical Biophysics

    40/73

    3. Biological implications

    E = A

    constant

    +

    A

    dA2

    (2H c0)2 +

    A

    dA K

    constantIn a typical biological reaction, the number of holes in a given closed membrane does notchange and A dA K is constant. Exceptions are the budding or fusion of vesicles, wherethis term needs to be considered. Furthermore we assume A to be constant, so the rst termis constant, too.

    E = A

    dA2

    (2H c0)2

    For asymmetric bilayers c0 = 0:

    solvent asymmetric composition asymmetric

    In all other cases c0 = 0

    E = A dA 2 (2H )2we conclude that the bending energy E only depends on a single parameter .

    C. Monge-representation

    Now lets choose a paramatrization!

    40

  • 8/12/2019 Theoretical Biophysics

    41/73

    z = h(x, y); u1 = x; u2 = y; R =

    x

    y

    h(x, y)

    The base vectors therefore are:

    ei = iR

    ex =

    1

    0

    xh

    ; ey =

    0

    1

    yh

    The normal vector is:

    n = e1 e2|e1 e2| = 1 1 + (h)2

    x h

    yh1

    Where:

    h x h

    yh; (h)

    2 = ( x h)2 + ( yh)2

    The metric tensor is:

    gij = ei e jgij =

    1 + ( x h)2 ( xh)( yh)

    ( xh)( yh) 1 + ( yh)2 = ij + ( ih)( j h)

    Also

    g = det gij = 1 + ( x h)2 1 + ( yh)2 ( x h)2( yh)2= 1 + ( x h)2 + ( yh)2 = 1 + (h)

    2

    The conjugate metric tensor gij can be written as follows:

    gij = ( gij ) 1 = 1g

    1 + ( yh)2 ( x h)( yh)( x h)( yh) 1 + ( x h)2

    = ij ( ih)( j h)1 + (h)

    2

    Where we used:a b

    b c

    1

    = 1

    deta b

    b c

    c bb a

    41

  • 8/12/2019 Theoretical Biophysics

    42/73

    We now calculate the conjugate base vectors:

    e j = gij ei ex = g11ex + g

    12ey = 1g

    1 + ( yh)21

    0

    x h

    1g

    ( xh)( yh)

    0

    1

    yh

    ex =

    1g

    1 + ( yh)2

    ( x h)( yh)

    x h

    ey = g21ex + g22ey = 1g

    ( xh)( yh)1 + ( x h)2

    yh

    Now we proove that ei e j = i jex ey =

    1g

    (( x h)( yh) + ( xh)( yh)) = 0ex ex =

    1g

    (1 + ( yh)2 + ( x h)2)

    1+( h)2 = g= 1

    1. Tensor of curvature in Monge-representation

    With equation (24):

    C ij = n i j R = 1

    g x h yh

    1

    0

    0

    i j h

    = i j h g

    C ji = C ik gkj =

    i kh g kj

    ( kh)( j h)g

    = i j h g +

    1g

    32

    k

    ( i kh)( kh)( j h)

    Bending Energy

    E = d2x 2(2H )2 2H = Tr(C ji)We now assume weak uctuations: ( h)

    2 1.

    g = 1 + O (h)2 2H = h 1 + O (h)2= 2x +

    2y

    42

  • 8/12/2019 Theoretical Biophysics

    43/73

    E = dx dy 2 ( h)2Partition function of a symmetric bilayer:

    Z = DRVol( g) exp 2 dA (2H )2DR(u1, u2) Sum over all surfaces and parametrizations of each surfaceVol(g) Measure of all parametrizations of a surface conrmation, volume of

    the group of reparametrizations

    Z is invariant with respect to the

    parametrization!

    In Monge-representation it is:

    Z = Dh exp 2 d2x ( h)2

    43

  • 8/12/2019 Theoretical Biophysics

    44/73

    Sidenote about partial integration

    b

    a

    u v dx = b

    a

    v u dx + [uv]ba

    1st note:

    dx 2

    ( 2x h)

    u( 2x h)

    v=

    dx 2

    ( 3x h)

    v( x h)

    u+ ( xh)

    u( 2x h)

    v

    =

    dx 2

    h( 4x h) + ( x h)( 2x h) h 3x h

    0, if h( )=0=

    dx

    2h( 4x h)

    2nd note:

    d2y 1kB T ( y y + m) (x y) h(y) 4xP .I.= 1kB T ( x x + m)h(x) dx (x)f (x) = dx f (x) (x) = f (0)

    D. Persistence length of a membrane

    Compare to the persistence length of a polymer = 2K kB T calculated from the correlation

    function < t (s1)t(s2) > .

