the sperner property - mit mathematicsrstan/transparencies/sperner.pdf · a poset (partially...

124
The Sperner Property Richard P. Stanley M.I.T. and U. Miami January 20, 2019

Upload: others

Post on 22-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The Sperner Property

Richard P. StanleyM.I.T. and U. Miami

January 20, 2019

Page 2: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Sperner’s theorem

Theorem (E. Sperner, 1927). Let S1,S2, . . . ,Sm be subsets of ann-element set X such that Si 6⊆ Sj for i 6= j , Then m ≤

(n

⌊n/2⌋

),

achieved by taking all ⌊n/2⌋-element subsets of X .

Page 3: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Sperner’s theorem

Theorem (E. Sperner, 1927). Let S1,S2, . . . ,Sm be subsets of ann-element set X such that Si 6⊆ Sj for i 6= j , Then m ≤

(n

⌊n/2⌋

),

achieved by taking all ⌊n/2⌋-element subsets of X .

Emanuel Sperner9 December 1905 – 31 January 1980

Page 4: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Posets

A poset (partially ordered set) is a set P with a binary relation ≤

satisfying:

Reflexivity: t ≤ t

Antisymmetry: s ≤ t, t ≤ s ⇒ s = t

Transitivity: s ≤ t, t ≤ u ⇒ s ≤ u

Page 5: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Graded posets

chain: u1 < u2 < · · · < uk

Page 6: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Graded posets

chain: u1 < u2 < · · · < uk

Assume P is finite. P is graded of rank n if

P = P0 ∪ P1 ∪ · · · ∪ Pn,

such that every maximal chain has the form

t0 < t1 < · · · < tn, ti ∈ Pi .

Page 7: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Diagram of a graded poset

..

.

P

P

P

P

P

0

1

2

n −1

n

Page 8: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piqi

Page 9: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piqi

Rank-symmetric: pi = pn−i ∀i

Page 10: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piqi

Rank-symmetric: pi = pn−i ∀i

Rank-unimodal: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 ≥ · · · ≥ pn for some j

Page 11: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piqi

Rank-symmetric: pi = pn−i ∀i

Rank-unimodal: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 ≥ · · · ≥ pn for some j

rank-unimodal and rank-symmetric ⇒ j = ⌊n/2⌋

Page 12: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •

Page 13: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •

Note. Pi is an antichain

Page 14: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •

Note. Pi is an antichain

P is Sperner (or has the Sperner property) if

maxA

#A = maxi

pi

Page 15: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An example

rank-symmetric, rank-unimodal, FP(q) = 3 + 3q

Page 16: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An example

rank-symmetric, rank-unimodal, FP(q) = 3 + 3q not Sperner

Page 17: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The boolean algebra

Bn: subsets of {1, 2, . . . , n}, ordered by inclusion

Page 18: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The boolean algebra

Bn: subsets of {1, 2, . . . , n}, ordered by inclusion

pi =(ni

), FBn

(q) = (1 + q)n

rank-symmetric, rank-unimodal

Page 19: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Diagram of B3

2

231312

1 3

φ

123

Page 20: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Sperner’s theorem, restated

Theorem. The boolean algebra Bn is Sperner.

Proof (D. Lubell, 1966).

Bn has n! maximal chains.

Page 21: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Sperner’s theorem, restated

Theorem. The boolean algebra Bn is Sperner.

Proof (D. Lubell, 1966).

Bn has n! maximal chains.

If S ∈ Bn and #S = i , then i !(n − i)! maximal chains of Bn

contain S .

Page 22: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Sperner’s theorem, restated

Theorem. The boolean algebra Bn is Sperner.

Proof (D. Lubell, 1966).

Bn has n! maximal chains.

If S ∈ Bn and #S = i , then i !(n − i)! maximal chains of Bn

contain S .

Let A be an antichain. Since a maximal chain can intersect atmost one element of A, we have

S∈A

|S |! (n − |S |)! ≤ n!.

Page 23: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Sperner’s theorem, restated

Theorem. The boolean algebra Bn is Sperner.

Proof (D. Lubell, 1966).

Bn has n! maximal chains.

