the spectral method: time-dependent quantum dynamics of fhf - : potential energy surface,...

28
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez Hernández Friedrich Schiller Universität Jena Institut für Physikalische Chemie 3 December 2007, Jena

Post on 19-Dec-2015

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

The spectral method: time-dependent quantum dynamics of FHF-: Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum.

Guillermo Pérez Hernández

Friedrich Schiller Universität JenaInstitut für Physikalische Chemie

3 December 2007, Jena

Page 2: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

2

OUTLINE

- FHF-

- The vibrational problem

- Theoretical approaches- Time dependent approach: the Spectral Method

- Results- Quantum Chemistry- Nuclear Dynamics- Spectra

- Conclusions and outloook

Page 3: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

3

FHF-

- Bifluoride Ion:

- dF-F ~ 2.27-2.28 Å

- 20 e (closed shell ground state g.).

- Heavy-light-heavy system ( Zundel cation, CdH2)

Very strong HB ~ 35-40 Kcal / mol

Suitable for high-level ab-initio calculations!

Page 4: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

4

The vibrational problem

- Normal modes of vibration around the equilibrium geometry

- Vibrational degrees of freedom: 4.

symmetric stretch

asymmetric stretch

bending (x2)

3

2

1

Page 5: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

6

The vibrational problem

- Vibrations: INFRARED (IR) Spectrum

SOLID:B. S. Ault, JPC 83, 837 (1979)

GAS:Kawaguchi et al, JCP 87, 6838 (1987)

3 (as. stretch)

2 (bending)KFH2 in solid Ar matrix

Page 6: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

7

vibrational coordinates (q)

What do theoretical approaches consist of?

Theoretical approaches

en

erg

y /

cm

-1

h2

h3

electronic ground state

(q)Ψ E nn ,

(q)Ψ E mm ,

(q)Ψ E kk ,

TIME INDEPENDENT

SCHRÖDINGER EQUATION

potential energy surface (PES)

Page 7: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

9

- The many different approaches differ basically in these aspects:

- Quantum Chemistry for calculation of PES.- Methods: (HF, MP2, CISD..., CCSD....)

- Basis sets: (augmented, polarized....)

- Nuclear Dynamics for obtention of eigenfunctions and eigenvalues.- Selection of coordinates: (normal mode, bond-angle, spherical...)

- Representation of space: (on a grid, with analytical functions...)

- Representation of PES: (on a grid, fit to analytical eigenfunctions, force fields...)

- „Technical“ approximations

- Variational procedures mostly involved.

- They are time independent.

Theoretical approaches

Page 8: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

10

- The Spectral Method (Feit et al., J. Comp. P, 41, 112 (1982)).

- Obtains time independent information in a time dependent fashion.

- Implies solving the time dependent Schrödinger Equation,

which has the solution:

)tΨ(qeΨ(q,t) ti0,H

Time dependent approach: the spectral method

Ψ(q,t)(q,t)Ψ(q,t)t

i H

initial statestate at time t

economic, flexible !

Page 9: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

11

Time dependent approach: Split-Operator

)tΨ(qeΨ(q,t) ti0,H

How to apply the time-evolution operator?

Page 10: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

12

- The time propagation provides

time dependent information about

the system: wavefunctions, mean

values:

1. Time dependent approach: the spectral method

time

vib

. coord t2

t3

ti

tf

t1

t0 )Ψ(q,t0

)Ψ(q,t1

)Ψ(q,t2

)Ψ(q,t3

)Ψ(q,ti

)Ψ(q,t f

)( 0tq

)( 1tq

)( 2tq

)( 3tq

)( itq

)( ftq

time wfs exp. values

Page 11: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

15

5E

2.Time dependent approach: the spectral method

- The power spectrum displays the eigenenergies .

energy

sp

ectr

um

1E

2E

3E

En}{

- Eigenvalues are known, but they are only "numbers“.

- Still no information about the eigenfunctions

themselves.

- Which eigenvalue corresponds to which eigenfunction?

4E

Page 12: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

16

5E

energy

sp

ectr

um

1E

2E

3E

4E

3. Time dependent approach: the spectral method

- Obtaining the eigenfunctions: the filtering procedure.

(q)Ψt)Ψ(qedt ktiE

t

t

k

f

,0

filtering operation

filtered eigenfunctionfilter value

(q)Ψ1

(q)Ψ 2

(q)Ψ3

Page 13: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

17

)(, nkn

nn EE(q)ΨCq)Ψ(t tiE

nnn

ne(q)ΨCq)Ψ(t , tEEi

nnn

nke(q)ΨCq)Ψ(t )(, (q)Ψq)Ψ(t k,

Time dependent approach: the spectral method

- Obtaining the eigenfunctions: the filtering procedure.

0

0

t

t

dt tiEke

filter value

filtering operation

filtered eigenfunction

Page 14: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

18

RESULTS

Quantum Chemistry

Page 15: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

19

- Coordinate system

- Molecule is assumed to have zero total angular momentum (J=0).

X

Y

Z

xy

0. Results: Quantum Chemistry

Grid size:

R 64 points

x 64 points

y 64 points

),,(222

2

2

2

,

2

2

2

,

2

22

yxRVRmymxm

HFFHFHF

643 points!R

Page 16: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

20

- PES

- Global minimum at x=0, y=0 and R= 2.28 Å (Req exp. = 2.28 Å)

0. Results: Quantum Chemistry (CCSD(T) / aug-cc-pvtz)

R = 2.28 Å

X

Y

R

Page 17: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

21

0. Results: Quantum Chemistry (CCSD(T) / aug-cc-pvtz)

R = 1.82 Å R = 3.2 Å

- PES

Page 18: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

22

RESULTS

Nuclear Dynamics

Page 19: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

23

- Initial wavefunction displaced from global minium (R≠2.28, x,y≠0).

- Total propagation time 32 ps.

- Expectation values for the first

200 fs

q)Ψ(tq)Ψ(t ,,0

1. Results: Nuclear dynamics. Propagation.

- Autocorrelation function for

the first 200 fs.

Page 20: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

24

2. Results: Spectrum

resolution ~

propagation time

1

resolution = 2 cm-1

Ψ(q,t))Ψ(q,tdtet

t

iEt0

0

prop. time = 33 ps

Page 21: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

25

Results

- Example of a filter operation:

- After relative short integration time, the filtered wavefunction shows its characteristic structure with nodes.

t = 0 fs t = 0 fs t = 0 fs

t = 150 fs t = 150 fs t = 150 fs

Page 22: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

26

Movie time

Page 23: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

27

3. Results: Eigenfunctions.

- Vibrational ground state and fundamental modes:R

y

x

1

2

3

Page 24: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

28

2. Results:Transition frequencies.

- Comparison of the obtained transition frequencies with other available

theoretical and experimental data:

Page 25: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

29

IR Spectra: Modulating intensities

Transition probability: permanent dipole moment:x and y

Page 26: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

30

IR-Spectra: Intensities

0 0 1 0 0 1

1 0 1

1 0 1

2 0 1

3 0 12 0 1

0 1 0 0 1 0

1 0 1 1 0 1

)(qx

)(qy

Page 27: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

31

Conclusions and outlook

- Time dependent approach provides very flexible, economic and reliable method.

- Good agreement with experimental and other theoretical data.

- Outlook:

- Take into account the degenerate bending mode

- Trigger that motion with a laser?

Page 28: The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez

32

Acknowledgments

- Prof. Leticia González

- Dr. Jesús González-Vázquez

- GK #788

... and you!