    To be able to calculate this quantity, we will place the membrane between two surfaces

    and later move the surfaces apart from each other.

    eliminates translation in h-

    direction

    Introduce a repulsive potential V(h):

    44

  • 8/12/2019 Theoretical Biophysics

    45/73

    V tot = V (h + d) + V (d h)

    12

    mh 2 + const. m = 2

    2

    h 2V (h)

    h= d

    E = d2x

    2( h)2 + m

    2 h2

    2xP .I.= d2x h 2 + m2 hThis is valid for periodic boundary conditions.

    1. Partition function

    Z (B) = Dh exp d2x 12h Kh + BhB(x) is an external force density. Periodic boundary conditions:

    K = kB T

    + mkB T

    With:

    K (x, y) = kB T

    y y + mkB T

    (x y)One can write K as:

    Kh = d2y K (x, y)h(y)Therefore:

    Z (B) = Dh exp d2x d2y h(x)K (x, y)h(y) d2x B(x)h(x)45

  • 8/12/2019 Theoretical Biophysics

    46/73

    Reminder: Gaussian Path Integral (discrete case):

    Z (B1, , Bn ) =n

    i=1 dh i exp 12h iK ij h j B j h j=

    2

    N

    det K ij exp 12BiGij B j

    Gij = ( K 1)ij

    Free Energy:

    H (B1, , Bn ) = kB T ln Z =

    kB T 2

    ln (det K ij ) kB T

    2 BiGij B j + const

    Mean height (compare with Freely jointed chain: < L > = H F ):< h i > =

    H B i

    = kB T

    2 Gij B j

    = 0, if B = 0

    Correlation function:

    < h ih j > = 1kB T

    2H B iB j

    = Gij

    Gij determines the correlations.H B i is a functional derivative in the continuum case.

    46

  • 8/12/2019 Theoretical Biophysics

    47/73

    Functional Derivative Example: Minimize the bending energy of a surface

    E [h(x)] = d2x 2 ( x h(x))2E h(x) + h(x)

    E [h(x)] + E

    E = d2x E h(x) h(x)Discrete:

    E =i

    E h i

    h i

    E [h(x) + h(x)] = d2x 2 [ x {h(x) + h(x)}]2= d

    2x

    2( x h(x))

    2

    E [h(x)]+ d

    2x [ x h(x)] [ x h(x)] E E = d2x [ x h(x)] [ x h(x)]

    2xP .I.= d2x ( x x h(x)) Eh ( x ) h(x)

    E h(x)

    = x x h(x)

    For the surface with the minimal bending energy:

    E h(x)

    = 0

    2. Continuum limit

    < h (x) > = H B(x) B =0

    = kB T 2 d2y G(x, y)B(y) B =0 = 0

    < h (x)h(y) > = (2) H

    B(x)B(y) B =0= G(x y)

    Determine the propagator G = K 1

    kB T

    x x + mkB T

    G(x y) = (x y)

    47

  • 8/12/2019 Theoretical Biophysics

    48/73

    Fourier space:

    G(x) = 1(2)2 d2q G(q )e iqx

    (x) = 1

    (2)2 d2q e iqx

    kB T

    q 4 + mkB T

    G(q ) = 1

    G(x) = kB T (2)2 d2q e iqxq 4 + m

    If m = 0, G diverges for q 0. This is why we placed the membrane between two surfaces!

    3. Correlation functions

    < h (x)h(0) > = G(x) = kB T (2)2 d2q e iqxq 4 + m

    < h(x) h(0)2 > = C (x) = < h (x)2 + h(0)2 > 2 < h (x)h(0) >

    = < h (x)h(x) > + < h (0)h(0) > 2G(x)C (x) = 2 G(0) 2G(x)

    What does C (x) look like?