If S ∈ Bn and #S = i , then i !(n − i)! maximal chains of Bn

contain S .

Let A be an antichain. Since a maximal chain can intersect atmost one element of A, we have

S∈A

|S |! (n − |S |)! ≤ n!.

Divide by n!:∑

S∈A

1(n|S|

) ≤ 1.

Page 24: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Lubell’s proof (cont.)

Divide by n!:∑

S∈A

1(n|S|

) ≤ 1.

Page 25: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Lubell’s proof (cont.)

Divide by n!:∑

S∈A

1(n|S|

) ≤ 1.

Now(n|S|

)≤(

n⌊n/2⌋

), so

A∈S

1(

n⌊n/2⌋

) ≤ 1.

Page 26: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Lubell’s proof (cont.)

Divide by n!:∑

S∈A

1(n|S|

) ≤ 1.

Now(n|S|

)≤(

n⌊n/2⌋

), so

A∈S

1(

n⌊n/2⌋

) ≤ 1.

⇒ |A| ≤(

n⌊n/2⌋

)�

Page 27: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A q-analogue

Lubell’s proof carries over to some other posets.

Theorem. Let Bn(q) denote the poset of all subspaces of Fnq.

Then Bn(q) is Sperner.

Page 28: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Linear algebra

P = P0 ∪ · · · ∪ Pm : graded poset

QPi : vector space with basis Q

U : QPi → QPi+1 is order-raising if for all s ∈ Pi ,

U(s) ∈ spanQ{t ∈ Pi+1 : s < t}

Page 29: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-matchings

Order matching: µ : Pi → Pi+1: injective and µ(t) < t

Page 30: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-matchings

Order matching: µ : Pi → Pi+1: injective and µ(t) < t

P

Pi +1

i

µ

Page 31: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-raising and order-matchings

Key Lemma. If U : QPi → QPi+1 is injective and order-raising,then there exists an order-matching µ : Pi → Pi+1.

Page 32: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-raising and order-matchings

Key Lemma. If U : QPi → QPi+1 is injective and order-raising,then there exists an order-matching µ : Pi → Pi+1.

Proof. Consider the matrix of U with respect to the bases Pi andPi+1.

Page 33: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Key lemma proof

Pi+1︷ ︸︸ ︷

t1 · · · tm · · · tn

Pi

s1...sm

6= 0 | ∗. . . | ∗

6= 0| ∗

det 6= 0

Page 34: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Key lemma proof

Pi+1︷ ︸︸ ︷

t1 · · · tm · · · tn

Pi

s1...sm

6= 0 | ∗. . . | ∗

6= 0| ∗

det 6= 0

⇒ s1 < t1, . . . , sm < tm �

Page 35: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Minor variant

Similarly if there exists surjective order-raising U : QPi → QPi+1,then there exists an order-matching µ : Pi+1 → Pi .

Page 36: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0inj.→ QP1

inj.→ · · ·

inj.→ QPj

surj.→ QPj+1

surj.→ · · ·

surj.→ QPn,

then P is rank-unimodal and Sperner.

Page 37: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0inj.→ QP1

inj.→ · · ·

inj.→ QPj

surj.→ QPj+1

surj.→ · · ·

surj.→ QPn,

then P is rank-unimodal and Sperner.

Proof. Rank-unimodal clear: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 · · · ≥ pn.

Page 38: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0inj.→ QP1

inj.→ · · ·

inj.→ QPj

surj.→ QPj+1

surj.→ · · ·

surj.→ QPn,

then P is rank-unimodal and Sperner.

Proof. Rank-unimodal clear: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 · · · ≥ pn.

“Glue together” the order-matchings.