    So now lets calculate C (x). Therefore we introduce the lenth scale :

    = m

    14

    48

  • 8/12/2019 Theoretical Biophysics

    49/73

    G(x) = kB T

    1

    (2)2 d2q e iqxq 4 + 4G(x) =

    kB T

    1(2)2

    0

    dq q 2

    0

    d e iqx cos

    q 4 + 4

    = kB T

    1

    2

    0

    dq qJ 0(qx)q 4 + 4

    = kB T 2

    2kei

    x

    J o(y) is a Bessel-function, kei(y) is the Thompson-function. There are approximations for

    the Thompson-function:

    kei (x) 4

    + 4

    (a + bln x)x2 x 0kei(y)

    1y

    12

    e y 2 sin

    y 2 y

    < h (x)2 > = kB T

    8 2

    C (x) = 2 G(0) 2G(x)= < h(x) h(0)

    2 > = kB T 22 d2q 1e iqxq 4 + 4

    C (x) = kB T

    4a + bln

    x

    x2 x

    C (x) = kB T

    4 2 x

    49

  • 8/12/2019 Theoretical Biophysics

    50/73

    C (x)L2

    x

    L

    L kB T

    12

    L3

    4. Periodic boundary conditions

    Finite system size:

    q min = 2L

    q max = 2

    a

    a: microscopic length, thickness of the membrane, size of molecules. a4nm.

    Because undulations on lengths smaller than the size of the microscopic constituent are

    unphysical, we integrate from q min to q max .

    G(x) = k

    BT

    (2)2 Q d2q

    e iqx

    q 4

    < h 2 > = G(0) = kB T (2)2 qmaxqmin dq q 1q 4 = kB T 2 12q 2

    2a

    2L

    = 1(2)3

    kB T

    (L2 a2)

    50

  • 8/12/2019 Theoretical Biophysics

    51/73

    5. Persistence length of a membrane

    < t (s1)t(s2) > = e |s 1 s 2 | p

    p: units of length.

    At which length do normal vectors de-correlate?

    < (h)2 > 1 ?

    Under what conditions is < (h)2 > 1, if we change the system size? This will give us

    some kind of persistence length!

    < h(x)h(y) > = xy < h (x)h(y) >

    = 2x G(x y)=

    kB T (2)2 Q d2q q 2e iq(x y)q 4

    < h(x)2 > =

    kB T (2)2 Q d2q 1q 2

    = kB T 2 qmaxqmin dq 1q

    = kB T 2

    ln La

    We need the mircroscopic cut-off! Gradient grows with larger system size L and will become

    larger than one at some size. Persistence length is estimated as L = p, where < (h)2 > = 1.

    p ae2

    k B T

    kB T 10 for typical lipids, a4nm p ae60 = 4 1017m astronomical number!

    Persistence length of membranes is nite but very, very large: Membranes are at.

    51

  • 8/12/2019 Theoretical Biophysics

    52/73

    But: Do not take thermodynamic limit (do not make system size innite as people

    typically do in the statistical thermodynamic limit), because the membrane will fold!

    E. Stretching elasticity of a membrane

    : isotropic tension

    dA = g dx dyg = 1 + (h)

    2

    A = d2x 1 + (h)2 A0 + 12 d2x (h)2A0 = L2: projected area.

    Remember polymers:

    Z (f ) = DR exp ds 2c2 + Lf H (f ) = kB T ln Z (f )

    < L > = H f

    Legendre transformation:

    F (< L > ) = H + < L > f

    f = F

    < L >

    = f

    < L > =

    2F < L > 2

    = 2H f 2

    1

    52

  • 8/12/2019 Theoretical Biophysics

    53/73

    Do the same for membranes!

    E = d2x 2( h)2 A0 A0 = A const 12 d2x (h)2

    =

    d2x

    2( h)2 +

    2(

    h)2

    A

    Z ( ) = Dh exp d2x 2 ( h)2 + 2(h)2 + AH ( ) = kB T ln Z ( )

    H

    = kB T

    Z Z

    = A + < d2x 12(h)2 >

    d2x

    A 0< 12 ( h)

    2 >

    = < A 0 > average of the projected area

    F (< A 0 > ) = H + Z < A 0 >F

    < A 0 > =

    Stretch molecules:

    = < A 0 > Z

    < A 0 > (units of energy / surface area)

    = < A 0 > 2F

    < A 0 > 2 =

    < A 0 > 2 H 2

    < A 0 > = A

    1

    2

    A = < A 0 > 1 + 12

    < (h)2 >

    < A 0 > A 1 12

    < (h)2 >

    Total area A is larger then the projected are < A 0 > .