Page 39: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Gluing example

j

Page 40: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Gluing example

j

Page 41: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Gluing example

j

Page 42: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Gluing example

j

Page 43: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Gluing example

j

Page 44: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Gluing example

j

Page 45: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A chain decomposition

P = C1 ∪ · · · ∪ Cpj (chains)

A = antichain,C = chain ⇒ #(A ∩ C ) ≤ 1

⇒ #A ≤ pj . �

Page 46: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

Page 47: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

131 2 3 4 5 6 7 8 9 10 11 12

Page 48: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

)1 2 3 4 5 6 7 8 9 10 11 12 13

) ) ) )

Page 49: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

(1 2 3 4 5 6 7 8 9 10 11 12 13

) ) ) ) )( ( ( ( ( ( (

Page 50: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

(1 2 3 4 5 6 7 8 9 10 11 12 13

) ) ) ) )( ( ( ( ( ( (

Page 51: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

(1 2 3 4 5 6 7 8 9 10 11 12 13

) ) ) ) )( ( ( ( ( ( (

Page 52: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5

(1 2 3 4 5 6 7 8 9 10 11 12 13

) ) ) ) )( ( ( ( ( ( (

Page 53: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-raising for Bn

DefineU : Q(Bn)i → Q(Bn)i+1

by

U(S) =∑

#T=i+1S⊂T

T , S ∈ (Bn)i .

Page 54: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-raising for Bn

DefineU : Q(Bn)i → Q(Bn)i+1

by

U(S) =∑

#T=i+1S⊂T

T , S ∈ (Bn)i .

Similarly define D : Q(Bn)i+1 → Q(Bn)i by

D(T ) =∑

#S=iS⊂T

S , T ∈ (Bn)i+1.

Page 55: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Order-raising for Bn

DefineU : Q(Bn)i → Q(Bn)i+1

by

U(S) =∑

#T=i+1S⊂T

T , S ∈ (Bn)i .

Similarly define D : Q(Bn)i+1 → Q(Bn)i by

D(T ) =∑

#S=iS⊂T

S , T ∈ (Bn)i+1.

Note. UD is positive semidefinite, and hence has nonnegative realeigenvalues, since the matrices of U and D with respect to thebases (Bn)i and (Bn)i+1 are transposes.

Page 56: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A commutation relation

Lemma. On Q(Bn)i we have

DU − UD = (n − 2i)I ,

where I is the identity operator.

Page 57: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A commutation relation

Lemma. On Q(Bn)i we have

DU − UD = (n − 2i)I ,

where I is the identity operator.

Corollary. If i < n/2 then U is injective.

Proof. UD has eigenvalues θ ≥ 0, and eigenvalues of DU areθ + n− 2i > 0. Hence DU is invertible, so U is injective. �

Similarly U is surjective for i ≥ n/2.

Page 58: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A commutation relation

Lemma. On Q(Bn)i we have

DU − UD = (n − 2i)I ,

where I is the identity operator.

Corollary. If i < n/2 then U is injective.

Proof. UD has eigenvalues θ ≥ 0, and eigenvalues of DU areθ + n− 2i > 0. Hence DU is invertible, so U is injective. �

Similarly U is surjective for i ≥ n/2.

Corollary. Bn is Sperner.

Page 59: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

What’s the point?

Page 60: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

What’s the point?

The symmetric group Sn acts on Bn by

w · {a1, . . . , ak} = {w · a1, . . . ,w · ak}.

If G is a subgroup of Sn, define the quotient poset Bn/G to bethe poset on the orbits of G (acting on Bn), with

o ≤ o′ ⇔ ∃S ∈ o,T ∈ o

′, S ⊆ T .

Page 61: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An example

n = 3, G = {(1)(2)(3), (1, 2)(3)}

3

φ

1,2

12

123

13,23

Page 62: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.

Page 63: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.

Theorem. Bn/G is rank-unimodal and Sperner.

Page 64: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.

Theorem. Bn/G is rank-unimodal and Sperner.

Crux of proof. The action of w ∈ G on Bn commutes with U, sowe can “transfer” U to Bn/G , preserving injectivity on the bottomhalf.

Page 65: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An interesting example

R: set of squares of an m × n rectangle of squares.

Gmn ⊂ SR : can permute elements in each row, and permute rowsamong themselves, so #Gmn = n!mm!.

Gmn∼= Sn ≀Sm (wreath product)

Page 66: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Young diagrams

A subset S ⊆ R is a Young diagram if it is left-justified, withweakly decreasing row lengths from top to bottom.

Page 67: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Young diagrams

A subset S ⊆ R is a Young diagram if it is left-justified, withweakly decreasing row lengths from top to bottom.

Page 68: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

BR/Gmn

Lemma. Each orbit o ∈ BR/Gmn contains exactly one Youngdiagram.

Page 69: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

BR/Gmn

Lemma. Each orbit o ∈ BR/Gmn contains exactly one Youngdiagram.

Proof. Let S ∈ BR . Let αi be the number of elements of S in rowi . Let λ1 ≥ · · · ≥ λm be the decreasing rearrangement ofα1, . . . , αm. Then the unique Young diagram in the orbitcontaining S has λi elements in row i . �

Page 70: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Poset structure of Br/Gmn

Yo: Young diagram in the orbit o

Easy : o ≤ o′ in BR/Gmn if and only if Yo ⊆ Yo′ (containment of

Young diagram).

Page 71: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Poset structure of Br/Gmn

Yo: Young diagram in the orbit o

Easy : o ≤ o′ in BR/Gmn if and only if Yo ⊆ Yo′ (containment of

Young diagram).

L(m, n): poset of Young diagrams in an m × n rectangle

Corollary. BR/Gmn∼= L(m, n)

Page 72: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Examples of L(m, n)

φ

φ

1

2

3

4

φ

1

2

21

22

11

1

2

3

31

32

33

22

21

11

Page 73: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

L(3, 3)

11

φ

1

2

3

31

32

33

21

22

311

321

221

211

111

322 331

333

222

332

Page 74: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

q-binomial coefficients

For 0 ≤ k ≤ n, define the q-binomial coefficient

[n

k

]

=(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q).

Page 75: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

q-binomial coefficients

For 0 ≤ k ≤ n, define the q-binomial coefficient

[n

k

]

=(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q).

Example.[42

]

= 1 + q + 2q2 + q3 + q4

Page 76: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Properties

[nk

]∈ N[q]

Page 77: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Properties

[nk

]∈ N[q]

[nk

]

q=1=(nk

)

Page 78: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Properties

[nk

]∈ N[q]

[nk

]

q=1=(nk

)

If q is a prime power,[nk

]is the number of k-dimensional

subspaces of Fnq (irrelevant here).

Page 79: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Properties

[nk

]∈ N[q]

[nk

]

q=1=(nk

)

If q is a prime power,[nk

]is the number of k-dimensional

subspaces of Fnq (irrelevant here).

F (L(m, n), q) =[m+nm

]

Page 80: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Unimodality

Corollary.[m+nm

]has unimodal coefficients.

Page 81: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Unimodality

Corollary.[m+nm

]has unimodal coefficients.

First proved by J. J. Sylvester (1878) using invariant theoryof binary forms.

Page 82: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Unimodality

Corollary.[m+nm

]has unimodal coefficients.

First proved by J. J. Sylvester (1878) using invariant theoryof binary forms.

Combinatorial proof by K. O’Hara (1990): explicit injectionL(m, n)i → L(m, n)i+1, 0 ≤ i < 1

2mn.

Page 83: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Unimodality

Corollary.[m+nm

]has unimodal coefficients.

First proved by J. J. Sylvester (1878) using invariant theoryof binary forms.

Combinatorial proof by K. O’Hara (1990): explicit injectionL(m, n)i → L(m, n)i+1, 0 ≤ i < 1

2mn.

Not an order-matching. Still open to find an explicitorder-matching L(m, n)i → L(m, n)i+1.

Page 84: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Algebraic geometry

X : smooth complex projective variety of dimension n

H∗(X ;C) = H0(X ;C)⊕ H1(X ;C)⊕ · · · ⊕ H2n(X ;C):cohomology ring, so H i ∼= H2n−i .

Hard Lefschetz Theorem. There exists ω ∈ H2 (the class of ageneric hyperplane section) such that for 0 ≤ i ≤ n, the map

ωn−2i : H i → H2n−i

is a bijection. Thus ω : H i → H i+1 is injective for i ≤ n andsurjective for i ≥ n.

Page 85: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Cellular decompositions

X has a cellular decomposition if X = ⊔Ci , each Ci∼= Cdi (as

affine varieties), and each Ci is a union of Cj ’s.