    < (h)2 > =

    kB T (2)2 d2q q 2q 4 + q 2 = kB T (2)2 qmaxqmin dq q 1q 2 +

    53

  • 8/12/2019 Theoretical Biophysics

    54/73

    q min = 2L

    q max = 2

    a

    < A 0 > = A 1 kB T 8

    ln 4

    2

    a 2 +

    4 2L 2 +

    : Energy

    area : Energy

    L2

    : Energy

    area

    < A 0 >Z =0

    = A 1 kB T 4

    ln La

    For L 2 a 2 :

    < A 0 > A 1 kB T 8

    ln 4

    2

    a 2 +

    4 2L 2 +

    = A 1 + kB T 8

    ln a2

    4 2

    Grows logarithmically with !

    54

  • 8/12/2019 Theoretical Biophysics

    55/73

    A0 dlP V = A0

    V 4R 2 R A 8R R

    = RP

    2

    Measure A0 and and plot ln vs. < A 0 > . This should be a line with slope kB T 8 determined!

    1 = 1

    < A 0 >

    < A 0 >

    =0=

    kB T

    2 qmax

    qmin

    d2q 1

    (2)2

    q 4

    (q 4

    )2

    = 323 2

    kB T 1

    L2 a2Stiffness at = 0: diverges when L = a, because there are no uctuations then.

    55

  • 8/12/2019 Theoretical Biophysics

    56/73

    III. DYNAMICS OF BIOLOGICAL MOLECULES

    Time-dependent stochastic processes.

    Diffusion: Ficks second law:

    t P = D P With:

    =

    2

    R 2

    P = P (R, t )

    Solution for 2 dimensions:

    P (R, t ) = 14Dt exp

    (R

    R

    0)2

    4Dt

    Compare to gaussian polymer (freely jointed chain):

    P (R, N ) = 1a 2N

    exp (R R0)2

    a2N

    Random path of a diffusing particle:

    a = v0 t; N = t t

    4Dt a2

    N

    RN = R0 + aN

    i=1

    cosi

    sini

    R(t i + t) = R(t i) + v0cosi

    sini

    i t

    i = random angle, i = random velocity.

    < i > = v0 20 di2 cosisini = 0< i k > =

    v2022 20 di 20 dk (cosi cos k + sin i sin k)

    = v20 ik

    56

  • 8/12/2019 Theoretical Biophysics

    57/73

    Continuum-limit: stochastic differential equation. t 0, D = const .dRdt

    = (t) for Diffusion

    What are the stochastic properties of (t)?

    < (R R0)2 > = N a2 = t t

    v20 t 2 = 4 Dt

    D = 14

    v20 t v20 =

    4D t

    a2 = v20 t2 = 4 D t

    < (t i) (tk) > = 4 D ik t

    Continuum-limit:

    < (t) (t ) > = 4 D (t t )dRdt

    = (t)

    < (t) > = 0

    < (t) (t ) > = 4D (t

    t )

    Vector components in any dimension:

    < (t) (t ) > = 2 D (t t )Diffusion in a potential energy landscape:

    W (R); =

    : Mobility, : Random force

    dRdt

    = W R

    + < (t) (t ) > = 2D (t t )dRdt

    = W R

    Drift+

    Diffusion< (t) (t ) > = 2

    D2

    (t t )

    57

  • 8/12/2019 Theoretical Biophysics

    58/73

    Back to probability P (R, t ):

    t P + R

    J = 0

    J =

    D

    P

    Diffusion

    RW P

    DriftWith that you get the Smoluchowsky-Equation: t P = D P

    Diffusion+

    R

    R

    W P

    DriftStationary State: t P = 0 R J = 0Steady state: J = 0

    P (R) = N e

    W ( R )D

    Compare to the Boltzmann-Distribution:

    P (R) = N e W (R ) =

    1kB T

    = D

    This gives the Einstein-Relation :

    D = kB T

    Equation of Diffusion:

    t P = D P

    Stochastic differential equation:

    t R = (t) < (t) > = 0

    < (t) (t ) > = 2 D (t t )

    Stochastic motion in a potential energy landscape, with random force (Langevin-Equation):

    t R = W + (t) < (t) (t ) > = 2kB T

    (t t )

    Smoluchowsky-equation describes diffusion in a potential energy landscape:

    t P = D P + (P W )

    58

  • 8/12/2019 Theoretical Biophysics

    59/73

    Einstein-relation:

    D = kB T

    External force:

    W (x) = V (x) f ext xHarmonic Oscillator with force:

    W (x) = 12

    kx2 f ext x

    A. One-dimensional harmonic oscillator with uctuations

    m 2t x + 1 t x + kx = + f ext < (t)(t ) > = 2kB T 1 (t t )

    Correlation function

    < x (t)x(t ) > = C (t t )

    1. Linear response function

    The response-function (t) is convoluted with the external force to give < x (t) > .

    < x (t) > = t dt (t t )f ext (t ) + O(f 2ext ) t dt (t t )f ext (t )= dt (t t )f ext (t )

    Where (t) = (t)(t).

    Fourier-representation of (t) and f ext (t):

    (t) = 12 d ()e it

    f ext (t) = 12 d f ()e it

    59

  • 8/12/2019 Theoretical Biophysics

    60/73

    With that < x (t) > is:

    < x (t) > = dt d2 d2 ()e i(t t ) f ( )e i t=

    d

    2 d () f ( )e it

    dt

    2 e( )t

    ( )= d2 () f () =x()e it

    < x (t) > = d x()e it x() = () f ()We look at the mean response < x (t) > , which should be independent of uctuations, = 0.

    With that and the fourier-representation of < x (t) > the equation of motion for < x (t) >

    looks like:

    d2 m2 i 1 + k () f ()e it = d2 f ()e it () =

    1

    m2 i 1 + k () =

    1m( 1)( 2)

    Solve:2 +

    im

    km

    = 0

    Solution:

    1/ 2 = i2m

    12 4 km 1(m)2

    With:

    = 12 4 km 1(m)2

    = 12m

    One can write the solutions as:

    1 = i2 = i

    60

  • 8/12/2019 Theoretical Biophysics

    61/73

    (t) = d

    2 ()e it

    t < 0 : (t) = 0

    t > 0 : (t) = (t) = d2 ()e itRemember that (t) = (t)( t).

    61

  • 8/12/2019 Theoretical Biophysics

    62/73

    Note about Residuals:

    dx f (x) = 2 i Res[f (x); a]a single pole:

    Res[f (x); a] = limxa(x a)f (x)a multiple pole, order m:

    Res[f (x); a] = 1

    (m 1)! limxa

    dm 1

    dxm 1(x a)m f (x)

    Only the rst term of a Laurent expansion survives, i.e. expand f (x) around x = a to order1x .

    Explanation: Lets look at the pole 1zn :

    dz 1zn

    z = ei

    dz = ieid

    dz 1z n = 20 d ieie in = 20 d ie i(n 1)

    This integral is always zero, except for n = 1:

    if n = 1 : dz 1z n = i 12

    0= 2 i

    t > 0 : (t) = + i 1

    m(1 2)e 1 t +

    1m(2 1)

    e 2 t

    Note the sign change because of clockwise integration instead of counter clockwise (mathe-

    matically positive).

    (t) = i 1

    2m e

    1t

    + 12m e

    i2

    t

    = i2m

    e t i t e t+ i t

    Note: ex+ iy = ex(cos y + i sin y)

    (t) = i2m

    e t [cos( t) + i sin( t) cos( t) i sin( t)]

    62

  • 8/12/2019 Theoretical Biophysics

    63/73

    (t) = 1m

    sin( t)e t for t > 0

    (t) = 1m

    sin( t)e t (t) t

    (t) = (t) + i (t)

    (t) real (t) imaginaryIn principal there are two ways to write (t):

    1)

    (t) = (t)antisymmetric, imaginary

    (t) = (t)symmetric, real

    2)

    (t) = (t)symmetric, imaginary

    63

  • 8/12/2019 Theoretical Biophysics

    64/73

    (t) = (t)antisymmetric, real

    We now check if both ways are possible:

    () = dt (t)eit ; (t) real() = dt (t)e it = () () complex

    If (t) = (t) () = () : () realIf (t) = (t) () = () : () imaginary

    We know: () = 1 m 2 i + k has real and imaginary part.