Page 86: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Cellular decompositions

X has a cellular decomposition if X = ⊔Ci , each Ci∼= Cdi (as

affine varieties), and each Ci is a union of Cj ’s.

Fact. If X has a cellular decomposition and [Ci ] ∈ H2(n−i) denotesthe corresponding cohomology classes, then the [Ci ]’s form aC-basis for H∗.

Page 87: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The cellular decomposition poset

Let X = ⊔Ci be a cellular decomposition. Define a posetPX = {Ci}, by

Ci ≤ Cj if Ci ⊆ Cj

(closure in Zariski or classical topology).

Page 88: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The cellular decomposition poset

Let X = ⊔Ci be a cellular decomposition. Define a posetPX = {Ci}, by

Ci ≤ Cj if Ci ⊆ Cj

(closure in Zariski or classical topology).

Easy:

PX is graded of rank n.

#(PX )i = dimC H2(n−i)(X ;C)

Page 89: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The cellular decomposition poset

Let X = ⊔Ci be a cellular decomposition. Define a posetPX = {Ci}, by

Ci ≤ Cj if Ci ⊆ Cj

(closure in Zariski or classical topology).

Easy:

PX is graded of rank n.

#(PX )i = dimC H2(n−i)(X ;C)

PX is rank-symmetric (Poincare duality)

Page 90: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The cellular decomposition poset

Let X = ⊔Ci be a cellular decomposition. Define a posetPX = {Ci}, by

Ci ≤ Cj if Ci ⊆ Cj

(closure in Zariski or classical topology).

Easy:

PX is graded of rank n.

#(PX )i = dimC H2(n−i)(X ;C)

PX is rank-symmetric (Poincare duality)

PX is rank-unimodal (hard Lefschetz)

Page 91: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Spernicity of PX

Identify CP with H∗(X ;C) via Ci ↔ [Ci ].

Page 92: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Spernicity of PX

Identify CP with H∗(X ;C) via Ci ↔ [Ci ].

Recall: ω ∈ H2(X ;C) (class of hyperplane section)

Interpretation of cup product on H∗(X ;C) as intersection impliesthat ω is order-raising.

Hard Lefschetz ⇒ ω : H2i → H2(i+1) is injective for i < n/2 andsurjective for i ≥ n/2.

Page 93: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Spernicity of PX

Identify CP with H∗(X ;C) via Ci ↔ [Ci ].

Recall: ω ∈ H2(X ;C) (class of hyperplane section)

Interpretation of cup product on H∗(X ;C) as intersection impliesthat ω is order-raising.

Hard Lefschetz ⇒ ω : H2i → H2(i+1) is injective for i < n/2 andsurjective for i ≥ n/2.

⇒ Theorem. PX has the Sperner property.

Page 94: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Main example

What smooth projective varieties have cellular decompositions?

Page 95: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Main example

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where G is a semisimplealgebraic group over C, and Q is a parabolic subgroup

Page 96: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Main example

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where G is a semisimplealgebraic group over C, and Q is a parabolic subgroup

Example. Gr(n, k) = SL(n,C)/Q for a certain Q, theGrassmann variety of all k-dimensional subspaces of Cn.

Page 97: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Main example

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where G is a semisimplealgebraic group over C, and Q is a parabolic subgroup

Example. Gr(n, k) = SL(n,C)/Q for a certain Q, theGrassmann variety of all k-dimensional subspaces of Cn.

rational canonical form ⇒ PGr(m+n,m)∼= L(m, n)

Page 98: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

“Best” special case

G = SO(2n + 1,C), Q = “spin” maximal parabolic subgroup

M(n) := PG/Q∼= Bn/Sn, where Bn is the hyperoctahedral group

(symmetries of n-cube) of order 2nn!, so #M(n) = 2n

Page 99: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

“Best” special case

G = SO(2n + 1,C), Q = “spin” maximal parabolic subgroup

M(n) := PG/Q∼= Bn/Sn, where Bn is the hyperoctahedral group

(symmetries of n-cube) of order 2nn!, so #M(n) = 2n

M(n) is isomorphic to the set of all subsets of {1, 2, . . . , n} withthe ordering

{a1 > a2 > · · · > ar} ≤ {b1 > b2 > · · · > bs},

if r ≤ s and ai ≤ bi for 1 ≤ i ≤ r .