    We still dont know which one is symmetric and which one is antisymmetric.

    could it be that (t) is symmetric and (t) is antisymmetric?

    Lets do the inverse transform:

    () = ()

    real: (t )= ( t )+ i ()

    imaginary: (t)= (t )For (t) = (t) + i (t) to be real, (t) needs to be imaginary!

    (t) symmetric, (t) antisymmetric.

    Given a particular response function, causality

    invokes a specic dissipation function ().

    64

  • 8/12/2019 Theoretical Biophysics

    65/73

    2. Correlation function

    f ext = 0

    C ( ) = < x (t)x(t + ) >

    C ( ) = d2 C ()e i C ( ) = C ( ) real

    C () = C () = C () real and symmetric

    More precisely:

    C ( ) 12T

    T

    T dt x(t)x(t + )

    = 12T T T dt d2 d2 x()x( )e it i (t+ )

    = 12T T T dt d2 d2 x()x( )e it (+ ) i lim

    T

    12T T T dt e it (+ ) = 2 ( + )

    C ( ) = d2 C ()e i With C () = < x()x() > . Now:

    x() = ()( + f ext ) f ext = 0

    x() = ()()

    Therefore:

    C () = < x()x() >= < ()() ()() > () = ()= < ()() > ()()= < ()() > | ()|2 < ()() > = 2

    kB T

    = 2kB T

    1

    |k m2 i |2

    65

  • 8/12/2019 Theoretical Biophysics

    66/73

    We now calculate ():

    () = 12i

    [ () ()]=

    1

    2i

    1

    k m2 i

    1

    k m2 + i

    =

    1

    |k m2 i |2This leads to the:

    3. Fluctuation-dissipation-theorem

    C () = 2kB T ()

    Relationship between the complex part of the linear response function (the dissipation func-

    tion) and the correlation function!

    (t) = (t)kB T

    dC (t)dt

    B. Stochastic motion in periodic potentials

    One-dimensional:

    W (x + a) = W (x)

    Smoluchowsky-Equation:

    t P + x J = 0

    J = 1

    x P + ( x W f ext )P P denotes the probability density for the particle to be at position x at time t; P (x, t )

    = (W f ext x)J 1 = x P P x

    66

  • 8/12/2019 Theoretical Biophysics

    67/73

    Periodic system:

    P (0) = P (a)

    a

    0dx P = 1

    Nonequilibrium steady state (stationary state):

    J = const. t P = 0

    P (x) = N e ( x) J

    e ( x) x0 dy e( y)

    a0 dx P = 1 1 = N ao dx e ( x) J a0 dx e ( x) x0 dy e( y)N =

    1 + J a0 dx e ( x) x0 dy e( y)

    ao dx e ( x)

    1. Periodic boundary conditions

    P (0) = P (a)

    Ne (0) = Ne ( a) J

    e ( a) a0 dy e( y)

    = ( a)

    (0) =

    f ext

    a

    N (e 1) = J

    a

    0dy e( y)

    Solve for J:

    (e 1) 1 + J

    a0 dx e ( x) x0 dy e( y) = J a0 dy e( y) a0 dx e ( x)(1 e ) =

    J a0 dx e( x) x0 dy e( y)e x0 dy e( y) + a0 dy e( y)

    I (x)

    I (x) = x+ a

    ady e

    x

    0dy e +

    a

    0dy e =

    x+ a

    0dy e

    x

    0dy e =

    x+ a

    xdy e

    J =

    1 e

    a0 dx e ( x) x+ ax dy e( y)v(x) = J P (x)

    < v > = a J

    67

  • 8/12/2019 Theoretical Biophysics

    68/73

    2. Kramers rules

    < v > = v = akB T

    a

    0 dx e ( x)

    x+ a

    x dy e( y)

    (1 e )