Page 100: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Examples of M(n)

3

21

21

31

321

421

φ

φ

φ

φ

(1)M

(2)M

(3)M

M(4)

2

2

1

21

2

1

321

32

31

1

4321

432

431

43

32

42

41

4

3

1

Page 101: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-generating function of M(n)

rank of {a1, . . . , ar} in M(n) is∑

ai

Page 102: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-generating function of M(n)

rank of {a1, . . . , ar} in M(n) is∑

ai

⇒ F (M(n), q) :=

(n2)∑

i=0

|M(n)i | · qi = (1 + q)(1 + q2) · · · (1 + qn)

Corollary. The polynomial (1 + q)(1 + q2) · · · (1 + qn) hasunimodal coefficients.

Page 103: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Rank-generating function of M(n)

rank of {a1, . . . , ar} in M(n) is∑

ai

⇒ F (M(n), q) :=

(n2)∑

i=0

|M(n)i | · qi = (1 + q)(1 + q2) · · · (1 + qn)

Corollary. The polynomial (1 + q)(1 + q2) · · · (1 + qn) hasunimodal coefficients.

No combinatorial proof known, though can be done with justelementary linear algebra (Proctor).

Page 104: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The function f (S, α)

Let S ⊂ R, #S < ∞, α ∈ R.

f (S, α) = #{T ⊆ S :∑

i∈T

i = α}

Note.∑

i∈∅ i = 0

Page 105: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The function f (S, α)

Let S ⊂ R, #S < ∞, α ∈ R.

f (S, α) = #{T ⊆ S :∑

i∈T

i = α}

Note.∑

i∈∅ i = 0

Example. f ({1, 2, 4, 5, 7, 10}, 7) = 3:

7 = 2 + 5 = 1 + 2 + 4

Page 106: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The Erdos-Moser conjecture for R+

Let R+ = {i ∈ R : i > 0}.

Erdos-Moser Conjecture for R+

S ⊂ R+, #S = n

⇒ f (S , α) ≤ f

(

{1, 2, . . . , n},

⌊1

2

(n+ 1

2

)⌋)

Page 107: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The Erdos-Moser conjecture for R+

Let R+ = {i ∈ R : i > 0}.

Erdos-Moser Conjecture for R+

S ⊂ R+, #S = n

⇒ f (S , α) ≤ f

(

{1, 2, . . . , n},

⌊1

2

(n+ 1

2

)⌋)

Note. 12

(n+12

)= 1

2 (1 + 2 + · · ·+ n)

Page 108: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The proof

Proof. Suppose S = {a1, . . . , ak}, a1 > · · · > ak . Let

ai1 + · · ·+ air = aj1 + · · ·+ ajs ,

where i1 > · · · > ir , j1 > · · · > js .

Page 109: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The proof

Proof. Suppose S = {a1, . . . , ak}, a1 > · · · > ak . Let

ai1 + · · ·+ air = aj1 + · · ·+ ajs ,

where i1 > · · · > ir , j1 > · · · > js .

Now {i1, . . . , ir} ≥ {j1, . . . , js} in M(n)

⇒ r ≥ s, i1 ≥ j1, . . . , is ≥ js

⇒ ai1 ≥ bj1 , . . . , ais ≥ bjs

⇒ r = s, aik = bik ∀k .

Page 110: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Conclusion of proof

Thus ai1 + · · ·+ air = bj1 + · · ·+ bjs

⇒ {i1, . . . , ir} and {j1, . . . , js} are incomparable

or equal in M(n)

⇒ #S ≤ maxA

#A = f

(

{1, . . . , n},

⌊1

2

(n + 1

2

)⌋)

Page 111: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The weak order on Sn

si :== (i , i + 1) ∈ Sn, 1 ≤ i ≤ n− 1 (adjacent transposition)

For w ∈ Sn,

ℓ(w) := #{(i , j) : i < j ,w(i) > w(j)}

= min{p : w = si1 · · · sip}.