    Denition:

    r = kB T

    a0 dx e ( x) x+ ax dy e( y)r + = r

    r = re f ext ak B T

    v = ar (1 ef ext ak B T )

    v = a(r + r )

    E (x) = W (x) f ext x; = E Saddle point approximation:

    x+ ax dy e+ E (y) e+ E B dx e 2 |E B | (x xB )2 = 2 |W B

    |

    eE B

    W B = E B . This integral is over one period and does not depend on x in this approximation!

    a0 dx e E (x) e E A dx e 2 E A (x xA )2 = 2W A e E AW A = E A . Stationary rate:

    68

  • 8/12/2019 Theoretical Biophysics

    69/73

    r 2

    W A |W B |12

    e E (f ext )

    E = E B E A

    r depends on second derivatives at minimum/maximum and on E (f ext )!

    3. Transition state picture

    Expand E (f ext ) to rst order in f ext :

    E (f ext ) E 0 af ext + O(f 2

    ext ) E 0 = W f ext =0

    0 1

    v0 = ar 0e W 0k B T

    Where we dened r 0:

    r0 = 2 (W A |W B |)

    12

    = 0 : v = v0 1 e f ext ak B T

    = 12

    : v = v0 ef ext a2k B T e

    f ext a2k B T

    = 1 : v = v0 ef ext ak B T 1

    Motion in a continuous free energy landscape discrete hopping modelSystem spends most of the time at minima and moves to adjacent minima according to

    Kramers Rules. This is not only true for periodic energy landscapes.

    69

  • 8/12/2019 Theoretical Biophysics

    70/73

    4. Detailed balance

    At equilibrium:

    P N = N e W N k B T

    or:

    P ArAB = P B r BA

    Therefore:r ABr BA

    = eW A W B

    k B T

    Periodic potential:

    v = a(r + r ) r+

    r = e

    f ext ak B T

    5. Effective diffusion

    70

  • 8/12/2019 Theoretical Biophysics

    71/73

    t P n = (r + + r )P n + r + P n 1 + r P n +1=

    1a

    (J n +1 J n ) xJ J n = a(r P n r + P n 1)

    Detailed balance: J n = 0 at equilibrum!

    J n = vP n + P n 1

    2 DP n P n 1

    a vP D x P

    ar = v2

    Da

    ar + = v2

    + Da

    v = a(r+ r )

    D = 12

    a2(r + r )

    v a2

    (W A |W B |)12 e W 0 (1 e f ext a )

    D

    a2

    4 (W

    A |W

    B |)

    12 e W 0 (1 + e f ext a )

    6. Effective mobility

    0 = vf ext f ext =0

    D0 = Df ext =0

    0 = a2

    2kB T

    (W A

    |W B

    |)

    12 e W 0 =

    D0

    kB T Einstein Relation:

    0kB T = D0

    D0 Fluctuations Correlation function0 friction 1 Dissipation Response function

    71

  • 8/12/2019 Theoretical Biophysics

    72/73

    C. Experiments

    Single molecule, one protein at a time.

    Example: RNA polymerase.

    Copies DNA into messanger RNA. mRNA is then translated into protein by the ribosome.

    Optical trap:

    A bead in a laser trap can be described by an overdamped harmonic oscilator with uctua-

    tions:

    Overdamped: m = 0

    1 t x + kx = f extNeed to determine the stiffness of the trap for calibrated measurements!

    Measure at f ext = 0: thermal uctuations of bead.

    Determine: C ( ) = < x (t)x(t + ) > and C () from experimental data.

    Spectral Density C ()

    C ()m =0

    = 2kB T

    1

    k i 2

    = 2kB T

    1

    k2 + 22D = kB T

    = 2D

    2k2 + 2

    Lorentz-function:

    72

  • 8/12/2019 Theoretical Biophysics

    73/73

    We know and D, so we can very accurately determine k by tting the data to this function!

    Stiffness of DNA:

    Semiexible polymer: K DN A = kB T 2 |s |+2 2 (e|s | 1) for small forces.

    Motion of the polymerase along the DNA:Interaction potential is periodic with a period of 1 basepair!

    Periodic Potential

    Discrete hopping model with Kramers Rules

    and external force!

    THE END