Page 112: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The weak order on Sn

si :== (i , i + 1) ∈ Sn, 1 ≤ i ≤ n− 1 (adjacent transposition)

For w ∈ Sn,

ℓ(w) := #{(i , j) : i < j ,w(i) > w(j)}

= min{p : w = si1 · · · sip}.

weak (Bruhat) order Wn on Sn: u < v if

v = usi1 · · · sip , p = ℓ(v)− ℓ(u).

Page 113: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The weak order on Sn

si :== (i , i + 1) ∈ Sn, 1 ≤ i ≤ n− 1 (adjacent transposition)

For w ∈ Sn,

ℓ(w) := #{(i , j) : i < j ,w(i) > w(j)}

= min{p : w = si1 · · · sip}.

weak (Bruhat) order Wn on Sn: u < v if

v = usi1 · · · sip , p = ℓ(v)− ℓ(u).

ℓ is the rank function of Wn, so

F (Wn, q) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Page 114: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The weak order on Sn

si :== (i , i + 1) ∈ Sn, 1 ≤ i ≤ n− 1 (adjacent transposition)

For w ∈ Sn,

ℓ(w) := #{(i , j) : i < j ,w(i) > w(j)}

= min{p : w = si1 · · · sip}.

weak (Bruhat) order Wn on Sn: u < v if

v = usi1 · · · sip , p = ℓ(v)− ℓ(u).

ℓ is the rank function of Wn, so

F (Wn, q) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

A. Bjorner (1984): does Wn have the Sperner property?

Page 115: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Examples of weak order

4

1234

2134 1324 1243

134221433124

2314

3214

3241

3421

4321

4312

4132

4123

1423

23412413 3142 1432

34124213

2431

4231

123

213

231

321

312

132

W3

W

Page 116: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An order-raising operator

theory of Schubert polynomials suggests:

U(w) :=∑

1≤i≤n−1wsi>si

i · wsi

Page 117: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An order-raising operator

theory of Schubert polynomials suggests:

U(w) :=∑

1≤i≤n−1wsi>si

i · wsi

Fact (Macdonald, Fomin-S). Let u < v in Wn, ℓ(v)− ℓ(u) = p.The coefficient of v in Up(u) is

p!Svu−1(1, 1, . . . , 1),

where Sw (x1, . . . , xn−1) is a Schubert polynomial.

Page 118: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A down operator

C. Gaetz and Y. Gao (2018): constructedD : Q(Wn)i → Q(Wn)i−1 such that

DU − UD =

((n

2

)

− 2i

)

I .

Suffices for Spernicity.

Page 119: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

A down operator

C. Gaetz and Y. Gao (2018): constructedD : Q(Wn)i → Q(Wn)i−1 such that

DU − UD =

((n

2

)

− 2i

)

I .

Suffices for Spernicity.

Note. D is order-lowering on the strong Bruhat order. Leads toduality between weak and strong order.

Page 120: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt(2018): for k < 1

2

(n2

), let

D(n, k) = matrix of U(n2)−2k : Q(Wn)k → Q(Wn)(n2)−k

with respect to the bases (Wn)k and (Wn)(n2)−k(in some order).

Then (conjectured by RS):

detD(n, k) = ±

((n

2

)

− 2k

)

!#(Wn)k

k−1∏

i=0

((n2

)− (k + i)

k − i

)#(Wn)i

.

Page 121: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt(2018): for k < 1

2

(n2

), let

D(n, k) = matrix of U(n2)−2k : Q(Wn)k → Q(Wn)(n2)−k

with respect to the bases (Wn)k and (Wn)(n2)−k(in some order).

Then (conjectured by RS):

detD(n, k) = ±

((n

2

)

− 2k

)

!#(Wn)k

k−1∏

i=0

((n2

)− (k + i)

k − i

)#(Wn)i

.

Also suffices to prove Sperner property (just need detD(n, k) 6= 0).

Page 122: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

An open problem

The weak order W (G ) can be defined for any (finite) Coxetergroup G . Is W (G ) Sperner?

Page 123: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The final slide

Page 124: The Sperner Property - MIT Mathematicsrstan/transparencies/sperner.pdf · A poset (partially ordered set) is a set P with a binary relation ≤ satisfying: Reflexivity: t ≤ t Antisymmetry:

The final slide